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Abstract
SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to
the monolithic integration of various complex oxides on the complementary metal-oxide–
semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer
promising perspectives to improve or add functionalities on-chip. We review the growth by
MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium
arsenide (GaAs) and we discuss the film properties in terms of crystalline structure,
microstructure and ferroelectricity. Finally, we review the last developments in two areas of
interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which
benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may
benefit from the negative capacitance of the ferroelectric.

Keywords: molecular beam epitaxy, ferroelectric, semiconductor

1. Introduction

Complex oxides exhibit a wide range of electrical, magnetic,
optical and mechanical properties, which may even be cou-
pled. This extraordinary wealth of physical properties offers a
huge potential for developing new functionalities in devices
that can address societal needs related to health, energy

efficiency or information and communication technologies.
Ferroelectrics are particularly attractive for their applications
in nanoelectronics, communication devices, electro–mechan-
ical systems or sensors. However, in order to exploit their
properties, complex oxide integration should be performed in
a seamless manner on a semiconductor platform such as
silicon or III/V substrates in order to be compatible with the
mainstream nanoelectronic industry.

A great variety of complex oxides crystallize in a per-
ovskite-type structure [1]. Tremendous progress has been
achieved in the growth of oxides on oxide substrates (such as
SrTiO3, LaAlO3, scandates, Al2O3, MgO…) in the past 15
years. Unit cell control (∼4 Å) of the growth can now be
achieved. New phenomena arising from interfaces have
emerged [2–5]. Progress in characterization techniques and
modeling (density functional theory (DFT)) have allowed the
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study of physico-chemistry and mechanisms involved at the
nanoscale and have resulted in a better understanding of the
effect of size, strain and boundaries conditions on the prop-
erties of complex oxides.

Integrating a perovskite oxide epitaxially on silicon is
much more difficult and is still in its infancy, particularly
regarding practical devices. One major difficulty for the epitaxy
lies in the necessity to avoid the formation of an amorphous
SiO2 interfacial layer in the first stages of the growth. The first
direct epitaxy of a perovskite (SrTiO3) on silicon was realized
by molecular beam epitaxy (MBE) in 1998 [6]. MBE provides
unique advantages to precisely construct, almost atom by atom,
the oxide/semiconductor interface. Although this breakthrough
achievement showed promise in integrating—in a monolithic
way—oxides on a semiconductor platform, only a few suc-
cesses have been reported in the past 15 years [7].

In this contribution to the focus issue on ‘Properties and
Applications of Perovskites’, we discuss the monolithic
integration of complex oxides on semiconductors by MBE.
We will illustrate the particular case of the ferroelectric
BaTiO3 compound. We review the work in the literature as
well as our own work. The crystalline structure and the fer-
roelectric properties of BaTiO3 heterostructures on Si, Ge and
GaAs are presented. Finally, an overview of perspectives and
recent progress in ferroelectric oxide integration on semi-
conductors for low power logic devices and integrated pho-
tonics is provided.

2. MBE of complex oxides: a brief introduction to the
technique

MBE was originally developed to epitaxially grow III–V
compound semiconductors on a crystalline substrate [8, 9]. It
allows a control almost atom by atom of the growth in
ultrahigh vacuum conditions. Progress in the MBE of oxides
as well as in other deposition techniques took off in the late
1980s, after the discovery of the high-Tc superconductor
YBa2Cu3O7-δ. This implied the design of dedicated metal-
oxide growth MBE chambers. MBE of crystalline oxides on
silicon and on other semiconductor substrates has been
developed in the late 1990s when the first epitaxy of SrTiO3

on Si was demonstrated [6]. This research benefited from the
huge amount of efforts triggered by the microelectronic
industry on the search for high-permittivity (high κ) oxides as
a replacement to SiO2 (or SiON) gate oxide in complementary
metal-oxide–semiconductor (CMOS) field-effect transistors.

In the MBE of complex metal oxides, Knudsen effusion
cells commonly used to evaporate the metals (Ba, Sr, Ti…) are
focused onto a heated substrate under ultrahigh vacuum con-
ditions (typically 10−10–10−9 Torr). In the case of refractory
elements, such as Ti, various means of evaporation have been
reported: effusion cells, e-beam gun evaporation, Ti-Ball sub-
limation source [10] and metal-organic vapor source [11, 12].
Metal organic sources used in metalorganic chemical vapor
deposition [13] such as titanium tetra isopropoxide
Ti(OCH3H7)4 have been proposed in order to increase by
several orders of magnitude the vapor pressure of Ti as

compared to solid source and to have a beam flux that is
relatively unaffected by the presence of oxygen in the chamber
[12]. A wide window of growth parameters with self-regulating
stoichiometry has been reported for SrTiO3 films grown using
such a hybrid approach combining a conventional Sr effusion
cell with a metalorganic precursor source for Ti [12].

For a given compound, deposition occurs by alternating
the individual flux by means of shutters or by co-directing all
fluxes simultaneously towards the substrate. Either molecular
oxygen or atomic oxygen generated by a plasma source is
typically used to provide the necessary oxygen to form the
oxide. The oxygen pressure ranges typically from the 10−8 to
10−5 Torr. The background oxygen pressure plays a major
role on the final stoichiometry, crystalline orientation and
roughness of the films, as we will show later.

The reactivity of metal elements (in the chamber and in
the sources) with the ambient oxygen (typically in the high
10−8–10−5 Torr range) makes the control of the beam fluxes,
and therefore composition, difficult. This is actually a major
issue in the MBE of multicomponent oxides, which can
usually accommodate a large range of non-stoichiometric
composition. Indeed the physical properties of complex oxi-
des are strongly dependent on the cationic and oxygen stoi-
chiometry. Moreover, composition deviation may lead to the
formation of spurious phases. A quartz crystal microbalance
may be used to measure the flux of each atomic beam at the
position of the substrate but it does not allow simultaneous
monitoring of each flux (it is not element specific) and cannot
be employed for in situ control of the composition. In situ
monitoring techniques have been proposed for composition
control of multi-element oxides [14]. Among them, reflection
high-energy electron diffraction (RHEED) is commonly used
and has proven to be an effective in situ and real-time diag-
nostic tool. A review article is proposed in [15] for the use of
RHEED during complex oxide growth. It allows one to fol-
low in real time the crystallinity of the deposited film and to
adjust in real time the composition by tuning the impinging
fluxes when additional spots originating from spurious phases
are observed on the RHEED pattern.

Haeni et al [16] have proposed to use RHEED oscillations,
both their shape and intensity, to control in real time the
composition of multicomponent oxides such as SrTiO3. They
reported a control to within 1% of Sr:Ti ratio by monitoring the
shuttered RHEED oscillations as the substrate surface is
sequentially exposed to the Sr or Ti fluxes. This precise control
of monolayer (ML) doses of Sr and Ti has been used to suc-
cessfully grow the first five members of the Srn+1TinO3n+1

Ruddlesden–Popper phases [17, 18].
Various complex oxides have been grown by MBE. As

mentioned, the development of oxide MBE started after the
discovery of the high Tc cuprate superconducting compounds
[19–28]. Since then, a variety of multiple-cation oxides have
been epitaxially deposited by MBE on oxide substrates:
SrTiO3, Ruddlesden–Popper phases, Bi4Ti3O12, Ba(Sr)TiO3,
SrVO3, GdTiO3, BiFeO3, LaAlO3, PbTiO3, LaCrO3, SrCrO3−δ,
La1−xSrxFeO3, LaTiO3.5, La2Zr2O7, LaNiO3, La2NiO4,
LaSrAlO4, and superlattices e.g. BaTiO3/SrTiO3 or PbTiO3/
SrTiO3 to name only a few compounds and groups [29–54].
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On Si substrates, epitaxial SrTiO3 films are used as templates
to grow a variety of complex oxides. BaTiO3 has been the most
studied one by MBE. Apart from this compound, relatively few
complex oxides (perovskite, spinel, pyrochlore phases…) have
been grown by MBE on Si [55–62]. In many cases, the epi-
taxial growth on the template layers is completed using other
deposition techniques such as pulsed laser deposition, sput-
tering, chemical vapor deposition or atomic layer deposition, as
reported in [64–69] for BaTiO3.

