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Abstract

In this paper we show that in some parameter range in gyrokinetic simulations, it is pos-
sible to apply a control method to stimulate the appearance of zonal flows while minimizing
the duration of the control process and the impact on plasma parameters. For this purpose,
a gyrokinetic code considering only trapped particles is used. The starting point of our work
is a situation where zonal flows transiently appear after the nonlinear phase of saturation of
TEM (Trapped Electron Modes) or TIM (Trapped Ion Modes) micro-instabilities. These are
observed to be strongly reduced in a later phase, permitting streamers to govern the plasma
behavior in the steady-state. By intervening during this latter state (after this transient
growth and decay of zonal flow), i.e. by increasing the ion/electron temperature ratio for a
short time, it is found to be possible to bifurcate to a new steady-state, in which zonal flows
are strongly present and are maintained indefinitely, thereby allowing a significant reduction
in radial heat fluxes.

1 Introduction

Zonal flows have attracted the attention of many scientists because of their ability to reduce
heat transport [1, 2, 3, 4, 5, 6]. They play an important role in regulating turbulence and
hence improve the energy confinement of magnetized plasmas. Zonal flows are fluctuations
in the poloidal velocity which are consistently generated by drift wave turbulence through
non linear E × B coupling. Streamers, in contrast, are radially elongated convective cells
which dramatically increase radial heat transport in fusion devices. Concerning zonal flows
and streamers, several fundamental aspects remain to be fully explored. The mechanisms
underlying the onset and disappearance of these structures are still a subject of discussion
[7]. In particular the interplay between zonal flows and turbulence remains a challenging
problem in tokamak physics [8]. More generally, there is a great deal of interest in studying
the competition between streamers and zonal flows, and to enhance strong and robust zonal
flows in magnetized plasmas.

The present work is based on a reduced kinetic model for trapped particles [9, 10, 11,
12, 13]. This bounce-averaged gyrokinetic model is a promising tool for investigating fun-
damental physical processes at low computational cost and good analytic tractability, as
a complementary approach to more comprehensive models. Recently, a semi-Lagrangian
nonlinear simulation code, TERESA-4D (Trapped Element REduction in Semi lagrangian
Approach), has been developed based on this model for trapped ions, making efficient use
of parallel computing [14, 15]. We recently expanded TERESA to simultaneously describe
both trapped-ion (TIM) and trapped-electron (TEM) driven modes [16, 17, 18]. The code’s
most interesting property is that it enables the processing of the full f problem for trapped
ions and trapped electrons at very low numerical cost [17]. Competition between streamer-
like structures and zonal flows, which is sensitive to the temperature ratio Ti/Te, has been
observed for TEM and TIM turbulence. This is important because zonal flows have been
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shown to play an important role in suppressing nonlinear transport. The impact of the tem-
perature ratio Ti/Te on the reduction of zonal flows has been studied [18]. This reduction
was found to be linked to the amplitudes of gyro-and-bounce-average density perturbations
ne and ni gradually becoming closer.

In this paper we shall show that by intervening after this zonal flow reduction, increasing
the ion/electron temperature ratio for a short period of time, it is possible to reach a steady-
state in which zonal flows are strongly present, yielding a significant reduction of radial heat
fluxes.

The present paper is organized as follows. In Sec. II, the basic bounce-averaged gyroki-
netic equations are summarized within the frame of the Hamiltonian description. In Sec.
III the main parameters of the simulations are given, as well as the initial and boundary
conditions. In Sec. IV the control technique is presented and its impact on the zonal flows is
studied in Sec. V. Then, in Sec. VI, the impact of this control on the heat fluxes is discussed.
Finally, a brief summary of key results is given along with conclusions.

2 Model

In general, trapped particle modes are known to couple with other modes such as ion tem-
perature gradient (ITG) instabilities. However, here, we apply a reduced description, where
passing particles are treated adiabatically, and ITG and ETG can not be included. Therefore,
the investigations here are meant to uncover qualitative trends.

