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On packing chromatic number of subcubic outerplanar graphs

Nicolas Gastineau®, Piemysl Holub®3 and Olivier Togni*

March 14, 2017

Abstract

The question of whether subcubic graphs have finite packing chromatic number or not is
still open although positive responses are known for some subclasses, including subcubic trees,
base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the
question for some subcubic outerplanar graphs. We provide asymptotic bounds depending
on structural properties of the weak dual of the outerplanar graphs and determine sharper

bounds on some classes of subcubic outerplanar graphs.

Keywords: packing colouring, packing chromatic number, outerplanar graphs, subcubic
graphs.

AMS Subject Classification:

1 Introduction

Let G be a graph and let N(u) = {u € V(G)| wv € E(G)} be the neighborhood of a vertex
u. Let dg(u,v) denote the usual shortest path distance between two vertices v and v in G.
A k-colouring ¢ of G is a map from V(G) to {1,...k} such that for every pair of adjacent
vertices (u,v), we have c(u) # ¢(v). A k-colouring is a k-packing colouring if c(u) = c¢(v) implies
dg(u,v) > c(u) for every two distinct vertices u and v. The smallest integer k such that there

exists a k-colouring is called the chromatic number and is denoted by x and the smallest integer
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k such that there exists a k-packing colouring is the packing chromatic number and is denoted
by X,. An induced subgraph A of G is packing colourable with colours {k, ...,k + (}, for two
positive integers k and ¢, if there exists a (¢4 1)-colouring of A such that dg(u,v) > c¢(u)+k—1,
for every two distinct vertices u and v satisfying ¢(u) = ¢(v). The packing chromatic number of
a class of graphs is finite if there exist an integer ¢ such that x,(G) < ¢, for every graph G of
this class.

Let Py, denote the two-way infinite path and let P} denote the one-way infinite path (with
vertex set N). Let Z? denote the planar square lattice, .7 denote the planar triangular lattice
and S denote the planar hexagonal lattice.

Packing colourings of graphs are inspired from frequency planning in wireless systems. The
concept of packing colouring emphasized the fact that signals can have different powers, provid-
ing a model for the frequency assignment problem. The packing chromatic number of lattices
has been studied by several authors: Soukal and Holub [12] proved that x,(Z*) < 17, Ekstein
et al. [3] that 12 < x,(Z?); Fiala et al. [5] showed that x,(7) < 7, x,(Z*0P,) = oo and
Xp(#¢0Ps) = 0o, Korze and Vesel [10] proved that x,(#) > 7 and Finbow and Rall [7] proved
that x,(.7) = oo. Moreover, Togni [13] has proven that distance graphs with two parameters
have finite packing chromatic number. More generally, determining if a graph has packing chro-
matic number at most 4 is a NP-complete problem [9] and determining if a tree has packing
chromatic number at most & (with input the tree and k) is also a NP-complete problem [6].

Goddard et al. in [9] derived the following results for some basic classes of graphs. These
facts will be used in the following sections. Note that in some cases, the number of colour can

be decreased (depending on k and the number of vertices).

Proposition 1. Let k be a positive integer. The three following properties holds.
i) Every cycle has packing chromatic number at most 4;
ii) There is a packing colouring of P, with colours {k,k +1,..., 3k + 2} [9];

iii) If k > 34, then there is a packing colouring of P, with colours {k,k+1,..., 3k — 1} [9].

1.1 Definitions and notation about outerplanar graphs, block graphs and

shortest paths

Let G be a graph and A a subgraph of G. We denote by G — A the subgraph of G after deletion

of all vertices of A from G and all edges incident to each vertex of A and we denote by G[A]



the graph G — (V(G) \ A). Specifically, for = € V(G), G — = denotes the subgraph of G after
deletion of x and all edges incident to x from G.

An outerplanar graph G can be represented by a boundary cycle C containing all vertices
of GG, with non-crossing chords dividing the interior of C' into faces. With respect to this fact
we can define a face of G as the graph induced by a cycle without chord and an internal face of
G as a face of an outerplanar graph G which contains more than two chords. A face F' of G is
called an end face if F' contains only one chord and all the remaining edges of F' belong to C.

The weak dual of G, denoted by Tg, is the graph with vertex set the faces (without the outer
face) of G and edge set {FFF’| F and F’ have a common chord}. We denote by up the vertex of
Ta corresponding to the face F' of G and sometime we identify a specified face and the vertex
of T which corresponds to this specified face of GG. It is well known that the weak dual of an
outerplanar graph is a forest and that that the weak dual of a 2-connected outerplanar graph is
a tree. Note that an end face of an outerplanar graph G corresponds to a leaf of T and that
an internal face of G corresponds to a vertex of degree at least 3 in 7g. Obviously, every end
face of a 2-connected outerplanar graph contains at least one vertex of degree 2.

Let G be a graph. The block graph of G is the graph obtained from G by replacing each
maximal 2-connected subgraph A of G by a vertex ua which is adjacent to the vertices which
were adjacent to a vertex of A, i.e. to vertices of the set {u € V(G — A)|luv € E(G), v e V(A)}.

Let G be a graph and let X, Y C V(G) be two subsets of vertices. A shortest XY -path is a
shortest path in G between two vertices u € X and v € Y such that there exist no other vertices
v € X and v/ € Y with dg(v/,v") < dg(u,v). If X only contains a vertex u, then we write u

instead of {u}.

1.2 Motivation and organization

The question of whether subcubics graphs have finite packing chromatic number or not was raised
by Goddard et al. [9]. The largest value of the packing chromatic number of a cubic graph known
so far is 13 [8]. Various classes of subcubic graphs [1, 2] have been studied since then. It is known
that subcubic trees have packing chromatic number at most 7 [11] and that there exist trees
with maximum degree 4 and packing chromatic number as large as possible [11]. Outerplanar
graphs form a class of structured graphs which is generally easy to colour and containing the
class of trees. Our aim is to prove that for some classes of subcubic outerplanar graphs, every
graph has a packing chromatic number bounded by a constant. We define these classes by giving

restrictions on the weak dual of outerplanar graphs.