A review of crystalline oxides on silicon is provided in
[7]. The paper by Baek and Eom [63] gives a recent review of
the epitaxial integration on silicon using SrTiO3 templates of
the multiferroic BiFeO3, of the relaxor Pb(Mg1/3Nb2/3)O3–

PbTiO3 (PMN-PT) and of LaAlO3/SrTiO3 heterostructures
for 2D electron gas creation at their interface.

In the following, we focus on the MBE of the ferro-
electric compound BaTiO3 on silicon, germanium and gal-
lium arsenide and on the related crystalline and ferroelectric
properties.

3. MBE of BaTiO3 on semiconductors: growth and
crystalline structure

BaTiO3 is a prototypical ferroelectric perovskite oxide, with a
Curie temperature of 120 °C. The ferroelectric tetragonal
structure has lattice parameters of a= 3.994 Å and
c= 4.0335 Å with space group P4mm (ICDD #83–1880) and
the cubic paraelectric one has a lattice parameter of 4.006 Å
with space group Pm-3m (ICDD #79–2263). The polarization
is aligned along the c-axis of the tetragonal lattice. The tet-
ragonality ratio c/a is 1.01, which is smaller than in Pb-based
ferroelectrics such as PbTiO3 (c/a= 1.04). BaTiO3 is an
attractive ferroelectric for nanoelectronic, energy harvesting
and photonic applications as will be discussed later in this
article. It is a lead-free compound, which is an advantage
regarding European regulation and industrial clean room
compatibility.

While most MBE depositions of BaTiO3 on a semi-
conductor have been carried out on silicon, there is a growing
interest in Ge and GaAs.

Silicon is the major semiconductor industry substrate.
Current CMOS technologies are based on silicon wafers with
size up to 300 mm and technologies on 450 mm wafer size are
under development. Germanium (also a group IV semi-
conductor) is of high interest for field-effect transistors with
p-type channel (p-FETs) due to the higher mobility of holes
as compared to Si. Biaxially strained SiGe channels on Si
have also recently attracted much attention for p-FETs. Both
Si and Ge have a diamond structure with lattice parameter of
5.431 Å and 5.658 Å respectively. They form a solid solution
Si1−xGex in the entire composition range (0⩽ x⩽ 1).

The III–V gallium arsenide semiconductor has higher
electron mobility than Si, which makes it attractive for
n-FETs. It is today extensively studied as a channel for
advanced CMOS technologies. GaAs has also a wider band
gap than Si making it highly resistive if undoped. It is also
more resistive to heat and radiation damage. It is suited for

many applications such as high frequency devices in com-
munications or such as microwave and millimeter wave
integrated circuits. Another advantage of GaAs is its direct
band gap, which is of interest for optical applications. GaAs
has a zinc blende structure with a lattice parameter of
5.653 Å.

BaTiO3 deposition is mostly performed using an oxide
template since the direct epitaxy on semiconductors would
result in a high defect density or in a non-appropriate film
orientation. We thus describe the direct growth of SrTiO3

epitaxial films on semiconductors when relevant and their use
for the epitaxial growth of BaTiO3.

In the following, BaTiO3 crystalline domains with
respectively the c-axis or the a-axis of the tetragonal cell
being out-of-plane relatively to the substrate (001) plane are
denoted respectively c-domains and a-domains.

3.1. MBE of BaTiO3 on silicon

The lattice mismatch (aSi–aBTO)/aBTO, between BaTiO3 and
Si(001) is about 4%, which is quite large and tends to favor a-
axis growth when BaTiO3 is directly grown on Si [70].
Moreover, the large mismatch of the thermal expansion
coefficients between Si (α= 2.6 × 10−6 K−1) and BaTiO3

(α = 9 × 10−6 K−1) leads to an in-plane biaxial tensile strain
exerted on BaTiO3 upon cooling, which favors a-axis growth.
In order to obtain c-axis oriented BaTiO3 films on silicon, a
buffer layer that exerts a biaxial compressive in-plane strain
should be used to overcome the biaxial tensile in-plane strain
during cooling to room temperature [71]. SrTiO3 has been
widely used for such a purpose.

3.1.1. SrTiO3 epitaxial templates on Si. The pioneering work
of McKee and co-workers [6] opened up the route to the
epitaxial growth of perovskite-type compounds on silicon and
more generally to any oxide that could be epitaxially grown
on bulk SrTiO3 substrates.

SrTiO3 is probably the most investigated epitaxial oxide
on silicon [7, 72–100]. Many studies have been directed
towards understanding the crystalline and electronic structure
of the film and of its interface with Si (or SiO2).

The epitaxial growth is realized by passivating the clean
Si(001) 2 × 1 reconstructed surface by ½ of a ML of Sr. The
Sr atoms are positioned between the Si dimers and prevent the
surface from oxidizing. The native SiO2 can be in situ
thermally removed at high temperature; the clean Si (001)
surface is then passivated by dosing the Sr metal to ½ ML.
SiO2 can also be removed using a strontium-assisted
deoxidation process in which Sr acts as a catalyst to desorb
the native oxide [74]; in this case, once SiO2 is fully
desorbed, more Sr is deposited until a 2 × 1 reconstructed
surface appears on the RHEED, indicating the passivation of
the Si(001) surface with ½ ML Sr coverage. The subsequent
growth of SrTiO3 can be performed in different ways. The
first few MLs have to be grown at low temperature in order to
avoid the oxidation of the interface.

Commensurate SrTiO3 thin films may be grown on Si
(001) using a sequential process named ‘kinetically controlled
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sequential deposition process’ [75, 82]. The growth proceeds
by alternating a low temperature deposition (∼200–300 °C) of
1–3ML of a mainly amorphous Sr–Ti–O compound under an
oxygen pressure of typically 10−8–1.5 × 10−7 Torr, followed
by an annealing step at higher temperature (580–700 °C) in
ultrahigh vacuum conditions (<5 × 10−9 Torr) to crystallize
the SrTiO3 phase. When grown in such conditions, there is no
interfacial SiO2 oxide formed and SrTiO3 films have in plane
lattice parameter commensurate to the Si 1 × 1 lattice.
Relaxation occurs for ∼5ML. Ferroelectricity in such
ultrathin compressively strained films has been reported [89].

The SrTiO3 deposition may also be performed by
growing at a higher temperature after the first few MLs of
SrTiO3 have been grown, with a low temperature growth/high
temperature post-anneal. In this case, the higher growth
temperature (>450 °C) under oxygen results in an amorphous
SiO2 interfacial layer due to oxygen diffusion through the film
down to the interface with silicon. Since this amorphous layer
occurs after the direct epitaxy of SrTiO3 on Si, it does not
disrupt the epitaxy of the SrTiO3 film and subsequent oxide
growth. The epitaxial relationship between SrTiO3 and Si,
due to the lattice mismatch, is: [100]SrTiO3//[110]Si and
(001)SrTiO3//(001)Si.