Our reduced model with trapped kinetic ions and electrons covers both TIM/TEM
regimes simultaneously [16, 17]. The turbulence driven by trapped particles is character-
ized by frequencies of the order of a slow trapped particle precession frequency. Studying
the dynamics at this time scale is therefore relevant for the analysis of TEM and TIM tur-
bulence properties. The study of kinetic trapped particles and adiabatic passing particles
makes it possible to average the kinetic equation over the cyclotron and the bounce mo-
tions and allows the number of independent variables in phase space to be reduced. The
gyro-bounce average filters the fast frequencies ωc (cyclotron frequency) and ωb (bounce fre-
quency) and the small space scales ρc (Larmor radius) and δb (banana width). It reduces
the dimensionality of the model from 6D to 4D [11, 16, 17].

In this framework the Hamiltonian at the equilibrium only depends on actions which
means that kinetic Vlasov equations are much easier to solve. Only two kinetic variables
appear in the differential operators. The other two variables appear as parameters - two

adiabatic invariants, namely particle kinetic energy E and the trapping parameter κ =
√

1−λ
2ελ

,

with λ = µBmin/E, and ε = a
R0

the inverse of the aspect ratio of the tokamak. Thus the final
model involves two parameters (E, κ) and the 2D space coordinates (ψ,α). The coordinate
ψ is the poloidal magnetic flux normalized to 2π and stands for the radial coordinate. The
quantity α is equal to ϕ− qθ, where θ and ϕ are respectively poloidal and toroidal angular
coordinates and q is the safety factor defined by q(ψ) = (B.∇ϕ)/(B.∇θ).

More information on the model can be found in [11, 12, 16, 17, 19]. The same assumptions
are used hereafter and the model can be summarized as follows.

We make the electrostatic assumption (justified in low-β plasmas) and use the Maxwell-
Gauss equation in the quasi-neutral limit (which corresponds to the main turbulence regime
in tokamaks). The normalized quasi-neutrality constraint and the evolution of the averaged
single particle distribution function for the s species f̄s(ψ, α,E, κ) driven by the normalized
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Vlasov equation can be written as:

2√
πneq

(∫ +∞

0

J0if̄iE
1/2dE −

∫ +∞

0

J0ef̄eE
1/2dE

)
=

1

Teq,i

[
Cad(Φ− εφ〈Φ〉)− Cpol∆̄i+e(Φ)

]
(1a)

∂f̄i
∂t
−
[
J0iΦ, f̄i

]
+ ΩdE

∂f̄i
∂α

= 0 (1b)

∂f̄e
∂t
−
[
J0eΦ, f̄e

]
− ΩdE

∂f̄e
∂α

= 0 (1c)

Ωd = Zsωd
E

, with Zs the charge number of the species s, and

ωd =
2E(κ2)

K(κ2)
− 1 + 4s0

(
E(κ2)

K(κ2)
+ κ2 − 1

)
(2)

where s0 is the magnetic shear and K(κ2) and E(κ2) are respectively the complete elliptic
functions of the first and second kinds. The gyro-bounce-average operator J0s can be written
as :

J0s =

(
1− E

Teq,s

δ2
b0,s

4
∂2
ψ

)−1(
1− E

Teq,s

q2ρ2
c0,s

4a2
∂2
α

)−1

(3)

with ρc0,s and δb0,s the Larmor radius and the banana width (expressed in units of ψ) at
an arbitrary typical temperature T0 (energy is normalized to the typical thermal energy
T0), δb0,s = qρc0,s/

√
ε, q the safety factor and ε the inverse of the aspect ratio, and Teq,s

the equilibrium temperature of the species s. The Poisson’s brackets are defined by [f, g] =

∂αf∂ψg−∂αg∂ψf and Cpol =
eω0Lψ
T0

, Cad =
Cpol(1−fT )

fT
(1+τ) et ∆̄i+e(Φ) = ∆̄i(Φ)+τ∆̄e(Φ), with

fT = 2
√

2ε
π

the fraction of trapped particles, τ =
Teq,i
Teq,e

, ω0 = T0/(eR
2
0Bθ) which corresponds

to the ion precession frequency at the typical temperature T0 (time is normalized to this
frequency), Lψ = aR0Bθ the length of the simulation box in ψ, and ∆̄s the operator defined
by :

∆̄s =
(qρc0,s

a

)2

∂2
α + δ2

b0,s∂
2
ψ (4)

with a the small radius. εφ =
εφ,i+τεφ,e

1+τ
is a control parameter which governs the response of

the adiabatic passing particles. It depends on the responses of the passing ions εφ,i and the
passing electrons εφ,e.