The second section presents our bound for 2-connected subcubic outerplanar graphs without
internal face, i.e. when the weak dual is a path. Afterwards, in the third section, we use results
from Section 2 in order to determine asymptotic bounds for some larger classes of subcubic
outerplanar graphs. In the fourth section, we present sharper bounds for some specific classes
of subcubic outerplanar graphs. Finally, in a last section, we present lower bounds for the
packing chromatic number of subcubic outerplanar graphs and give concluding remarks. Table

1 summarizes the main results of this paper.

Condition on the subcubic outerplanar graph G 14 Section
G is 2-connected and 7T is a path 15 2
G is 2-connected and T contains at most k vertices of degree at least 3 | 17 x 63F — 2 3
G is connected and Tg contains at most k' vertices 9 x 6K —2 3
G is 2-connected and Tg contains one vertex of degree at least 3 51 4
The block graph of G is a path and A(7g) < 2 611 4

Table 1: Classes of subcubic outerplanar graphs and values of ¢ for which every graph G satisfies

XP(G) </

2 2-connected subcubic outerplanar graphs when the weak dual

is a path

The following observation will be used in order to construct some useful shortest path in 2-
connected subcubic outerplanar graphs. Moreover, it gives a description of 2-connected outer-

planar graphs with the weak dual of these graphs.

Observation 2. Let G be a 2-connected outerplanar graph that is not a cycle. Then G
contains at least two end faces. Moreover, if G contains no internal face, then G has exactly two

end faces.

Proof. Considering the weak dual, 7 is a tree since G is connected. Therefore each 2-
connected outerplanar graph that is not a cycle contains at least two end faces. In particular, if
G has no internal face, then 7¢ is a path (the converse also holds). Hence, 7 has at least two

leaves, implying that G has exactly two end faces. |



1.2 .3 4
Loy Ty Lo Ty

Figure 1: Structure of G in Lemma 3.

We begin this section with the following lemma. This lemma will be used in Sections 3 and

Lemma 3. Let G be a 2-connected outerplanar graph with A(7¢) < 2 and A(G) < 3. Let
x,y be a pair of vertices of degree 2 in G such that x belong to one of the end faces of G and y
to the other one, and let P be a shortest x,y-path in G. Then G — P can be packing coloured
with colours {1,2,3,4}.

Proof. Let C denote the boundary cycle of G. If there is no chord in G, then G is a cycle
and, by Proposition 1.i) , x,(G) < 4.

Thus we may assume that C contains some chords in G. Note that C' — P is not necessarily
connected, but each component of C'— P is a path. Let D;, i = 1,..., k denote the components
of C'— P in an ordering from x to y, and let ¢; denote the length of D;. We further denote the
vertices of each D; by :cll, :c?, . ,mf" in an ordering starting from a vertex of D; which is closest
to x in D;. The described structure is shown in Fig. 1, where the thick x,y-path depicts P.

We colour each component D; of C — P with a pattern 1,2,1,3 starting from z! (i =
1,2,...,k), i.e., for each odd j, :ci is coloured with colour 1, for each j divisible by 4, xf obtains
colour 3, and, for each even j not divisible by 4, we colour vertex xi with colour 2, 7 =1,2,...,4;.
We denote by x the defined colouring. Since P is a shortest path and A(G) < 3, there is no
collision between any pair of vertices coloured with colour 1 or 2, respectively. Suppose to the
contrary that there is a pair of clashing vertices a and b coloured with colour 1. Clearly a and b
belong to the same component D; of C' — P and ab € E(G) \ E(C) by the definition of x. But
then we get a contradiction with the fact that D; is a path. Now suppose that there is a pair of
clashing vertices a and b coloured with colour 2, i.e., dg(a,b) < 2. Again, a and b must belong
to the same component D; of C' — P, otherwise dg(a,b) > 2 and we obtain a contradiction.

Analogously as for colour 1 we can show that ab ¢ E(G). Thus a and b must have a common



neighbour ¢ in G. From the definition of x, ¢ € V(D;), and ¢ € P since A(G) < 3. Therefore
the only possible collision in the defined colouring x could be between vertices coloured with
colour 3. Analogously as for colours 1 and 2, any pair of clashing vertices a and b cannot be at
distance one or two apart. Therefore any such collision happens for a and b with dg(a,b) = 3.
We will check and modify collisions in the defined colouring x of the components D1, Do, ..., Dy
of C'— P one-by-one starting from D; and from the vertex z} in each D;. Note that, in each
step of the modification process, we check the modified colouring, not the original one. The
following possible collisions can occur:
Case 1: a and b belong to different components D; and D; of C — P, 4,5 € {1,2,...,k}. Since
da(a,b) = 3, (up to a symmetry) a = xfi, b belongs to the chord of D;U P which is closest to
a, and j = i+1, otherwise we get dg(a,b) > 3. Then we can modify the colouring x of D; by
recolouring vertices z3, s = 3,...,1; — 1, with x(z}) := X(xj“) and we set X(xi.j) €{1,2,3}
depending on the continuation of the pattern 1,2,1,3 in D;.
Case 2: a and b belong to the same component D;. Since dg(a,b) = 3, a and b must belong
to consecutive chords of P U D; and there is no vertex between these chords on P. We
call such a pair of vertices coloured with colour 3 a critical pair. Consider a critical pair a
and b such that a = 2", b = zI', m < n, and that there is no critical pair ¢’ and a with
a =9,

3,1,4,1,2,1,3,1,2,... instead of 3,1,2,1,3,1,2,1,3..., i.e., we recolour the vertex m;”“

o < m. Then we modify the colouring of the vertices of D; starting at vertex a by

with colour 4 and we switch colours 2 and 3 of the vertices mi for even j > m—+ 2. Note that
the underlined colours represent the critical pair a and b. It is easy to verify that vertices
coloured with colour 4 are mutually at distance more than 4 apart, implying that there is
no collision between any pair of vertices coloured with colour 4.

After these modifications we obtain a colouring of all the vertices of G— P with colours {1, 2, 3,4}

satisfying the distance constraints of the packing colouring.