In figure 1, we show a high resolution transmission
electron microscopy (TEM) image of a SrTiO3 film deposited
on Si substrate at a temperature of 400 °C under an oxygen
partial pressure of P(O2) = 5 × 10

−8 Torr followed by a
crystallization step at 460 °C for 20 min under ultrahigh
vacuum. We used a rapid cooling down procedure followed
by a plasma anneal at 200 °C for 40 min in order to minimize
the SiO2 regrowth while providing oxygen to the SrTiO3

lattice.
Choi et al showed that the SiO2 interfacial layer thickness

increased during post-deposition annealing as P(O2) and/or
annealing time were increased (annealing at 650 °C under
P(O2) from 2× 10−7 to 1 × 10−5 Torr) [96] and that it can be
used to tune the strain relaxation of the SrTiO3 layer. Before
annealing, the SrTiO3 layers are expanded in-plane due to the
bi-axial tensile strain exerted by Si during cooling down. As

the oxygen partial pressure is increased during the post-
deposition anneal, the SrTiO3 lattice parameters evolve
towards those of a cubic structure, which is concurrent to
the SiO2 interlayer thickness increase (figure 2). Strain can be
tuned in the SrTiO3 films within half a per cent, which can be
useful to adapt the lattice constants to the oxide to be grown
on top [96].

Thick SrTiO3 films (100 nm) grown by MBE and
annealed at high temperature (900 °C) exhibit a full width
at half maximum (FWHM) of the 002 rocking curve much
narrower than the one of a bulk single crystalline substrate
(the quality of which may, however, vary considerably
depending on the quality of the original crystal) [90]. A TiO2-
terminated surface similar to the one typically prepared on
bulk single crystalline SrTiO3 substrates could be obtained by
buffered HF etching of the annealed films [90]. This
procedure requires, however, thick films since interfacial
reactions occur at high temperatures. On thinner 1–4 nm
SrTiO3 templates on Si, such a post-deposition annealing at
900 °C is not feasible. The surface may be TiO2 terminated by
switching off the Sr beam and properly dosing the Ti flux.

3.1.2. MBE of BaTiO3 on SrTiO3-buffered Si. In their
pioneering work [71], the group of Schlom used the solid
solution Ba1−xSrxTiO3 as a buffer and could obtain fully c-
axis oriented BaTiO3 films, while previous attempts to grow
BaTiO3 on silicon had lead to a-axis films. Both the
Ba0.7Sr0.3TiO3 buffer and the BaTiO3 films were grown by
MBE. A thickness of about 10 nm was estimated for the
buffer to be relaxed, which was the condition to obtain c-axis
BaTiO3 growth. In these conditions, a 10 nm BaTiO3 film was
commensurate with the buffer (30 nm) and had an in-plane
lattice parameter of 3.9996 ± 0.0005 Å, indicating that the film
was predominantly c-axis oriented. This result was
corroborated by optical second harmonic generation
measurements. Shortly after, the group of Wessels [101]
demonstrated the growth of c-axis BaTiO3 using a 5 ML
SrTiO3 template (∼2 nm). By varying the film thickness, they
observed that the BaTiO3 growth started as pseudomorphic
and that strain relaxation occurred at a critical value of 10ML
(∼4 nm). The out-of-plane lattice parameter was found to be
fully relaxed at about 30–40 nm. They observe a mixed a- and
c-oriented domain structure and the values extracted from a θ/
2θ x-ray diffraction scan were a= 4.01 Å and c= 4.05 Å. Niu
et al [102] reported the growth of a 40 nm BaTiO3 fully c-axis
film on SrTiO3-buffered (5 nm thick) Si substrate, with lattice
parameters of a= 3.978 Å and c= 4.057 Å (c/a= 1.020).

In [103], BaTiO3 films of thickness in the range
1.6–40 nm were studied with a 3.9–6.2 nm SrTiO3 template.
X-ray diffraction and high-resolution TEM images indicated a
pseudomorphic growth for the ultrathin 1.6 nm films. Films of
thickness 8–10 nm were fully c-axis oriented with lattice
parameters values close to the bulk ones (a= 3.993 Å and
c = 4.038 Å with c/a= 1.011) while 16 and 40 nm films were
composed of mixed c- and a-oriented domains. The local
crystalline structure was determined by geometrical phase
analysis (GPA) of high-resolution scanning transmission

Figure 1. High-resolution TEM image of a SrTiO3 thin film
deposited on Si (001) substrate by MBE.
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electron microscopy (HR-STEM) images. Figure 3 shows the
lattice parameter maps along the [100] and [001] as well as
the lattice parameter profiles as a function of distance from the
amorphous interfacial layer determined for a 16 nm BaTiO3

film deposited on a 3.9 nm SrTiO3 buffer on Si. In figure 3(c),
the out-of-plane lattice parameter is larger than the in-plane
one throughout the BaTiO3 thickness, indicating fully c-axis
oriented domain. In other regions of the film (figure 3(d)
orange profile), the film grows first c-axis and switches to a-
axis after ∼4.0–4.5 nm. It is noticeable that the in-plane
parameter increases continuously and therefore the switch
from c- to a-domains is continuous. The tetragonality is
maximum close to the interface with the SrTiO3 template
layer (e.g., a= 3.970 Å and c= 4.065 Å, c/a= 1.023) and
decreases throughout the film thickness. Similar results were
obtained on thicker films, in which the proportion of a-axis
domains becomes predominant. Typical local lattice para-
meters determined by GPA were a = 4.01 Å and c= 4.05 Å (c/
a= 1.010) for a 40 nm thick film. These values are similar to
those reported in [101]. Edge dislocations were observed at
the SrTiO3/BaTiO3 interface. The numerous profiles per-
formed on different areas of each sample suggested that the
lateral scale of the c- and a-domains, when in coexistence,
was similar or smaller than the 10–20 nm lateral distance
between dislocations.

In the work by Abel et al [104], a MBE 8 nm BaTiO3

film grown on 4 nm SrTiO3 was found to be fully c-axis
oriented as well, with an out-of-plane lattice parameter close
to the bulk c value. Similarly, in [105], we observed fully c-
axis oriented films for 7 nm BaTiO3 with lattice parameters
a= 3.996 Å and c = 4.027 Å. Droopad et al [106] reported c-
axis orientation for a 8 nm film grown on a strained 2ML
(∼0.8 nm) SrTiO3 buffer, with an out-of-plane parameter
c= 4.032 Å. Lattice parameters reported by various groups in
this thickness range (7–8 nm) are in good agreement
[103–106].

Thicker films of 80–130 nm were studied for photonics
applications as they are of potential interest for integrated
electro–optic modulators and other photonic devices
[107, 108]. A 130 nm thick BaTiO3 film was grown on
4 nm thick SrTiO3 template and was fully a-axis relaxed with
lattice parameters a = 3.997 ± 0.005 Å and c= 4.032 ± 0.005 Å
(c/a= 1.009) [107]. For 80 nm BaTiO3 film on 8 nm SrTiO3-
buffered silicon-on-insulator (SOI) substrates, an out-of-plane
lattice constant of 3.998 Å and an average in-plane lattice
constant of 4.03 Å were reported, indicating relaxed a-axis
film as well [108]. Atomic force microscopy (AFM) showed a
smooth surface with a root-mean square (rms) roughness as
low as 0.4 nm (one unit cell) [108]. Such thick films are a-axis
oriented due to the tensile in-plane biaxial strain applied by
the substrate during cooling down.