Regarding the electron response, εφ,e = 1 prevents the passing electrons from responding
to the zonal potential which is constant on a flux surface (toroidal mode n=0). This situation
prevails when the electron gyro radius is small compared with the characteristic length of the
zonal flows [6]. 〈Φ〉 = 〈Φ〉α = ΦZF stands for the electrostatic potential averaged on the flux
surface, i.e. the zonal potential. Unlike passing electrons, passing ions must respond to zonal
flows (0 ≤ εφ,i ≤ 1), therefore εφ should be in the range [0, 1]. The model does not allow the
adiabatic response of the passing particles to be properly computed so we introduce εφ as a
free parameter, 0 ≤ εφ ≤ 1 and assume the form chosen in Eq.1a. A detailed study of this
parameter was performed in [15]. Hereafter only the extreme case εφ = 1 simulations will be
used in the paper.

Using the quasi-neutrality equation (1a) and expressing the zonal potential as a function
of electron and ion density fluctuations, we obtain

ΦZF ∼
〈ni〉α − 〈ne〉α

Cadn0(1− εφ) + Cpolk2
(
δ2
b,i + τδ2

b,e

)
n0

(5)

with k the radial wavenumber derived from the Laplacian operator ∆̄s in Fourier space, n0

the density reference at equilibrium. ns denotes the perturbed part of the density. For close
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values of Cad and Cpol which is the main case we study in the rest of this work and with
εφ = 1, the zonal potential can be written as:

ΦZF ∼
1

n0Cpol

〈ni〉α − 〈ne〉α
k2δ2

b,eff

(6)

where we define the effective banana width by δ2
b,eff = δ2

b,i+τδ
2
b,e. Finally the electric potential

shearing rate can be derived from this latter equation and written as:

∂2
ψΦZF ∼ k2 〈ni〉α − 〈ne〉α

Cpolk2δ2
b,effn0

∼ 〈ni〉α − 〈ne〉α
Cpolδ2

b,effn0

(7)

3 Numerical simulations

The gyrokinetic code developed is named TERESA-4D [17] (Trapped Element REduction
in Semi lagrangian Approach). It currently runs in a 4D electrostatic version for N kinetic
trapped species including the electrons. Passing particles are assumed to be adiabatic. In or-
der to solve the Vlasov equations (Eq.1b and 1c), the code takes advantage of two approaches
[20], namely a semi-Lagrangian scheme using a fixed grid (Eulerian) while also taking into
account the conservation of the value of the distribution function along a trajectory in phase
space (Lagrangian). To solve the electro-neutrality (Eq.1a), the fields are first projected in
the Fourier space along the periodic direction α. The electric potential Φ is then a solution
of a second order differential equation in ψ. The latter is solved up to fourth order in ψ by
inverting a penta-diagonal matrix.

This code is full f : the whole distribution function is computed. To study heat transport,
a transition region where the fluctuations are damped towards their prescribed vanishing
value at the edge was set up.

A buffer region enforces this transition layers. It is controlled by an ad hoc diffusion
coefficient D. The right-hand side of equations (1b and 1c) then reads ∂ψ(D∂ψf̄s). The
diffusion coefficient is non-vanishing in the buffer regions only (0 ≤ ψ ≤ 0.05 and 0.95 ≤
ψ ≤ 1), where its maximum value is 10−2. The lengths are given in Lψ units. It is given a
shape [12] which means that the buffer regions occupy less than 10% of the radial domain
of the simulation box.