Theorem 4. IfG is a 2-connected subcubic outerplanar graph with A(Tq) < 2, then x,(G) <
15.

Proof. Let z,y be any pair of vertices of degree 2 in GG belonging to distinct end faces of G.
Let P be a shortest x,y-path in G. By Lemma 3, the vertices of V/(G) \ V(P) can be coloured

with colours from {1,2,3,4}. Then the colouring can be completed in a packing 15-packing



colouring of G by colouring the vertices along the path P starting at z and using a packing
colouring of the infinite path (since P is a shortest path in G, then the distance between any
pair of vertices of P is the same on P and on G). For this, we repeat the pattern ¢ with colours

from {5,...,15} of length 36 along the vertices of P starting at x:
5.6,7,9,13,12,5,8,6,10,7,11,5,9,14,6,8,15,5,7,13,10,6,11,5,8,9,7,12,6, 5, 14, 10,15, 8, 11

It is easy to check that any two colours 7 in this repeating sequence are separated by at least

1 integers. |

Note that the previous pattern was found by a computer search.

3 Asymptotic results for subcubic outerplanar graphs

In the paper, the main open problem is about the finiteness of the packing chromatic number
of subcubic outerplanar graphs, i.e, we ask whether the packing chromatic number of an out-
erplanar graph depends on the order of the graph or not. In this section we prove that, for
2-connected graphs with a fixed number of internal faces and for graphs with a fixed number of
faces, it does not depend on the order of graphs.

We begin this section by proving the following useful lemma that will be also used in Section
4. We recall that the weak dual of a 2-connected outerplanar graph is a tree and that ug is the

vertex of the weak dual corresponding to the face F.

Lemma 5. There exists a packing colouring of P with colours {5,...,15} such that the first

vertex x along the path is at distance at least [(i — 5)/2]| of a vertex of colour i.

Proof. By considering the pattern from Theorem 4 starting at x, we can easily check that
the first six vertices of PJ satisfy the property. Since the colours used in the pattern from
Theorem 4 are bounded by 15, the other vertices (other than the first six vertices) satisfy the

property as well. |

Let ¢, 7 and k be positive integers. Let rfj be an integer such that rfj =i —j (mod k)
minimizing the absolute value. The value |rF j| corresponds to the distance between two vertices

i and j in a cycle Cy with vertex set {0,...,k — 1} (the vertices are enumerated along the



cycle). A subset of vertices A of a graph G preserve cycle distance if there exists an ordering

v, ... ,v‘f'fl of the vertices of A satisfying dg (v, vf;) > |7“y;‘,|, for integers 0 < j < j' < |A|—1.

Lemma 6. Let G be graph and let A C V(G) be a subset preserving cycle distance. The

vertices of A can be packing-coloured with colours {/,...,6¢ + 4}, for any integer /.

Proof.  First, if |A| < 5 4 5, then we can colour each vertex of A with a different colour
from {¢,...,6¢ + 4}. Second, if 5¢ + 5 < |A| < 6¢ + 4, then we begin by colour two vertices

of A by each colour of {/,...,2¢ — 1}. Since dg(vf;‘,vif'ﬂ) > 20 —1, for 0 < ¢ < /¢, we can

easily colour the vertices v3, ... ,vﬁfl, v, ... 0¥ with colours from {f,...,2¢ —1}. We can
colour the remaining uncoloured vertices with distinct colours of {24, ...,6¢+4}. Third, suppose

|A| > 6¢ + 4. By Proposition 1.ii), we can colour P, with colours from {¢,...,3¢ + 2}. Let
C be a cycle with more than 6/ + 4 vertices and let P’ be an induced Pspy9 in C. Since the
distance between the two extremities of C' — P’ is at least 3¢ + 3, we can colour the vertices of
C — P’ with the colours {¢,...,3¢ + 2} (using Proposition 1.ii) ) and colour the vertices of P’
with distinct colours of {3¢ + 3,...,6¢ 4+ 4}. Hence, we can use the colouring of this cycle C' in

order to colour the vertices of A with colours from {/,...,6¢ + 4}. |

A subset of vertices A of a graph G is decomposable into k sets preserving cycle distance if
there exist k sets of vertices Ay, Ao, ..., Ag, such that A; U...U Ay = A and for each integer
i, A; preserves cycle distance. The following lemma will be useful in order to prove Theorems 8

and 9.

Lemma 7. Let G be graph and let A C V(G) be a subset decomposable into k sets preserving
cycle distance. The vertices of A can be packing-coloured with colours {(,...,6F(¢41) — 2}, for

any integer £.

Proof. @ We proceed by induction on k. For k = 1, by Lemma 6, we can colour the vertices
of A with colours {¢,...,6¢ + 4}. Now suppose that a subset A C V(G) is decomposable into
k + 1 sets preserving cycle distance. Using induction hypothesis we can colour the vertices of
Ay, ..., Ay with colours {¢,...,6F(¢ + 1) — 2}. For the vertices of A1, by Lemma 6, we can
use colours {6F(£ +1) —1,...,¢'}, where ¢/ = 6(6"(£ +1) — 1) +4 = 6T (£ +1) — 2. We do not

recolour the vertices from U¥_| (A; N Ax11) (in the case it is not empty). [ |

The following theorem is one of our main result. It can be used in order to prove that some

subcubic outerplanar graphs have finite packing chromatic number.



Theorem 8. If G is a 2-connected outerplanar graph with A(G) < 3 and with k internal
faces, then x,(G) < 17 x 63% — 2.

Proof. Let Fi,..., F}; denote the k distinct internal faces of G. By removing the vertices of
degree at least 3 from 7g, we obtain a disjoint union of paths. We distinguish two kinds of paths
in this union. For two vertices up, and up,, 1 <i < j <k, the path with one extremity adjacent
to up, and the other one to up; is denoted by U; ;. The paths with only one extremity adjacent
to a vertex of degree 3, let say up,, 1 <14 < k, are denoted by Ul-l, e ,Uf", where ¢; is the number
of paths with one extremity adjacent to ug,. In this proof, we will consider differently the non
internal faces depending on the kind of path they are in 7Tg.