The critical thickness at which the orientation switches
from c- to a-axis is determined by the competing influence of
compressive stress from epitaxy and tensile stress from
thermal expansion. Among other crucial influence might be
the SrTiO3 buffer thickness and surface quality and the
composition of the BaTiO3 film. Slight cationic off-
stoichiometry may result in oxygen vacancies and structural
defects that impact the lattice parameters and strain state [32].
Deposition conditions such as oxygen background pressure or
deposition temperature have a major influence on the film
growth and may impact the film composition. We have shown
[105] that oxygen partial pressure P(O2) has a strong effect on
the morphology and crystalline orientation of 16–18 nm films.
Increasing P(O2) in the range 1 × 10−7–3 × 10−6 Torr leads to
an increase of the surface roughness as shown in figures 4(a)–
(d) by the RHEED patterns and AFM images. The RHEED
patterns for films grown at (1–5) × 10−7 Torr exhibit well-
contrasted streaky lines as expected for a 2D growth. Starting
at 2 × 10−6 Torr, partial or fully spotty patterns are recorded,
which characterizes a rougher surface. From AFM, the rms
increases from 0.35 nm (1 × 10−7 Torr) to 0.82 nm

Figure 2. (a) In-plane and out-of-plane lattice constants and (b) SiO2 thickness as a function of oxygen partial pressure. All films were
annealed at 650 °C for 30 min in different oxygen environments. From figure 5 in [96]. Reprinted with permission from M Choi et al 2012 J.
Appl. Phys. 111 064112. Copyright 2012, AIP Publishing LLC.
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(3 × 10−6 Torr). X-ray diffraction indicated that increasing
P(O2) promotes the growth of a-axis grains. Films grown at
1 × 10−7 Torr were fully c-axis oriented. With increasing
P(O2), the out-of-plane parameter was found to decrease
while the in-plane parameter increases. The FWHM of the
rocking curves performed on the 002 peak (shown in
figures 4(e)–(f)) is of 1.5° and 2.9° at 5 × 10−7 and
2 × 10−6 Torr respectively (our lowest FWHM for a 002
rocking curve measured for ∼16 nm films is of the order of
0.7°). The ratio of the out-of-plane/in-plane parameters is
lower than 1 for pressures equal or larger than 2 × 10−6 Torr
[105]. This trend was also reported for laser MBE-grown
BaTiO3 films on SrTiO3 bulk substrates [109]. The effect of P
(O2) on the cationic Ba/Ti composition and on its impact on
the crystalline orientation should be further investigated.

Oxygen stoichiometry is a major issue in MBE since
oxidizing atmosphere and ultrahigh vacuum conditions are
antagonistic. BaTiO3 is grown either using molecular O2 or
atomic oxygen often created by a radio-frequency plasma. A

post-deposition annealing might be performed in order to
ensure sufficient oxidation of the films in order to reduce
leakage currents and favor a stable ferroelectric polarization.
Another issue related to the oxidation of the film is the SiO2

regrowth, which—depending on the application—might be
detrimental for the properties. Thickness values of ∼3 nm
[104] to ∼3.6 nm [103, 106] have been shown by TEM.
Growth conditions and post-deposition annealing conditions
have actually a strong impact on the interfacial SiO2

regrowth, as reported in [105] and illustrated in figure 5.
We performed post-deposition annealing either in molecular
O2 or in an oxygen plasma (typically 400W). Figure 5(a)
shows an interfacial layer of ∼2.5–3.0 nm for films grown at
450 °C under molecular O2 and slowly cooled
down (10 °C min−1) to room temperature under
P(O2) = 1 × 10

−5 Torr. For the same growing temperature
and P(O2) conditions during the growth but a different post
annealing using a rapid cooling down under ultrahigh vacuum
followed by a plasma anneal at 200 °C for 40 min, the SiO2

Figure 3. Strain analysis in a 16 nm BaTiO3/SrTiO3/amorphous interfacial layer (silicate and SiO2) stack. (a), (b) Maps of in-plane (a) and
out-of-plane (b) lattice parameters determined from GPA of HR-STEM images. (c)–(e) Lattice parameter profiles as a function of distance d
from the interface between the amorphous interfacial layer and the crystalline SrTiO3 layer, determined by averaging data from the black (c),
orange (d) and blue areas (e) in (a) and (b). Adapted from figure 2 in [103]. Reprinted by permission from Macmillan Publishers:
C Dubourdieu et al 2013 Nat. Nanotechnol. 8 748, copyright 2013.
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layer is only ∼0.7–1.0 nm (figure 5(b)). In the same post-
deposition annealing conditions but at a growing temperature
of 525 °C, the SiO2 is of ∼1.7 nm as indicated in figure 5(c).
The use of an atomic oxygen plasma at low temperature
clearly minimizes the interfacial layer regrowth [105]. A
detailed study of the defect structure in the SrTiO3 buffer and
BaTiO3 film is underway to determine the impact of the
processing conditions.

Figure 6 is a STEM high-angle annular dark field
(HAADF) image of the sample shown in figure 5(b),

illustrating the high crystalline quality of the perovskite stack
and sharp BaTiO3/SrTiO3 and SiO2/SrTiO3 interfaces. The
BaTiO3 film is coherently strained to the SrTiO3 buffer layer
with no dislocations observed at the interface or in the film
thickness.

In view of the literature data and various processing
conditions used by the different groups, particularly regarding
the oxidizing atmosphere (atomic or molecular oxygen and
partial pressure), there is a need to better understand how to
precisely control c- versus a-axis orientation in epitaxial films
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Figure 4. (a)–(d) RHEED patterns recorded along the [100] azimuth during BaTiO3 growth at 450 °C under an oxygen pressure of (a)
1 × 10−7 Torr, (b) 5 × 10−7 Torr, (c) 2 × 10−6 Torr, (d) 3 × 10−6 Torr and corresponding AFM images of the film surfaces. (e)–(f) Rocking
curve measured on the 002 peak for the films grown at (e) 5 × 10−7 (FWHM=1.5°) and (f) 2 × 10−6 Torr (FWHM=2.9°).
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on Si as well as the defect chemistry, which further determine
the ferroelectric properties of the films.

3.2. MBE of BaTiO3 on germanium

BaTiO3 exhibits a much lower mismatch with Ge (001) as
compared to Si (001) (∼1.8% at room temperature), which
allows the direct growth of high crystalline quality BaTiO3

without using a buffer layer. Moreover, Ge (001) is less
prompt to oxidize than Si(001). However, in contrast to Si,
the lattice mismatch with Ge leads to an in-plane tensile
strain, which is not in favor to c-axis growth. In addition, the
thermal expansion mismatch between BaTiO3 and Ge imparts
an in-plane tensile stress to the film upon cooling down (Ge:
α= 5.9 × 10−6 K−1).

McKee et al first demonstrated the epitaxial growth of
BaTiO3 directly on Ge with a perfect pseudomorphic struc-
ture [110]. However, such films exhibited large leakage cur-
rents (of the order of ∼0.4 A cm−2 at −1 V for a 25 nm thick
film). The insertion of 6 MLs of BaO at the interface between
Ge and BaTiO3 led to a decrease of 6 orders of magnitude of
the leakage currents [110]. From photoelectron spectroscopy,
a valence band offset of 2.8 eV for BaTiO3 grown directly on
Ge was reported. About 10 years later, further experimental

works have been reported. The formation of alkaline-earth
template layers on Ge(100) has been studied in detail in [111].
Both Ba and Sr have been used to promote the growth of
BaTiO3 on Ge. Merckling et al grew BaTiO3 on Ge-on-Si
(001) substrate (1 μm thick fully relaxed epitaxial Ge layer on
Si) using ½ ML Ba as a passivation layer [112]. In a 12 nm
BaTiO3 film, they observed two different out-of-plane para-
meters of 4.072 and 4.060 Å and two in-plane parameters of
4.05 and 4.01 Å. They attributed these parameters to the
presence of a tetragonal phase (c-axis oriented) with para-
meters close to the bulk one and to a cubic phase. Recently,
Fredrickson et al [113] reported the growth of BaTiO3 on
bulk Ge (001) substrates using a careful Ge surface prepara-
tion described in [114] and ½ ML Sr. The BaTiO3 films were
deposited at 650 °C following three different stages (alter-
nating the Ba and Ti fluxes) by progressively increasing the
oxygen pressure from 1.5 × 10−7 to 5.10−6 Torr [113]. The
films grown in these conditions were a-axis oriented. An out-
of-plane parameter of 3.995 Å and an in-plane parameter of
4.01 Å were measured for a 40 nm BaTiO3 film (averaging
the a and c values of the 90° in-plane domains) and the
FWHM of the 200 rocking curve was ∼0.7°. From XPS
measurements, the valence band offset between BaTiO3 and
Ge was found to be 2.7 ± 0.1 eV, a value close to the one

Figure 5. High resolution transmission electron microscopy images of BaTiO3/SrTiO3 stacks grown under P(O2) = 1 × 10
−7 Torr for different

temperatures and post-deposition process. (a) 450 °C—slow cooling down procedure at P(O2) = 1 × 10
−5 Torr, (b) 440 °C—rapid cooling

down under ultrahigh vacuum (UHV) followed by annealing under an oxygen plasma (1 × 10−5 Torr) for 40 min, (c) 525 °C—rapid cooling
down under UHV followed by annealing under an oxygen plasma (1 × 10−5 Torr) for 40 min. A SiO2 interfacial layer between Si and SrTiO3

is formed upon SrTiO3 annealing and BaTiO3 growth and its thickness depends on the cooling down conditions. Horizontal dotted lines are
only to guide the eyes. From figure 6 in [105]. Reprinted with permission from L Mazet et al 2014 J. Appl. Phys. 116 214102. Copyright
2014, AIP Publishing LLC.
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reported in [110]. Both in [110] and [113], high-resolution
TEM images show an atomically sharp interface between Ge
and BaTiO3.