Temperature and density gradients are described by κn = 0 and κT = 0.25, with
κn,T = ∂ψ log(neq, Teq). The equilibrium temperature is allowed to change so that the fi-
nal equilibrium is self-consistently computed. A thermal bath is used with the temperature
fixed on the radial boundaries. Dirichlet boundary conditions are imposed on the electro-
static potential at ψ = 0 and ψ = 1. The time step chosen for TEM/TIM simulations
performed with TERESA is typically ∆t = 0.01 (in ω−1

0 units). The equilibrium distribution
functions are given the form:

Feq,s =
ns(ψ)

T
3
2
s (ψ)

exp

(
− E

Ts(ψ)

)
(8)

The temperature writes:

Ts = Teq,s +
κT,s

2

(
1 + LT

[
log(cosh

(
ψ −Ψ1

LT

)
)− log(cosh

(
ψ − Lψ + Ψ1

LT

)
)

])
(9)

with LT = 0.025, Ψ1 = 0.1. κT is almost constant over the entire radial width of the
simulation box except in the buffer regions where κT = 0. A constant equilibrium density
profile is chosen and can be expressed as: ns = neq,s = n0 = 1.
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The parameters given in Tab.1 enable us to study modes with toroidal mode number n
in the range [0, 128] (Nα=257) with the shortest wavelengths being of the order of ρc,i. The
grid mesh is Nψ = 257 in the radial direction and NE = 96 for the energy parameter. The
trapping parameter κ and the magnetic shear s0 are equal to zero.

κni,e κTi,e δb,i δb,e ρc,i ρc,e Cpol Cad Ωd
Teqi
Teqe

Nψ Nα NE εφ κ s0

0.0 0.25 0.1 0.01 0.03 0.01 0.1 0.05 1 0.5 257 257 96 1 0 0

Table 1: The main parameters used for the nonlinear simulations, in the case Te = 2Ti.

4 Control method

The control method proposed in this paper is to temporarily increase the ion/electron tem-
perature ratio τ . This can be interpreted as a crude model for a variety of experimental
scenarios:

1. A temporary decrease in ECRH (Electron Cyclotron Resonance Heating). ECRH is a
powerful heating tool with which heating energy may be deposited at selected locations,
thus tailoring the temperature profile in the plasma. ECRH is used in many tokamaks
- the ITER Tokamak will rely on ECRH heating - and is also for instance the main
heating system of Wendelstein 7-X, capable to operate continuously. When ECRH
heating is switched on in experimental devices it takes between 10 to 100 ms for the
wave to transfer its energy to the electrons which corresponds to a 10-100 ω−1

0 range
in our simulations.

2. A temporary increase in ICRH (Ion Cyclotron Resonance Heating). By placing an
antenna very close to the surface of the plasma it is possible to heat the ions at the
resonant cyclotron frequencies of the ions. ICRH can produce a strong absorption of
energy at the center of the plasma. It is produced in many present day tokamaks. It
will be one of the heating systems installed in ITER and it will deliver 20 MW of radio
frequency power to the plasma.

3. A temporary increase in NBI (Neutral Beam Injection). Neutral beam injection con-
sists in injecting high-energy neutral particles into the plasma. They are unaffected
by the magnetic field and travel along straight-line trajectories until they are ionized
by collisions with the plasma. The new high-energy tail on the distribution function
(deuterium particles for instance) is then slow down by Coulomb collisions and trans-
fers its energy to the background plasma in the form of heat. This heating method
will also be used in ITER.

Starting from a situation where Te = 2Ti, we observed that zonal flows occur at the
beginning of the nonlinear phase and then are reduced allowing for streamers to govern heat
radial transport. We decide to stop the electron heating (Te = Ti) for a short period of time
(τc + 2tr, see Fig.1, with tr the time necessary to switch the heating on or off and τc the
time during which the electron temperature is reduced and maintained constant) and then
to heat the electrons again (Te = 2Ti) if possible with the aim of obtaining strong and robust
zonal flows. Indeed, as we shall describe in the following sections, we observed that zonal
flows might be strong and maintained indefinitely in the nonlinear phase when temperatures
are equal. Our idea is thus to try to apply this short disruption to trigger strong zonal flows
and we expect these would be maintained even when the electron heating to Te = 2Ti is
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attained once again. It should be noticed here that the control method is not modified by
feedback and does not depend on the behavior of the dynamical system as could be the case
for control methods used for chaos control [21, 22].