Let B be the set of vertices of G at distance at most one from an internal face. For an
internal face F;, 1 <1 < k, let B; be the set of vertices of G not belonging to F; and at distance
(exactly) one from vertices of F;. Note that B = By U...U By. Let i and k" be integers such
that 1 < i < k, 1 <k < ¢;. We denote by yf/ a vertex of G of degree 2 belonging to the
face from V(Uik/) which is a leaf in Tg. Let Pik/ be a shortest Bi,yf,—path in G. We denote by
(pf/)l, (pf/)g, ... its vertices in an ordering starting from the vertex of B;. Finally, let ¢ and j be
two integers, 1 < i < j < k, such that U, ; is defined. We denote by P, ; a shortest B;, B;-path
and denote by pl{ IR pf"f its vertices in an ordering starting from the vertex of B;.

Let P denote the set of vertices from the previous defined paths of G, i.e P = U1§i§k,1§k'§£iV(Pik/)
Ui<i<j<kV(P;j). The proof is organized as follows. First, we will colour the vertices of
V(G) \ (B U P) with colours {1,2,3,4}. Second, we will colour some vertices of P. Third,
we will colour the remaining uncoloured vertices of G.

Step 1: Colouring the vertices of V(G) \ (B U P) with colours {1,2,3,4}.

We colour the vertices of V/(G)\ (BU P) by colouring one by one each connected component

of G — (B U P) in the same way than in the proof of Lemma 3, i.e. we use the pattern

1,2,1,3. Note that the distance between any two vertices from V(G) \ (B U P) in two
different connected component of G — B is at least 5. Moreover, we proceed as in the proof

of Lemma 3 to avoid clashing vertices of colour 3, i.e., we use colour 4.

Step 2: Colouring vertices of P.

Let 4, j, i' and k' be integers such that U;; and Uf/ are defined. Let r be any vertex of

Ta. Let 7_2;> be the digraph obtained from 7Tg by replacing each edge uwv € E(7Tg), with

d(u,r) < d(v,r), by an arc from u to v. For the vertices of Pi’f/, we use the pattern of

Theorem 4 and Lemma 5 beginning with the third vertex of Pi’f/, i.e the vertex (pf,/)g. We



distinguish two cases in order to colour F; ;:

%
i): there is a directed path from up, to up; in Ta. For the vertices of P ;, we use the
pattern of Theorem 4 and Lemma 5, beginning with the third vertex of P, ;, i.e the

vertex pg’ j and finishing by the vertex pf'f -3

%
ii): there is a directed path from u F; to up, in Tg. For the vertices of P; j, we use the same

pattern as for case i), beginning with the vertex pf}f ~3 and finishing by P} ;-

Note that every vertex of V(’Té) has in-degree at most one. This property, along with
Lemma 5, ensure us that a vertex coloured with colour a in P;;, a € {5,...,15}, is at
distance at least a + 1 from any other vertex coloured by a in Py j/, for 1 < < j' < k.
Step 3: Colouring the remaining vertices of G.

Let w; ; be a vertex among {pij,pf’;jﬁ} at distance 2 from a vertex of V(F;) (when U, ; is
defined). Let W; be the set {w; ;| U; j is defined, 1 < j < k} and let D; be the following set
{(®PF)2] 1 < K < ;3 UW;. Since the sets V(F;), B; and D; , 1 < i < k, are sets preserving
cycle distance, then the subgraph induced by V(Fy) UB; UDy U...UV(Fg) U B U Dy, is
decomposable into 3k sets preserving cycle distance. Hence, using Lemma 7, the remaining
uncoloured vertices can be coloured with colours {16, ...,17 x 63F — 2}.

This following theorem is more general than Theorem 8 since it gives bounds for outerplanar
graphs which are not 2-connected. However, since the parameter is the number of faces, the

bound is weaker than that of Theorem &.

Theorem 9. If G is a connected outerplanar graph with k faces and A(G) < 3, then
Xp(G) <9 x 68 —2.

Proof. Let Fi,..., Fy denote the k distinct faces (without the outer face) of G. Let O be the
set of vertices which only belong to the outer face. We denote by O; ; the subset {u € O] Ju; € F;
and Ju; € Fj such that there exist an u;,u-path and an wuju-path in G[O U {u;,u;}]}, for
1<i<j<k.

First, we will colour the vertices of O with colours {1,...,7}. Second, we will colour the
vertices of Uj<i<iV (F5).

Step 1: Colouring the vertices of O with colours {1,...,7}.
Since G is connected, T¢ is a forest and for each connected component of T (in the case T

has several connected components), there exists a vertex up, and another vertex outside the

10



connected component of ug;, let say ug;, such that O; ; # 0. Let 7/ be the graph obtained
from 7¢ by adding an edge between two vertices up, and up; if O; ; # (). Let r be a vertex
of Tg. Let ’7% be the digraph obtained from 7/ by replacing each edge uwv € E(7/}), with
d(u,r) < d(v,r), by an arc from u to v.
Sloper [11] has determined a way to colour any subcubic tree with colours {1,...,7}. In his
paper, he considers a vertex of degree at most 2 as the root and he subdivides the tree into
levels according to the distance to the root (a vertex at distance ¢ from the root is at level
i). Depending on the colour of the vertices in the ¢ first levels, Sloper gives a way to extend
the colouring to the level £+ 1. In this colouring of subcubic trees, we can note that we can
always begin by colouring the root with 1, the neighborhood of the root with colours 2 and
3, the vertices at even levels with colour 1 and the vertices at level 3 with colours {2,3,4,5}.
When we say that we consider a vertex u of O as the root and use Sloper’s pattern [11],
we mean that we subdivide the connected component of u in O into levels following the
distance to u, consider that u and the vertices at even levels are coloured with 1, that the
vertices at level 1 are coloured with 2 and 3 and that the vertices at level 3 are coloured
with colours {2,3,4,5} and that we use the way to extend the colouring described by Sloper
[11].
Let i and j be integers such that O; ; # (). If there is an arc from up, to up; in 7T>9, then we
consider the vertex of O; ; at shortest distance from F; as the root and use Sloper’s pattern
to colour the vertices of O; ;. If the arc is from up; to up, in ’7_'G>, then we consider the vertex
of O; ; at shortest distance of F}; as the root and use Sloper’s pattern to colour the vertices
of O; ;.
For the remaining uncoulored vertices of O, we consider the vertex at shortest distance of
an inner face as the root. Note that every vertex of V(7TC;>) has in-degree at most one. This
property ensures us that a vertex coloured with colour a in O; j, a € {1,...,7}, is at distance
at least a 4+ 1 from any other vertex coloured by a in O.