In order to obtain BaTiO3 c-axis growth on Ge, it is
necessary to insert a buffer layer at the interface that can
impart a compressive in-plane strain. Ngai et al [115] have
grown a 20 nm tri-layer Ba1−xSrxTiO3 stack—with decreasing
x values—as a buffer and have obtained c-axis oriented 40 nm
thick BaTiO3 films. The in-plane and out-of-plane parameters
were 3.987 Å and 4.040 Å respectively. Ponath et al [116]
have grown c-axis BaTiO3 films using a 2 nm SrTiO3 buffer
on Ge (with ½ ML Sr prior to the SrTiO3 buffer growth). The
lattice parameters were a= 3.96 Å and c= 4.06 Å for 16 nm
thick BaTiO3. Both in [115] and [116], the comparison of the
x-ray diffraction θ/2θ scans clearly showed the impact of the
buffer insertion on the BaTiO3 crystalline orientation. In the
work of Ponath et al [116], STEM-HAADF images revealed
that Ti atomic columns close to the top of the BaTiO3 film are
shifted downward from the cell center, meaning a ‘down’
polarization, which is in good agreement with their DFT
calculations. In contrast to this result and to the macroscopic
mono-domain polarization of the as-deposited film, which is
also shown to be oriented downward, the Ti atomic columns
close to the SrTiO3 film are found to be shifted upward. From
these images, it was also observed that no germanium oxide
interfacial layer was formed at the interface between SrTiO3

and Ge [116]. The absence of low permittivity interfacial

layer makes this structure particularly suited for negative
capacitance devices as those described later in section 5.2.

As we have discussed the growth of BaTiO3 on Si and
Ge, it is worth pointing out that SiGe alloy-based wafers
should be of particular interest to engineer the strain and the
interfacial layer in epitaxial BaTiO3.

3.3. MBE of BaTiO3 on gallium arsenide

Although the lattice mismatch between GaAs and BaTiO3 is
similar to the one between Ge and BaTiO3, we are not aware
of any report of direct epitaxial growth of BaTiO3 on GaAs
by MBE. The epitaxial growth of BaTiO3 on GaAs has been
performed via a buffer layer, in order to avoid interfacial
reactions and to impart, like on Si and Ge, a compressive
stress during cooling down in order to obtain c-axis oriented
films (GaAs: α= 5.8 × 10−6 K−1).

Various oxide buffers have been studied to grow crys-
talline epitaxial oxides on GaAs (001). Laser MBE (base
pressure 1 × 10−7 Torr) [117, 118] or MBE [119, 120] were
used to grow MgO on GaAs for subsequent BaTiO3 growth
by pulsed laser deposition. The following epitaxial relation-
ship was obtained: MgO (001)//GaAs (001) and MgO [100]//
GaAs [100]. MBE under molecular oxygen led to a reaction
between Mg and GaAs and to a highly three-dimensional
growth with a rough final surface morphology [119]. Fol-
lowing the growth of SrTiO3 on Si by MBE, routes have been
also developed to grow high quality SrTiO3 films on GaAs.

3.3.1. SrTiO3 epitaxial template on GaAs. SrTiO3 has been
epitaxially grown by MBE on GaAs in the early 2000s using
½ ML Ti as a surface treatment (while ½ ML Sr is used on Si)
[121, 122]. GaAs was first heated to about 600 °C in the
presence of As4 flux to remove the native oxide layer. A
homoepitaxial GaAs layer (∼0.5 μm) was then grown. Prior
to SrTiO3 deposition, ½ ML Ti was deposited at ∼300 °C.
Both As- and Ga-terminated GaAs (001) surfaces were used
[121]. Sr and Ti were co-deposited on the Ti-passivated GaAs
surface in conditions that could preserve the surface: similarly
to the conditions used for SrTiO3 deposition on Si, low-
temperature (∼300 °C) and low 10−8 Torr O2 pressure. Both
temperature and oxygen pressure were slowly ramped up as
the deposition proceeded. Similarly to SrTiO3 deposition on
Si, SrTiO3 was annealed after the first few MLs at ∼550 °C to
be fully crystallized. Once these first steps were completed,
the growth of SrTiO3 was then resumed at higher temperature.
SrTiO3 grows on GaAs (001) with an in-plane 45° rotation of
the cell as well. From high resolution TEM, the interface was
found to be abrupt, free of interfacial Ga-oxide [121, 123].
The electronic structure of the interface was investigated by
x-ray and ultraviolet photoelectron spectroscopy [122, 123].
The authors concluded that the Fermi level is pinned at the
SrTiO3/GaAs interface when SrTiO3 is grown directly on
GaAs while it is unpinned if ½ ML Ti is used prior to SrTiO3

deposition. However, band bending in GaAs was found to be
very sensitive to the annealing conditions making integration
of such materials challenging since the integrity of the

Figure 6. Scanning transmission electron microscopy high-angle
annular dark field (HAADF) image of a BaTiO3/SrTiO3 stack grown
on Si (001), indicating a sharp interface between SrTiO3 and BaTiO3

and a high crystalline quality of the perovskite oxides.
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interface could be strongly impacted by higher thermal budget
steps required in device fabrication [122].

Other groups have reported the growth of SrTiO3 on
GaAs [124–127]. Wu et al performed the growth by laser
MBE without Ti pre-deposition, by ablating a SrTiO3 single
crystalline target [124]. Louahadj et al [125, 126] performed
the growth of SrTiO3 by MBE on c(4 × 4) As-terminated
GaAs (001) surface using ½ ML Ti prior to SrTiO3

deposition. Such layers were then used as a template for
subsequent La0.7Sr0.3MnO3/PZT stack deposition by pulsed
laser deposition [126]. Contreras-Guerrero et al [127] studied
the interface properties (Fermi level pinning) of films grown
in different oxygen conditions on c(4 × 4) As-stabilized GaAs
(001) surface with ½ ML Ti pre-deposition: first, 2 nm of
SrTiO3 was grown under molecular oxygen and then the
growth was continued either under molecular oxygen or
under atomic oxygen. From room temperature photolumines-
cence experiments, they reported that the density of interfacial
defects increased when an oxygen plasma was used and that
the Fermi level was pinned similarly to that of a GaAs layer
with a native oxide. In situ photoemission experiments
showed an increase in the Ga–O bonding at the interface
when atomic oxygen was employed as well as As–As
bonding (not present under molecular oxygen). This study
showed the crucial role of oxygen species during growth in
determining not only the stoichiometry of the oxide but also
the interface structural and electrical quality.