Figure 1: Principle of the control method. Electron heating is switched off during a short
time τc, and then switched on again. tr is the time necessary to reduce or increase the
electron temperature.

We experimented with the following three ways to act on Ti/Te:

• Method M1: modifying the Cad coefficient (see Eq.1), which is a function of the tem-
perature ratio.

• Method M2c: modifying the electron temperature of the thermal bath in the core side.

• Method M2e: modifying the electron temperature of the thermal bath in the edge side.

It should be noted that we found the qualitative response of the plasma (which will
be discussed in sections 5 and 6) to be insensitive to the duration of the control period
during which we modify the plasma parameters, as both durations τc + 2tr = 0.26 ω−1

0 and
τc + 2tr = 10 ω−1

0 lead to the same results for instance. Moreover, whatever the duration
needed to switch the electron heating on or off (very rapid: tr = 0.01 ω−1

0 , or gradual:
tr = 10.0 ω−1

0 ), we obtain the same results regarding the emergence of zonal flows.

Finally, we have observed that, for Te = 2Ti, the efficiency of the control is not very
sensitive to the applied method. In general, zonal flows can be triggered regardless of the
choice of method, M1, M2c or M2e. Nevertheless, for instance in the case of Te = 3Ti, for
which the zonal flows are very weak without control, it has been observed that strong zonal
flows are recovered by temporarily modifying the thermal baths (M2c and M2e), whereas
modifying Cad alone (M1) is no longer an efficient method. In the rest of the paper the Te =
2Ti case is presented in detail with a control method focused on method M1 (modification
of the Cad coefficient) during τc + 2tr = 0.26 ω−1

0 .

5 Stimulate zonal flow generation

For this paper we study the Te = 2Ti case and we describe in detail the effects of the control
method applied in this case. For the set of parameters given in Tab.1 we compare the case
with no control, to the case with a control applied between t = 20 and t = 20.26 ω−1

0 ,
meaning that the electron heating is switched off (Te = Ti, Cad = 0.1, method M1) during
this short period of time (tr = 0.01 ω−1

0 , τc = 0.24 ω−1
0 ) before being switched back on.
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(a) (b)

Figure 2: Zonal potential ΦZF (electric potential averaged over α) as a function of ψ and
time for Te = 2Ti. For this set of parameters given in Tab.1 the simulation exhibits TIM-
dominant instabilities and streamers in its linear phase, then zonal flows and streamers in its
nonlinear phase. (a) and (b) are two different simulations with the same input parameters
and same initial conditions. The only difference is that in (a) no control was applied, while
in (b) the control method M1 was applied between t = 20 and t = 20.26 ω−1

0 .

Figure 2 shows the behavior of the averaged potential on α, 〈Φ〉α = ΦZF , as a function
of ψ and time. It should be noted that instabilities and streamer structures are found to
develop in the linear phase according to the most unstable linear TIM mode (kψ = π/Lψ,
n = 13). Then, nonlinear mode coupling makes these structures coalesce, which leads to
a saturated state dominated by zonal flows. The strongest zonal flows seem to occur at
t = 11.4 ω−1

0 and then are reduced (see Fig.2 (a)).

As we have observed zonal flows to be strong and robust in the Ti/Te = 1 case, we try
to apply this temperature ratio to the system between t = 20 and t = 20.26 ω−1

0 . After this
time the temperature ratio is brought back up to its previous value Ti/Te = 0.5. The results
are given in Fig. 2 (b). Of course the behavior of the plasma is the same from t = 0 to t = 20
ω−1

0 but next, after a short transition after the end of the control, the system is again found
to exhibit strong zonal flows. The amplitude of these zonal flows is almost constant after
t = 25 ω−1

0 , and until we arbitrarily end the simulation (we have checked up to t = 250 ω−1
0 ).

Therefore, robust and strong zonal flows appear to be triggered by the applied control.