Step 2: Colouring the remaining vertices of G.
The sets V(F}),...,V(Fy) are sets preserving cycle distance. Hence, by Lemma 7, the

remaining uncoloured vertices can be coloured with colours {8,...,9 x 68 —2}.

11



Figure 2: A 2-connected outerplanar graph with one internal face and its different subgraphs

(C is represented by a dashed line).

4 Some 2-connected outerplanar graphs with finite packing chro-

matic number

In this section we consider some special classes of subcubic outerplanar graphs for which we

show that their packing chromatic number is finite.

Theorem 10. If G is a 2-connected subscubic outerplanar graph with exactly one internal

face, then x,(G) < 51.

Proof. Suppose G is a 2-connected outerplanar graph with exactly one internal face and with
A(G) < 3. Let C denote the boundary cycle of G. Let F denote the internal face of G. Let
C' =A{vp,...,uvn_1} denote the set of vertices which belong to F', with v; adjacent to v;11, for
0 <i < N. When N is odd, we suppose that vy_1 is a vertex such that d(vy_1) = 2. Such
a vertex exists since the number of vertices of degree 3 in C’ is even. By removing the edges
of C N F from G, and by removing the isolated vertices from the resulting graph, we obtain a
graph G’ which is a disjoint union of 2-connected outerplanar graphs having no internal face.
Let Fy, ..., Fy_; denote the 2-connected components of G/, enumerated in the clockwise order

along the cycle C' in G (for details, see Fig. 2). Note that, since any F; contains no internal face,
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each F; has exactly two end faces. Let 4 be an integer with 0 < i < ¢, and let u¢ and u? denote

the two adjacent vertices of degree 3 in G which belong to V(F;) NC’, as it is depicted in Fig. 2.

Let y; be a vertex of degree 2 in the end face of F; which does not contain u{. Let x; € {uf, ug’

denote a vertex at minimal distance from y;. Finally, let P; be a shortest x;, y;-path in G. We
further denote the vertices of each P; by z;, p%, ..., in an ordering starting from x;. Let Dl-l,
ey Dfi denote the connected component of F; — P; with Di1 containing a vertex among u; and
u;-’ and with Df being at larger distance than Df_l from x;, 2 < k < k;.

The proof will be organized as follows. First, we will colour the vertices of C’. Second,
we will colour the vertices of Up<;<¢F; — FP; with colour 1, 2 and 3. The obtained colouring is
possibly not a packing colouring of G. Third, we will recolour some vertices. Fourth, we recolour
some vertices with colour 4 in order to have a packing colouring. Finally, we colour vertices of
the paths Up<i<eP; \ {z:}.

Step 1: Colouring the vertices of C’ with colours 1, 2, 29 to 45. For integers k, £, let i be
an integer such that ry = k — k' (mod N) and —|N/2| < . < [N/2]. We can note
that v, and vy are at distance |ry j|. We begin by a partitioning of C” in five subsets:
Ct ={vgl k=0 (mod2), 0 <k < N} C)={vg] k=1 (mod4), 0 <k < N},
Cy ={vg] k=3 (mod 12), 0 < k < N}, C) = {vg] £k =7 (mod 12), 0 < k < N} and
C{ = {vg] k =11 (mod 12), 0 < k < N}. Let m; denotes the vertex with largest index in

C]’~, for j € {1,2,3,4,5}. We use the following patterns to colour the vertices of C’.

1. if |C1] =0 (mod 2) (|C7] =1 (mod 2), respectively), then we colour all vertices of Cf
(C1\ {m1}, respectively) with colour 1;

2. we colour all vertices of C \ {ma} with colour 2;

3. if |C4] =0 (mod 4) (|C%| =1 (mod 4), respectively), then we use the pattern 29, 30, 35, 36,
29, 30, 35, 36, . .., 29,30, 35,36 to colour the vertices of C% (C4 \ {ms}, respectively);

4. if |C4| = 2 (mod 4) (|C%| = 3 (mod 4), respectively), then we use the pattern 29, 30, 35,36,
29, 30,35, 36, . .., 29, 30, 35,29,30,36 to colour the vertices of C4 (C% \ {ms}, respec-
tively);

5. if |C}] =0 (mod 4) (|C}| =1 (mod 4), respectively), then we use the pattern 31, 32, 37,38,
31,32,37,38,...,31,32,37,38 to colour the vertices of C} (C} \ {my}, respectively);

6. if |C}] =2 (mod 4) (|C}] =3 (mod 4), respectively), then we use the pattern 31, 32, 37,38, 31,
32,37,38,...,31,32,37,31,32,38 to colour the vertices of C} (C} \ {my}, respectively);
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Figure 3: Eight configurations in step 3 (P; is represented by a dashed line).

7. if |Cf| =0 (mod 4) (|Ci| =1 (mod 4), respectively), then we use the pattern 33, 34, 39,40,
33,34,39,40, ..., 33,34, 39,40 to colour the vertices of Cf (C§ \ {ms}, respectively);

8. if |Cf| =2 (mod 4) (|Cf| =3 (mod 4), respectively), then we use the pattern 33, 34, 39,40,
33,34,39,40, ... ,33,34,39,33,34,40 to colour the vertices of Cf (Cf \ {ms}, respec-

tively);

9. when it is necessary, we use the colours 41, 42, 43, 44, 45 to colour the vertices of

{mk\ 1§k§5}.