3.3.2. MBE of BaTiO3 on SrTiO3-buffered GaAs. BaTiO3 has
been deposited on SrTiO3-buffered GaAs substrates by MBE
[106, 128] or by laser MBE [129, 130]. Huang et al reported
the growth by laser MBE of c-axis oriented films [129]. They
measured P–E loops using p-type GaAs as a bottom electrode
and Pt as a top electrode. The loop exhibited a small
concavity and was not saturated. The remanent polarization
was 2.5 μC cm−2 (with a maximum field of 600 kV applied
during the measurement). Contreras-Guerrero et al reported
the growth by MBE of BaTiO3 on n +GaAs substrates with a
2 unit-cell (8 Å) SrTiO3 buffer layer [128]. Ba and Ti were
co-deposited under molecular oxygen at 500 °C under P(O2)
of 1 × 10−7 mbar (7.5 × 10−8 Torr). Films of thickness 75 Å
were c-axis oriented with an out-of-plane parameter of
4.032 Å.

Due to the interest in combining ferroelectrics with III–V
compounds for optoelectronic applications, more work is to
be expected in this area.

4. MBE of BaTiO3 on semiconductors:
ferroelectricity

In ferroelectric thin films, charges induced by the polarization
at the top and bottom interfaces may not be compensated or
only partially compensated, which gives rise to a depolar-
ization field. Boundary conditions are of utmost importance in
determining the charge screening and depolarization field. It
was shown [131] that the depolarization field arising in a

ferroelectric thin film sandwiched between semiconducting
electrodes significantly modifies the transition temperature,
the spontaneous polarization amplitude and the coercive field.
Under a critical film thickness, the switchable polar state
becomes unstable [131].

While ferroelectricity of BaTiO3 on oxide substrates has
been extensively studied, there are still few data for epitaxial
films directly grown on semiconductors or on SrTiO3 (and
other dielectric) buffered-semiconductors.

For a metal-oxide-semiconductor capacitor, a hysteresis
of the capacitance versus voltage (C–V) curve is expected if
the oxide is ferroelectric, with a clockwise and anti-clockwise
hysteresis on respectively p- and n-type silicon [132]. In [102]
C–V measurements were performed on a 40 nm BaTiO3 c-
axis oriented film deposited on SrTiO3-buffered Si with
100 × 100 μm2 top electrode area (with a final ∼2 nm SiO2

interfacial layer regrowth). No ferroelectric hysteresis was
observed, which was attributed to the limited oxygen pressure
during the MBE growth [102]. However, such measurements
are usually not appropriate to evidence ferroelectricity when
an interfacial layer such as SiO2 is formed. Indeed, the vol-
tage applied across the heterostructure is mainly dropped in
this low-permittivity (low κ) interfacial SiO2 layer (κ= 3.9
compared to κ> 250 for BaTiO3 films). The silicon also
contributes to the total capacitance in depletion. Hence, it is
not possible to reach an effective electrical field larger than
the coercive field to switch the thin ferroelectric layer.

Piezoresponse force microscopy (PFM) has emerged as a
major technique for the study of ferroelectricity at the
nanoscale [133–135]. The feasibility of domain writing/
reading, domain stability with time as well as the existence of
piezoelectric hysteresis loop, checked by PFM, is an impor-
tant necessary condition for ferroelectricity. However, it has
been shown also that ionic and electrochemical phenomena
may play a major role in scanning probe microscopy and can
also lead to ferroelectric-like domain writing/reading and
hysteresis loop [136, 137]. For example, those features were
observed in non-ferroelectric compounds such as crystalline
LaAlO3/SrTiO3 heterostructures [138] or transition metal
oxides involved in memristive devices like TiO2 or SrTiO3

[139]. In case of conventional ferroelectrics such as BaTiO3

(well known in bulk), complementary structural information
in thin films are useful. The dependence of the PFM signal
with input voltage and film thickness should also be checked.

Several groups have reported evidences by PFM con-
sistent with ferroelectric switching for MBE-grown BaTiO3

on SrTiO3-buffered-Si [71, 103–106], -Ge [116] and -GaAs
[106, 128] substrates.

Figures 7(b)–(c) show typical PFM images (amplitude
and phase respectively) for a 17 nm thick c-axis BaTiO3 film
grown on SrTiO3 (∼4 nm) on Si substrate, poled with −5 V,
+5 V, and −5 V over 6 μm, 4 μm, and 2 μm regions, respec-
tively. Figure 7(b) indicates similar amplitudes for +P and −P
signals with a zero signal at the boundary between opposite
poled regions and the graph of figure 7(c) shows a clear phase
difference of ∼180° between +P and −P regions. The as-
deposited film (non-poled regions) does not appear mono-
domain. A piezoresponse hysteresis loops consistent with
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ferroelectricity is shown in figure 7(d). The coercive voltages
are of∼ −1.8 V and +2 V.

For BaTiO3 grown directly on Ge substrates, no ferroe-
lectricity was reported from electrical or electromechanical
measurements with an applied electric field perpendicular to
the film, which can be related to the fact that the growth is a-
axis oriented [110, 116]. In the work by Merckling et al [112]
where a mixture of both c-axis tetragonal phase and cubic
phase was reported, ferroelectricity was not studied. Ferroe-
lectricity was reported for BaTiO3 c-axis oriented films on

(Ba,Sr)TiO3-buffered Ge [115, 116]. Current versus voltage
curves were measured on capacitive structures with 40 nm
BaTiO3 deposited on a trilayer Ba1−xSrxTiO3 buffer (20 nm)
stack and with top Pt electrodes, showing rectifying behavior
[115]. A hysteresis consistent with ferroelectric switching was
observed while no hysteresis was present for a heterojunction
with a-axis 60 nm BaTiO3 directly on Ge [115]. In c-axis
16 nm BaTiO3 film on 2 nm SrTiO3 buffered-Ge [116], PFM
measurements indicated ferroelectricity with a coercive vol-
tage of −4 V and +5 V. The non-poled regions (as-deposited

Figure 7. (a) Atomic force microscopy topography and piezoresponse force microscopy (b) amplitude and (c) phase images for 17 nm thick
BaTiO3/SrTiO3 (∼4 nm) on Si substrate, poled with −5 V, +5 V, and −5 V over 6 μm, 4 μm, and 2 μm regions, respectively. The images were
collected over 8 × 8 μm2 areas. The bottom panel in (c) shows the line profile of phase signals, exhibiting clear phase difference of ∼180
degrees. (d) Piezoresponse hysteresis loop averaged over 10 × 10 points within 4 × 4 μm2 area. Error bars represent the dispersion of the
signal measured at different locations on the sample surface.
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film) were found to be mono-domain with the polarization
oriented towards the STO/Ge substrate, which was in agree-
ment with their theoretical calculations [116]. In addition to
the ferroelectricity of BaTiO3, they also demonstrated the
ferroelectric field-effect on the conductivity of the underlying
Ge using microwave impedance microscopy [116].

Similarly, ferroelectricity in BaTiO3 c-axis film (7.5 nm)
on 0.8 nm SrTiO3-GaAs substrate was inferred from PFM
measurements, with a repeatedly switchable polarization
[128]. Patterns written and read were stable over ∼1 h. The
coercive voltage was of the order of ±1–2 V. As-deposited
films were poled with a polarization pointing towards the
bottom interface [128].

Regarding the dependence of ferroelectricity on the
thickness of ultrathin films, very limited work is reported. The
thickness dependence in the range 1.6–40 nm of the PFM
hysteresis loops was studied in [103] for BaTiO3 on SrTiO3-
Si. Films of thickness 40 nm showed closed and saturated
hysteresis loops. As the thickness was decreased down to
8 nm, the hysteresis loops were still well-defined with an
elongated shape consistent with depolarization field effect
[140]. An offset of the electromechanical signal was also
observed as thickness decreased [103], which was attributed
to imprint phenomenon originating from regions with non- or
non-fully-switchable polarization. The coercive voltages for
the 16 nm film were of the order of −10 V and +6 V [103],
asymmetric and much larger than the ones obtained in the
measurement shown in figure 7 for a similar thickness (and
for a same SrTiO3 buffer layer thickness of 4 nm). This may
be due to the mixed c- and a-domain structure in the study
reported in [103] while the film shown in figure 7 is fully c-
axis oriented. Fully c-axis oriented films of 8 nm (with a
SrTiO3 buffer of 6.2 nm) had coercive voltages
of∼ ±4 V [103].