This behavior can also be seen in Fig. 3 where the electric potential shearing rate profile
is plotted against ψ for both cases (with and without control) and for two different times
(at t = 11.4 ω−1

0 , dotted line and at t = 30.0 ω−1
0 , solid line). At t = 11.4 ω−1

0 , before the
control method is applied, the electric potential shearing rate is of course the same for Fig.
3 (a) and (b). However, as we can note, the zonal flows at t = 30.0 ω−1

0 recovered with
the control method (Fig. 3 (b), solid line) are much stronger than those observed at the
same time without any control (Fig. 3 (a), solid line). At ψ = 0.3 and ψ = 0.7, where
control-induced zonal flows peak, the shearing rate at t = 30 ω−1

0 is an order-of-magnitude
larger with control than without. Clearly the control method is very effective throughout
most of the domain, and therefore a high level of improvement in energy confinement can
be expected globally.

We observe in Fig. 3 (b) that the amplitude of the zonal flows obtained at t = 30.0 ω−1
0

is about twice as large as that of observed at t = 11.4 ω−1
0 . According to the equation (7),
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(a) (b)

Figure 3: Electric potential shearing rate profile averaged over α as a function of ψ, at
t = 11.4 ω−1

0 (dotted line) and at t = 30.0 ω−1
0 (solid line) in the case with no control (a)

and in the case where control was applied between t = 20 and t = 20.26 ω−1
0 (b).

this factor two should also be recovered in the density difference | < ni >α − < ne >α |,
since the electric potential shearing rate is proportional to this difference.

(a) (b)

Figure 4: Ion and electron gyro-and-bounce average densities plotted against time. Ion
density is in blue, electron density is in red. In (a) is plotted the case without control and
in (b) the case with the control applied.

To check this, the time evolution of ion (in blue) and electronic (in red) gyro-and-bounce
average densities are drawn Fig. 4, at ψ = 0.39. First it should be noted that the ion
density is found to have a larger amplitude response than the electron density since TIM
rather than TEM are linearly destabilized with the set of parameters used for the simulation.
Fig.4 also shows that the ions appear to evolve to adjust themselves to the level of electronic
fluctuation and thus is found to govern the dynamics of zonal flows. We observe Fig.4 (b)
that the density difference at t = 30.0 ω−1

0 is about twice as large as that observed at t = 11.4
ω−1

0 . As expected this result is in agreement with equation (7) and the amplitude of the
zonal flows observed previously in Fig.3 (b). We also noticed that the large density difference
is in agreement with the results obtained in a previous study in which a strong steady zonal-
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flow regime is correlated with a large density difference in the case Te = Ti (See Fig.5a in
[18]). The species that is involved in the instability which drives turbulence acts the most
in response to the zonal potential and separates from (adjusts to) the fluctuation level of
the other species which then leads to the zonal flow amplification (reduction). This could
explain the dependency of the stimulation mechanism with respect to τ . Indeed Ref.[18]
shows a natural transition from zonal flow-dominated regime to streamer-like regime as
Ti/Te decreases. Therefore it can be expected that stimulation is only efficient at relatively
large temperature ratio.

Finally, focusing here on the densities, we again observe that the control applied between
t = 20 and t = 20.26 ω−1

0 is found to be sufficient to generate and subsequently maintain a
significant difference between electron and ion densities which allows the strong zonal flows to
govern plasma behavior. It should be noted here that the actual mechanism of the transition
remains unexplained and further investigations are kept for future work.

6 Impact on the heat fluxes

Heat transport from the hot plasma core towards the colder plasma boundary is highly
connected to the turbulence level and the competition between zonal flows and streamers.
Our aim is to reduce heat fluxes by stimulating zonal flows. In our model, the heat conductive
flux qs is related to the heat flux Qs by [12]:

qs = Qs − ΓsTs (10)

with qs = −nsχs∂ψTs, Qs = − 2√
π

∫
dα
∫
dEE3/2∂α(J0sΦ)fs and the guiding centre flux

Γs = − 2√
π

∫
dα
∫
dEE1/2∂α(J0sΦ)fs.

Figure 5 shows the conductive heat flux qs averaged over α and ψ, as a function of time.
The effect of the control on the heat flux is clearly noticeable. After the control was applied
and after a transition period of about 5 ω−1

0 , the system stabilizes and reaches a steady state
in which the heat flux is reduced.