It can be verified that the vertices with the same colour in C’ have enough mutual distance

by calculating the distance for each pair of vertices in each pattern. For example, in the
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pattern 29,30,35,36 of length four, two vertices with the same colour are at distance at
least 48, since the pattern has length four and we colour vertices with the same remainder
modulo 12. The same goes for the pattern 29,30, 35,29, 30,36 of length six. Note that for
every pair of vertices (uf, u;’), there is at least one vertex of colour 1.

Step 2: Colouring the vertices of F; — P; with colours 1, 2 and 3, for every i =0,...,¢ — 1.
Let 2} be the vertex among u? and uz’ different from z;. Let ¢; be the order of Di1 and let

1

1 . . . . . .
xhx, ... ,xf’ be the vertices of DZ-1 in an ordering starting from a/. If 2} is coloured with

colour 1, then we use the pattern 3,1,2,1 to colour the vertices x}, . ,xlf"_l

;. If 2 is not

coloured with colour 1, then we use the pattern 1,3, 1,2 to colour the vertices a:il, . ,xfifl.
We colour the remaining uncoloured vertices of F; — P; in the same way than in the proof
of Lemma 3. However, we do not change the colouring in order to avoid clashing vertices of
colour 3.
Step 3: Recolouring some vertices in Fj, for every ¢ =0,...,¢ — 1.

Note that no vertex of colour 2 can be at distance 2 from z/, since we have used the patterns
1,3,1,2 and 3,1,2,1 to colour the vertices of V(D})\{x;}. We consider four cases depending
on whether there exists a vertex w; of colour 2 which is at distance 2 from x; or not and
depending on whether there exits a neighbor w/ of colour 1 of p? or not. We can also note
that w; belongs to the chord delimiting the end face of F; containing x; and that p? can

have at most one neighbor of colour 1, even if p? is y; (since y; has degree 2).

Case i) There exists a vertex w; of colour 2 at distance 2 from z; and p? has no neighbor
of colour 1 (see Fig. 3(a)). We modify the colouring used for D! by replacing the
colouring starting from the vertex w; by 4,2,1,3,1,... instead of 2,1,3,1,2,.... Note

that the underlined colour represents the colour of the vertex w;.

Case ii) There exists a vertex w; of colour 2 at distance 2 from x; and p? has a neighbor w/ of
colour 1. Suppose that p?p? is a chord (see Fig. 3(b)). We modify the colouring used
for Di by replacing the colouring starting from the vertex w; by 4,1,2,1,3,... instead

of 2,1,3,1,2,... and the colouring used for Dé by replacing the colouring starting from
2

the vertex w} by 2,1,3,1,... instead of 1,2,1,3,.... Suppose that pipg’ is not a chord
(see Fig. 3(c)). We modify the colouring used for D} by replacing the colouring starting
from the vertex w; by 4,2,1,3,1,... instead of 2,1,3,1,2,.... Note that in the two last

subcases the colour of w/ is not 1 anymore.

Case iii) There does not exist a vertex of colour 2 at distance 2 from x; and p? has a neighbor
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w; of colour 1. Suppose that w] is a neighbor of z} (see Fig. 3(d,e)). We can note
that 27 is not coloured with colour 1 and that z; is coloured with colour 1. Let P/ be
/

the path with vertex set z}, wf, p?,pg’, .... We replace P; by the path P!. Moreover

we colour w} with colour 3. Now suppose that w/ is at distance at least 2 from 2 and
1

that p?w! and plp? are not chords (see Fig. 3(f)). We modify the colouring used for

D% by replacing the colouring starting from the vertex w} by 2,1,3,1,... instead of
1,2,1,3,.... If w! is at distance at least 2 from x} and p?w/ is a chord (see Fig. 3(g)),
we modify the colouring used for D} by replacing the colouring starting from the vertex
w; by 4,1,2,1,3,... instead of 1,2,1,3,... or 1,3,1,2,.... Finally, if w} is at distance
at least 2 from ' and p}p? is a chord (see Fig. 3(h)), then we change the colour of w!

by 4.

Case iv) There does not exist a vertex of colour 2 at distance 2 from x; and p? has no neighbor

w; of colour 1. In this last case, we do not recolour vertices.

Step 4: Recolouring some vertices with colour 4 in F;, for every ¢ = 0,...,f — 1. We can note
that, after the recolouring of step 3, as in the proof of Lemma 3, there is no possible pair
of clashing vertices of colour 1 or of colour 2. The only possible pair a and b of clashing
vertices have colour 3. If @ and b belong to different component Df and Df/ of F; — P;,
k. k' € {1,2,...,k;}, then we proceed as in Case 1 of the proof of Lemma 3. Note that we do
not change the colour of the vertices of Di1 in this case. If the colouring used for Di2 has been
changed in Step 3 and a € V(D}), b € V(D?), then we modify the colouring used for D}
by replacing the colouring starting from the vertex w] of Step 3 by 2,3,1,2,1,3... instead
of 2,1,3,1,.... If a and b belong to the same component D¥ of F; — P;, k,€ {1,2,...,k;},
then we proceed as in Case 2 of the proof of Lemma 3. However, we have to check that
the vertices coloured with colour 4 in Step 3 are at mutual distance at least 5 and that the
vertices coloured with colour 4 in Step 3 are at distance at least 4 from the added vertices
of colour 4 of Step 4.

Since we have used the patterns 1,3,1,2 and 3,1,2,1 to colour the vertices of V(D})\ {x;},
the vertex w; is at distance at least 2 from both z; and 2} in case i) and ii) of step 3 and
that a vertex w} of colour 4 in case iii) of step 3 is at distance at least 2 from both z; and
x}. Thus, the vertices coloured with colour 4 in Step 3 are at mutual distance at least 5.
Suppose that a is a vertex of colour 4 from Step 3 and that b is a vertex of colour 4 not in

Dil. We can note that a is the vertex w; or w); of Step 3. The minimal distance between
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a vertex of D} and a vertex of D? is at least 3. Moreover, because we have proceeded as
in Lemma 3, b is at distance at least 2 from a vertex at minimal distance of a. Hence,
d(a,b) > 5. Now suppose that a is a vertex of colour 4 from Step 3 and that b is a vertex of
colour 4 in D}. Since, in every case, a is at distance at least 3 from another vertex of colour
3 in D}, we obtain that d(a,b) > 5.