The ferroelectric polarization of thin and ultrathin films,
the coercive field and the ferroelectric domain configuration
are strongly dependent on the film thickness as well as on the
boundary electrical conditions (nature of the electrodes) and
polarization charge screening [141–146]. Garcia et al showed
that an ultrathin 1 nm BaTiO3 film epitaxially grown on a
metallic manganite electrode is ferroelectric [145]. First-
principle computations show that a net positive polarization
exists in ultrathin SrTiO3, BaTiO3 or PbTiO3 epitaxial films
on silicon but that it cannot be switched as it is pinned by the
interface [147]. We recently observed ferroelectricity in
ultrathin BaTiO3 films down to 1.6 nm on SrTiO3-buffered
silicon [148] but with a strong imprint. For a same film
thickness, the thickness of the SrTiO3 buffer layer and the
defect chemistry in such layer certainly play a major role in
the polarization stability and amplitude in the BaTiO3 film,
which is currently under investigation.

Compared to the studies performed on BaTiO3 films
grown on oxide substrates (such as SrTiO3 or NdGaO3 bulk
crystals), a major difference on growing on semiconductors
resides in the strong tensile strain imparted to the film during
the cooling time, which may strongly affect the strain state,
the defects, the crystalline phase(s) and the crystalline
orientation(s) stabilized, which, in turn, impact the

ferroelectric properties. Ferroelectric domains in thin BaTiO3

films on silicon and other semiconductors need to be further
explored in order to control their size and distribution.

5. Application of BaTiO3 epitaxial films on
semiconductors

There are many applications for which ferroelectric epitaxial
films on semiconductors can bring new functionalities. As a
piezoelectric material, it can be integrated into microelec-
tromechanical systems (MEMS) to design actuators, trans-
ducers or sensors [149]. Non-volatile memories have been
one of the major application areas of ferroelectrics [150].
Integration of a ferroelectric on silicon offers the ability to
fabricate ferroelectric-FETs (FeFETs) as memory or logic
devices. We will focus here on two recent areas that have
generated several works on the monolithic integration of
BaTiO3 on semiconductors. One growing field of interest is in
integrated photonics on silicon where building blocks such as
electro–optic modulators could benefit from the high Pockels
effect of BaTiO3. The other one is in the realization of low
power logic devices that has been suggested using the nega-
tive capacitance of ferroelectrics.

5.1. Integrated photonics applications

Ferroelectrics are highly attractive for integrated optics to
design waveguides with low losses and high bandwidth
electro–optic modulators due to their large electro–optic
coefficients, optical transparency and thermal stability [151].
In an electro–optic modulator, the phase of the light travelling
through the crystal changes depending on the applied electric
field. In bulk, lithium niobate LiNbO3 is widely used as an
electro–optic medium. Waveguides are designed by modify-
ing the composition of the substrate through diffusion or ion
exchange [152] with resulting devices of millimeter or cen-
timeter size. Integrating optical communication functionalities
using thin films, especially on silicon platform, stimulates
considerable research efforts. Indeed, integration of epitaxial
films on silicon offers the ability to co-integrate optical
functionalities with standard CMOS ones. Hybrid silicon/
lithium niobate optical microring resonators have been
recently demonstrated [153–156]. However, the devices on
silicon were fabricated from LiNbO3 bonded to silicon using
complex techniques. Integrating epitaxial films in a mono-
lithic route would offer much more flexibility. BaTiO3 is
particularly attractive for such purpose. It presents high
refractive indices (no = 2.412 and ne = 2.36 at 633 nm) with
superior linear electro–optic properties compared to LiNbO3,
exhibiting one of the highest reported Pockels effect
(r113 = 14.5 pmV–1, r33 = 103 pmV–1 and r42 = 1700 pmV–1

at λ= 633 nm from [157]—similar values are also reported
in [158]).

Several studies have been conducted on BaTiO3 epi-
taxially grown on mainly MgO substrates (of lower optical
index to allow optical confinement) to design waveguides and
electro–optic modulators, either in ridge or strip-loaded
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configurations and have shown the potential of this material
[159, 160]. Photonic crystal waveguide structures have been
proposed to improve the performance of these devices [161–
163]. In a recent work, Li et al showed potential for achieving
modulation at 65 GHz [164]. The epitaxial growth of BaTiO3

on SrTiO3 buffered-silicon offers a great potential for per-
forming integrated planar waveguides and electro–optic
modulators as well as optical/ferroelectric combined func-
tionalities. Abel et al reported recently for the first time the
electro–optical properties of epitaxial BaTiO3 films on
SrTiO3/silicon [107]. They showed that BaTiO3 exhibit a
much higher effective Pockels coefficient of reff = 148 pmV–1

(λ= 1.55 μm), at least five times larger than the one of
LiNbO3. Recently as well, the first monolithically integrated
BaTiO3 modulators on SOI substrates were reported
[108, 165]. Since the silicon has a higher refractive index than
BaTiO3, conventional ridge or strip waveguide configurations
are not suitable. The design is therefore that of a horizontal
slot waveguide in which the a-axis oriented BaTiO3 layer
(80 nm) is comprised between the silicon substrate (110 nm Si
from the SOI wafer) and an amorphous silicon layer (110 nm)
[108]. The waveguide is patterned into the amorphous silicon
layer and electrodes are patterned on each side of the wave-
guide. Mach-Zehnder interferometers and microring resona-
tors were demonstrated [108]. The authors reported an
effective Pockels coefficient of reff = 213 ± 49 pmV–1. Similar
works pursuing the integration of BaTiO3 on silicon for
electro–optic modulators are ongoing [166].

5.2. Low power logic device applications

Power dissipation is one of the major issues that the CMOS
nanoelectronic industry is currently facing. For decades,
transistor dimensions have been scaled down at constant
electric field following Dennard’s rules [167]. Such scaling
implied that the supply voltage be reduced and as a con-
sequence, that the threshold voltage Vth of the transistor be
reduced, leading after ∼2005 to unacceptable IOFF leakage
currents. In order to maintain a high enough ION/IOFF ratio
(while the subthreshold swing is thermodynamically limited
to 60 mV/dec at room temperature), the scaling rules have
therefore been changed to maintain a constant supply voltage.
New materials (high-k oxides, III/V semiconductors) and
architectures (fully-depleted SOI technology, multiple gate
FETs…) have so far allowed us to keep miniaturization
compatible with performance although clock frequency has to
be limited. The impossibility to further reduce the operating
voltage leads to a more general societal issue of energy
consumption in a world where individual consumers now
posses several electronic products. The percentage of energy
consumption by individuals compared to industry keeps
growing. There is an urgent need for low-power logic
switches that could operate at ∼0.2 V or below and several
device concepts have been proposed [168].