(a) (b)

Figure 5: Conductive electron heat flux qe (in red) and conductive ion heat flux qi (in blue)
as a function of time. qe and qi are averaged over α, ψ. In (a) the case without control is
plotted and (b) shows the case with control applied.

To quantify this effect, the ion heat flux is averaged over time from t = 25 to t = 40 ω−1
0 .

In the case without control, < qi >t is found to be equal to −10−3, whereas in the case with

9



control < qi >t is strongly reduced as expected and is equal to −6.5× 10−5 thus proving the
efficiency of the control method in reducing the radial heat transport. As expected streamers
are found to lead to a large conductive heat flux while turbulent transport is greatly reduced
in the presence of zonal flows. Here the heat transport is mainly carried by the trapped ions
and transported outwards (downgradient, note that in our model ψ is proportional to −r).

Although, for the sake of concision, we have focused on one set of parameters and one
control method, we have observed qualitatively similar results (control-induced zonal flows
with strong reduction in ion heat flux), for a range of parameters and different control
methods. Table 2 lists the cases that we have tested, and for each case, whether a significant
and robust bifurcation to zonal-flow-dominated steady-state was found (Y) or not (N).

Control method M1 M2c M2e

tr [ω−1
0 ] 0.01 0.1 10 10 10

τc [ω−1
0 ] 0.24 10 0 0

Initial Ti/Te 0.57 0.5 0.4 0.33 0.5 0.5 0.5 0.4 0.33 0.5 0.4 0.33

Control Ti/Te 1.0 1.0 1.0 0.67 1.0 1.0 1.0 1.0

Bifurcation Y Y N N Y Y Y Y Y Y Y Y Y

Table 2: List of cases that we have simulated. The last line, ”Bifurcation”, indicates for
each case, whether we observe, yes (Y) or no (N), after the control, robust and strong zonal
flows along with significantly reduced ion heat flux.

7 Conclusion

To sum up, we investigated the possibility of stimulating zonal flow generation. Zonal
flows are driven by TEM and TIM turbulence and studied by means of gyrokinetic Vlasov
simulations for trapped particles. We have shown that in cases where zonal flows normally
appear only transiently at the beginning of a simulation it is possible to trigger a bifurcation
from a standard steady-state dominated by radially-elongated structures, to a new steady-
state dominated by zonal flows, by shortly increasing the Ti/Te ratio. After a short transition,
zonal flows appear again and are sustainable and very effective regarding the reduction of
heat fluxes.

When effective, the control method has been demonstrated to prevent densities becoming
similar thus making it possible to maintain a finite radial electric field after the control was
applied. The advantage of this method is that plasma parameters are modified only for a
very short period of time without significantly modifying the performance of the plasma on
the discharge time and while allowing the plasma to be heated again indefinitely.

Several numerical models for the control method were tested. It is possible to modify
the plasma behavior by changing the Cad coefficient which is a function of the electron
temperature or by modifying the boundary conditions i.e. the temperatures of the thermal
bath or both. We also observed that the plasma dynamics is not affected by the duration of
the control applied.

However, we also noticed that this method is only effective for a certain range of tem-
peratures. Indeed, the reduction phenomenon of the zonal flows varies in importance and
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gradually evolves depending on the ratio Ti/Te. For instance for Te = 3Ti, zonal flows are
more strongly reduced than for Te = 2Ti and we also observed that in this case the method
is efficient only when modifying boundary conditions and thermal bath conditions whereas
modifying Cad alone is found to have no lasting effect on plasma behavior. The greater the
reduction of zonal flows during the nonlinear phase of the instabilities, the more it is difficult
for the zonal flows to be stimulated by the control method.

Further study will be required to investigate and find out what the precise nonlinear
saturation mechanism is. Such mechanisms are found in the literature - for instance Kelvin-
Helmholtz instabilities and vortices could play an important role in the saturation and decay
of streamers by merging to produce zonal flows [23]. Moreover, the close correlation between
these structures, which gradually disappear to once again produce streamers, and the evo-
lution of the ion density which gets very close to the electron density also remains to be
explained. These studies should help us to understand why the control method carried out
in this numerical experiment is efficient. We shall therefore leave this question for future
work.
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