Step 5: Colouring the vertices of P; \ {z;} with colours 16 to 28 and 46 to 51, for every i =
0,...,£—1. We begin by colouring the vertex p? by 1, for each i between 1 and £ — 1. Since
we have changed the colour of the eventual neighbor of p? with colour 1 in Step 3, there are
no possible collisions.

For the vertices of P;, we use the pattern of Theorem 4 and Lemma 5, beginning with the
fourth vertex of P;, i.e the vertex p?.

Let B = {pi| 0 < k < ¢}. We finish by colouring the vertices from B with colours 16 to
28 and colours 46 to 51. For integers k, k', let r} ;, be an integer such that 7} ,, =k — &’
(mod ¢) and —[¢/2] < 7, < [£/2]. We can note that the vertices pi and pi, are at
distance 2|r;€,k/| + 1. We begin by a partitioning of B in three subsets By, By and Bj, with
Bj={pi| k=7 (mod 3), 0 <k < ¢}, j=0,1,2. Let m’;, m7 denote the two vertices with
the two largest indices in By, for j € {1,2,3}. We use the following patterns to colour the

vertices of B.

1. if |By| = 0 (mod 3) (|B1] = 1 (mod 3), |Bi| = 2 (mod 3), respectively), then we
use the pattern 16,17,18,16,17,18,...,16,17, 18 to colour the vertices By (B1 \ {m}},
By \ {m),m!}, respectively);

2. if |B2] =0 (mod 5) (|B2| =1 (mod 5), |B2| = 2 (mod 5), respectively), then we use
the pattern 19, 20, 21, 25, 26, 19, 20, 21, 25, 26, ... , 19, 20, 21, 25, 26 to colour the vertices
of By (B2 \ {m4}, By \ {mb, mi}, respectively);

3. if |B2] =3 (mod 5) (|B2] =4 (mod 5), respectively), then we use the pattern 19, 20, 21,
95, 26,19, 20,21, 25,26, . .., 19,20, 21,25, 26,19, 20, 21, 25, 19, 20, 21, 26 to colour the ver-
tices of By (Ba \ {mb}, respectively);

4. if |[B3] =0 (mod 5) (|Bs| =1 (mod 5), |B3| = 2 (mod 5), respectively), then we use
the pattern 22,23, 24,27,28,22,23,24,27,28,...,22,23,24,27,28 to colour the vertices
of B3 (Bs \ {m4}, B3\ {mf, mf}, respectively);

5. if |Bs| =3 (mod 5) (|B3| =4 (mod 5), respectively), then we use the pattern 22,23, 24,
97,28,22,23,24,27,28, ..., 22,23, 24,27, 28, 22, 23, 24, 27, 22, 23, 24, 28 to colour the ver-

17



tices of By (Bs \ {m}}, respectively);
6. when it is necessary, we use the colours 46, 47, 48, 49, 50, 51 to colour the vertices of
{m),m}| 1<k <3}

Note that in some cases these graphs (depending on the size of B and C”) can be coloured with

less than 51 colours. [ ]
Proposition 11. There is a packing colouring of even vertices of Py, with colours {k,k +
1,...,2k —1}.

Proof.  For the colouring of the vertices of the path P,, we use pattern 1,k, 1,k + 1,1,k +
2,...,1,2k — 1 and after deleting colour 1 we get required colouring. Note that the distance
between any pair of vertices coloured with the same colour in two consecutive copies of this

pattern is 2k. [

Theorem 12. Let G be a connected outerplanar graph with no internal face and with

A(G) < 3, such that the block graph of G is a path. Then x,(G) <

Proof. Let G be a graph, Bg the block graph of G and let By,..., By denote the blocks
of G such that B;, B;;1 are consecutive in Bg, ¢ = 1,...,k — 1. Let C; denote the boundary
cycle of B;, i =1,...,k. Since G contains no internal face, each B; contains no internal face as
well, implying that every B; contains exactly two end faces. Let x; denote any vertex of degree
2 in one of the end faces of B; and y; any vertex of degree 2 in the other end face of B;. Now
choose a shortest x1,zp-path P in G. Let P, = PN B;, i =1,...,k and let Z; and g; be the
end vertices of P;. Obviously P goes through all the blocks of G, hence P; is nonempty for each
i=1,...,k, every P; is a path since the block graph of G is a path, and each F; is a shortest
path in G since P is shortest in G. Among all possible choices of the vertices x;,y; we choose
and y, in such a way that the z/, P-path and the y/, P-path are shortest possible, respectively,
for each ¢ = 1,...,k. Let QY be a shortest y}, P-path in G, QZ a shortest y;, P-path in G
and, analogously for each i = 2,...,k — 1, let Q7, QY be a shortest 2, P-path, or y,, P-path,
respectively. Note that some of the paths Q¥, QY may be trivial or empty. The structure of the
graph G is depicted in Fig. 4 (the thick path represents the path P).

Consider each block B; separately. We show that, in each B;, we can colour vertices of

C; — (P, UQ* UQY) with colours {1,2,3,4}. Let C} be a shortest cycle in B; containing all
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Tk

Figure 4: Structure of the graph G in Theorem 12.

vertices of P;. If C} = C;, then we can colour all vertices of B; — V(P;) with colours {1,2,3,4}
by Lemma 3 since Z; and g; belong to different end faces of B; and P; is a shortest Z;, y;-path
in B;.

Thus we may assume that there is a chord h in B; such that h € E(C}) (see Fig. 5).
Up to a symmetry suppose that z; ¢ C}. Let z} and 2? denote the end vertices of h and
Bf =G [xll, Ci, x%, Gy, x?, 5621] . By the proof of Lemma 3, we can colour all vertices of Bf —V(Q7)
with the pattern 1,2,1,3 since Q)7 goes through one end vertex of h, which is of degree 2 in BY
and @7 is shortest possible. Note that this colouring is not necessarily a packing colouring, but
after we colour all the vertices of B; — (V(P;) UV (Q¥) UV (QY)) we will modify the colouring
we obtain analogously as it was described in the proof of Lemma 3.