In 2008, Salahuddin and Datta suggested that the nega-
tive capacitance of a ferroelectric could be used to decrease
the subthreshold swing below 60 mV/dec [169]. Although the
state of negative capacitance of a ferroelectric is unstable, it

could be, however, possible to stabilize it by having in series
a suitable positive capacitance. If the ferroelectric is inserted
as a gate oxide in a FET and if its thickness is tuned to match
the positive one of the silicon/dielectric (interfacial layer e.g.),
the two contributions would cancel, leading to a very high
effective capacitance. A small change in gate bias could
therefore control a large change in the channel charge,
meaning low voltage operation [169, 170]. There have been
many experimental and theoretical works since this initial
proposal [171–183]. A sub-60 mV/dec subthreshold swing
has been demonstrated in a FET using a ferroelectric polymer
[171, 177]. A thin AlSi metal was inserted between the fer-
roelectric layer and the SiO2 interfacial layer, acting as an
internal electrode. Slopes ranging from 46 to 58 mV/dec were
reported [171]. Several works have focused on combining
ferroelectric and paraelectric epitaxial complex oxides in
metal–insulator–metal (MIM)-type capacitive structures and
demonstrated capacitance enhancement as compared to indi-
vidual contributions, concluding to negative capacitance
effect. Khan et al [174] reported an enhanced capacitance in a
bilayer of Pb(Zr0.2Ti0.8)O3/SrTiO3 epitaxially grown on a
conducting SrRuO3 electrode at a temperature larger than
500 K. In 2014, two groups have reported room-temperature
capacitance enhancement in BaTiO3-based epitaxial hetero-
structures on SrRuO3. Appleby et al [179] studied BaTiO3/
SrTiO3 bilayers and Gao et al [180] studied (LaAlO3/
Ba0.2Sr0.8TiO3) superlattices. Recently, Khan et al [181]
showed, for the first time, a direct proof for the negative
capacitance in an epitaxial Pb(Zr0.2Ti0.8)O3 film on a metallic
SrRuO3-buffered SrTiO3 substrate with a top Au electrode.
The capacitive structure was put in series with a large resis-
tance in order to be able to measure the transient region when
the ferroelectric passes through the unstable negative capa-
citance state. As a voltage pulse was applied—while a regular
capacitor would exhibit an increased voltage—the voltage
across the capacitor was shown to decrease, thus indicating a
negative capacitance transient [181].

These demonstrations of negative capacitance in MIM
structures based on complex ferroelectric oxides give insight
into the materials and show that the concept of negative
capacitance may hold promise for FET devices. There is,
however, no realization so far of a transistor fabricated with a
ferroelectric epitaxial oxide on silicon. The reason is the
major difficulty to integrate a complex oxide in a transistor
following a conventional gate first route. One major issue is
the integrity of the ferroelectric after the high-temperature
anneal that is required to activate the source and drain regions
(typically 1065 °C in the current technologies). A replacement
gate route, which experiences a much lower thermal budget,
should be followed to save the oxide properties. Another issue
is the SiO2 interfacial layer that is formed during BaTiO3

growth on SrTiO3-Si substrates. When as little as few Ang-
ström of the low permittivity SiO2 dielectric is formed, it
requires the BaTiO3 layer thickness to be increased to few
hundreds or few thousands of Angström to reach the capa-
citance balance. Finally, the concept of negative capacitance
FeFET (NC-FeFET) has limitations, which are discussed in
details in [178]. One major issue is that the capacitance of the
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silicon is strongly varying when going from depletion to
inversion regimes while the capacitance of the ferroelectric is
almost constant in the same voltage range, making the match
impossible in the whole operating range. Another concern
with using a ferroelectric complex oxide on silicon for NC
purpose concerns the charge mismatch: when operating at low
voltage, the charge change in Si between OFF and ON states
is estimated to ∼0.2 μC cm−2 while the ferroelectric switches
much more charges (typically 2–20 μC cm−2) as calculated in
[178]. To address these issues, new devices concepts named
‘Quantum metal Fe-FET’ were proposed [178] and are shown
in figure 8. A thin metal layer (called quantum metal) is
inserted between the ferroelectric and the semiconductor and
is intended to present a constant capacitance to the ferro-
electric. It is designed such that its electron carrier density is
low and can be modulated by the change in polarization of the
ferroelectric layer. For a 2 nm metal layer, the carrier density
should be of the order of 1021 cm−3, which could be achieved
using doped SrTiO3 [45] or TaNx films [184]. Two different
devices were proposed [178]. In one case (device shown in
figure 8(a)), the current flows in the semiconductor inversion
layer like in a conventional FET, with the quantum metal’s
modulated work function serving as the gate for the semi-
conductor. In the case of the device in figure 8(b), the current
flows from the quantum metal into the silicon as in a Schottky
barrier diode, with the barrier height being modulated by the
FE gate electrode. A very steep slope in the channel charge
versus gate voltage could be achieved, as shown in figure 8(c)
from the modeling of the device shown in figure 8(a). The
charge changes by 11 orders of magnitude (700 mV change in
surface potential) for a 20 mV change in the gate voltage, for

a slope of more than 500 decades V–1, or 2 mV/dec for the
inverse slope. Hence, such devices are particularly attractive
for future low power switches. However, technological
challenges to fabricate such devices remain to be addressed.

6. Conclusions

We have reviewed studies on epitaxial BaTiO3 grown by
MBE on Si, Ge and GaAs semiconducting substrates. The
SrTiO3 buffer layer epitaxially grown on these substrates
plays a key role to maintain a compressive strain to favor c-
axis growth. High crystalline quality and ferroelectric prop-
erties were demonstrated on the three substrates. Advancing
ferroelectric applications requires better control and under-
standing of the effect of oxygen and cationic composition on
the ferroelectric properties. The domain pattern should be also
further investigated in order to control their size and dis-
tribution. Engineering of bottom and top interfaces with the
ferroelectric layer could offer possible paths to such control.
Relatively few works have been done in growing a top
metallic electrode in situ in order to possibly control the
domain structure. Wetting of Pt on BaTiO3 (as a potential top
electrode) has been studied by DFT and experimentally [185].
DFT showed that despite a reasonable match of the lattice
constant, the surface energy of both (100) and (110) Pt is too
high to wet BaTiO3, which was confirmed by TEM obser-
vations, showing Volmer–Weber faceted islands, epitaxial
with the underlying BaTiO3 films [185]. Other metals such as
TiN or TaN widely used in nanoelectronics should be
investigated.

Figure 8. Device structures for FeFET with quantum metal layer. The arrows indicate current flow paths. (a) With and (b) without a thin
insulator between the quantum metal and the semiconductor—(c) calculated Q–V curve for an FeFET as represented in (a)—DOS stands for
‘density of state’. Adapted from figures 4 and 6(a) in [178]. Reprinted with permission of IEEE (D Frank et al 2014 IEEE Trans. Electron
Devices 61 2145).
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Regarding device fabrication, thick BaTiO3 films show
promise in integrated photonics while thin films are of interest
for low power logic devices. Heterostructures on Ge, in which
no low-permittivity interfacial layer is formed, could be of
particular interest to fabricate field-effect transistors with a
steep subthreshold swing if the negative capacitance of the
ferroelectric could be balanced with the one of the SrTiO3 and
Ge contributions. Moreover, the ability to tune the SrTiO3

template to a conducting film using La3+ doping could be
used for the design of the quantum metal field-effect
transistor.

Progress in the epitaxial growth of perovskite compounds
on semiconductors will also open up the route towards more
complex heterostructures combining oxide and multiple
semiconducting layers. Inserting a ferroelectric or piezo-
electric oxide film in a semiconducting quantum well e.g.
could enable to modify the electronic and optical properties of
the well using ferroelectric field-effect or using piezoelectric
strain. It was shown that the properties of a two dimensional
electron gas can be modified e.g. by poling of a
Cd0.96Zn0.04Te ferroelectric gate deposited on the top of a
CdTe-based quantum well structure [186, 187] or with a
LiNbO3 film on nitride heterostructures [188].

Not addressed here are ferroelectric or piezoelectric/pie-
zotronic nanowires or nanopillars, which are of interest for
energy harvesting and sensors applications [189, 190]. Other
perspectives concern the use of domain walls in the ferro-
electric epitaxial films on semiconductors to design specific
devices based on new functionalities, not present in the
domains [144]. Certain types of domain walls can be con-
ducting while the domains are insulating and the domain
walls can be controlled by an electric field [144, 191–195].
While works are progressing on ferroelectric/multiferroic
perovskites grown on oxide substrates, nothing has been
reported, to our knowledge, on silicon. Nanoelectronic based
on domain walls would first require the ability to synthesize
periodic arrays of domain walls with tunable densities on
semiconductors. This area promises exciting future
developments.
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