Now we consider the subgraph G[C}]. In both end faces of G[C}], there is a vertex of degree
2 in G[C’Z-l] belonging to F;. Let yll and yf denote such vertices. Since P is shortest in G, the
subpath y} P;y? is shortest in G too. Now we can colour the vertices of C} — V(P;) — V(Q%) with

colours 1,2,3 as it is mentioned in the proof of Lemma 3, distinguishing the following cases:

o if neither h € E(Q7) nor h € E(P;) (see Fig. 5(a)), then we follow up the colouring of the
vertices of B —V(Q7), i.e., if, e.g., we finished the colouring of the vertices of Bf —V(Q¥)
with ...,1,2,1, we continue the colouring of the vertices of C} — V(P;) — V(Q¥) with
3,1,2,...;

o if h € E(QF) or h € E(P;) (see Fig. 5 (b) or (c), respectively), then we colour the vertices
of C} — V(P,) — V(Q¥) starting with the pattern 1,2, 1, 3.
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Figure 5: Structure of a block of the graph G in Theorem 12.

In both possibilities we coloured all the vertices of (BX UC}) — (V(Q%) U V(P;)) with colours
{1,2,3}. If y} € V(C}), then we coloured all the vertices of B; \ (V(P;) UV (Q?)). Hence we
may assume that y, ¢ C}, i.e., there is a chord /' # h of B; in C}. Analogously as for the
extension of the colouring of the vertices of BY — V(Q¥) to G[V(C}) \ (V(P)UV(Q?))], we
colour the vertices of B; — (V(B¥) U V(C})) either by an extension of the pattern 1,2,1,3 from
the colouring of the vertices of if neither 1’ € E(P;) nor ' € E(QY), or we start the colouring
with the pattern 1,2,1,3 if A’ € E(P;) or ' € E(QY). Thus we coloured all the vertices of
B;— (V(P;) UV(Q?) UV(QY)) with colours {1,2,3}. Now, using the same method as it is given
in the proof of Lemma 3, we can modify the above defined colouring using colour 4 if necessary,
thus we obtain a packing colouring of all the vertices of B; — (V(P;) UV(Q?) UV (QY)) with
colours 1,2, 3, 4.

Now we consider two consecutive blocks B;, B;;1. Neither the neighbour z? of the last vertex
of P; in B; which does not belong to P, nor of the first vertex z; 1 of Piyq in B;yq which does
not belong to P11, is coloured with colour 4 (which follows from the moditications given in the
proof of Lemma 3). But distg(22, 2} 1) can be equal to three and, possibly, both 22, 2} 1 can be

coloured with colour 3, therefore we delete colouring of zl1 1 ineach B;,i=1,..., k-1

Now we colour the paths QF,QY, i = 1,2,..., k. Rename these paths Q7,Q? with Qj,

j=1,...,2k—2 as they leave the path P starting from B;. Note that for Q¥ or QY empty we set

the corresponding (); also empty. The distance from P to any vertex of (); in G'is the same as on
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@;, hence each @ is a shortest path in G' between P and the relevant vertex x; or y;, respectively.
Thus, by Lemma 5, we can colour the vertices of each path Q9,1 (i =1,2,...,k — 1) with the
same pattern 5,6, ... using colours 5,6,...,15, starting at the vertex of QQ;_1 at distance two
from P. Analogously we can colour the vertices of the paths Q9; (i = 1,2,...,k — 1) using the
same pattern 5,6,... using colours 5,6,...,15, starting at the vertex of (J9; at distance three
from P. Then the distance between vertices on distinct paths @, @, coloured with colour 5 is
at least 3+ 1+ 2, the distance between vertices on distinct paths Q,,, @, coloured with colour
6 is at least 4 + 1 + 3, etc. Therefore the defined colouring of the paths Q;, j =1,...,2k — 2 is

a packing colouring.

Now we colour the remaining vertices of G. We start with a colouring of the path P with a
pattern using colours 16,18, ...,50 by Proposition 1.ii). Then we colour all uncoloured vertices
of Q; (j =1,...,2k+2) at distance one from P with colours 51,55, ... ,152 by Proposition 1.iii).
For the remaining vertices of (o; at distance two from P, the distance between any such vertices
on Q2 and Q2, (m,n € {1,2,...,k—1}, m # n) is at least 2|m — n|+ 4. Hence we can colour
these vertices with colours 153,...,305 by Proposition 11. Finally we colour the vertices zil_H
(i=1,..., k—1) with colours 306, ...,611 by Proposition 11 since distg(z},, 2L) > 2|m —n|+1.

Remark that it is possible to decrease the upper bound of 611 of the last theorem by using

colouring patterns found by computer instead of using Proposition 1.

5 Concluding remarks

In the previous sections, we have determined some classes of outerplanar graphs with finite

packing chromatic number. As for lower bounds, we are (only) able to state the following:

Proposition 13.  There exists 2-connected subcubic outerplanar graphs G without internal

faces and with chromatic number 5.

Proof. It has been proven in [9] that x,(G) =5 for G = P,JP, and n > 6. [ |

Proposition 14.  There exists a 2-connected subcubic outerplanar graph with packing chro-

matic number 7.

21



Figure 6: An outerplanar subcubic graph with packing chromatic number 7.

Proof. We have checked, by computer, that the graph G illustrated in Figure 6 has packing
chromatic number 7 by verifying that every proper colouring of G with 6 colours is not a packing
colouring and by determining a packing colouring of G with 7 colours.

Bresar et al. [1] have proven that for any finite graph G, the graph GX P, has finite packing
chromatic number. The degree of G X P,, can be arbitrary large. This property illustrates the
fact that the degree of a graph is not the only parameter to consider in order to have finite
packing chromatic number. Maybe the fact that the weak dual is a path (and is not any tree)
helps to bound the packing chromatic number. It remains an open question to determine if the

packing chromatic number of subcubic graphs is finite or not.
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