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Abstract

Although it has recently been proved that the packing chromatic number is unbounded

on the class of subcubic graphs, there exists subclasses in which the packing chromatic num-

ber is finite (and small). These subclasses include subcubic trees, base-3 Sierpiski graphs

and hexagonal lattices. In this paper we are interested in the packing chromatic number of

subcubic outerplanar graphs. We provide asymptotic bounds depending on structural prop-

erties of the outerplanar graphs and determine sharper bounds for some classes of subcubic

outerplanar graphs.

Keywords: packing colouring, packing chromatic number, outerplanar graphs, subcubic

graphs.
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1 Introduction

Throughout this paper, we consider undirected simple graphs only, and for definitions and

notations not defined here we refer to [2].

Let G be a graph and c a vertex k-colouring of G, i.e., a mapping c : V (G) → {1, 2, . . . , k}.

We say that c is a packing k-colouring of G if vertices coloured with the same colour i have

pairwise distance greater than i. The packing chromatic number of G, denoted by χρ(G) is the

smallest integer k such that G has a packing k-colouring; if there is no such integer k then we

set χρ(G) = ∞. For a class of graphs C, we say that the packing chromatic number of C is finite

if there exists a positive integer k such that χρ(G) ≤ k for every graph G ∈ C.

The concept of a packing colouring of a graph, introduced by Goddard et al. in [14] under

the name broadcast colouring, is inspired by frequency planning in wireless systems, in which it

emphasizes the fact that signals can have different powers, providing a model for the frequency

assignment problem. The packing chromatic number of lattices has been studied by several

authors: for the infinite square lattice Z
2, Soukal and Holub in [22] proved that χρ(Z

2) ≤ 17,
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while Ekstein et al. in [8] showed that 12 ≤ χρ(Z
2). Recently, Martin et al. in [20] improve the

bounds by showing that 13 ≤ χρ(Z
2) ≤ 15. For the infinite hexagonal grid H , Fiala et al. in [11]

showed that χρ(H ) ≤ 7, Korže and Vesel in [18] proved that χρ(H ) ≥ 7. Finbow and Rall in [12]

proved that the infinite triangular grid T is not packing colourable, i.e., χρ(T ) = ∞. Moreover,

Korže and Vesel in [19] proved that the infinite octagonal lattice has packing chromatic number

7. The packing chromatic number of the Cartesian product of some graphs was investigated in

[4, 11, 17]. Also, the packing chromatic number has been studied for further graph classes in

[4, 5, 14, 16, 23]. The computational complexity has been also studied: determining whether a

graph has packing chromatic number at most 4 is an NP-complete problem [14] and determining

whether a tree has packing chromatic number at most k (with a tree and k on input) is also an

NP-complete problem [10].

Sloper in [21] showed that the infinite complete ternary tree T has χρ(T ) = ∞ while any

subcubic tree T is packing 7-colourable, hence it is natural to ask if all graphs with maximum

degree 3 (often so-called subcubic graphs) have finite packing chromatic number. This question

was raised by Goddard et al. [14]. Recently, a second open question has been proposed about the

packing chromatic number of S(G), when G is subcubic [7, 13] (S(G) being the graph obtained

from G by subdividing each edge once). Recently, Balogh, Kostochka and Liu [1] proved that,

for any integer k, almost all cubic graphs of order n and of girth at least 2k + 2 have packing

chromatic number greater than k, hence answering negatively the question of Goddard et al.

Moreover, an explicit construction of an infinite family of subcubic graphs with unbounded

packing chromatic number have been found very recently [3]. Some subclasses of subcubic

graphs were also under consideration, see e.g. [4, 5].

Outerplanar graphs form a class of structured graphs (containing the class of trees), which

are generally easy to colour. Our aim is to find some classes of subcubic outerplanar graphs,

which have finite packing chromatic number. We define these classes by giving restrictions on

their structure (number of faces of different types), or, equivalently, on their weak dual. Note

that, when a graph is not connected, we can colour each component separately satisfying the

distance constraints of a packing colouring and the resulting colouring is packing as well. Thus,

throughout the rest of this paper, we will consider connected outerplanar graphs only.

The paper is organized as follows. Section 2 presents an upper bound for 2-connected

subcubic outerplanar graphs without internal face, i.e., for which the weak dual is a path.

Then, in Section 3, we use results from Section 2 in order to determine asymptotic bounds for

some larger classes of subcubic outerplanar graphs restricted by the number of (internal) faces.

In Section 4, we improve bounds from Section 3 for some specific classes of subcubic outerplanar

graphs with a specific structure. Finally, in the last section, we present lower bounds for the

packing chromatic number of subcubic outerplanar graphs and give concluding remarks. Table

1 summarizes the main results of this paper.

1.1 Preliminaries

Let G be a graph and A ⊂ V (G). We denote G − A the subgraph of G after deletion of all

vertices of A from G and all edges incident to some vertex of A in G. We further denote G[A] the
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Condition on the subcubic outerplanar graph G ℓ Section

G is 2-connected with no internal face 15 2

G is 2-connected with at most k internal faces 17× 63k − 2 3

G is connected with at most k′ faces 9× 6k
′

− 2 3

G is 2-connected with one internal face 51 4

G is connected with no internal face and with the block graph a path 305 4

Table 1: Classes of subcubic outerplanar graphs and values of ℓ for which every relevant graph

G satisfies χρ(G) ≤ ℓ.

subgraph of G induced by A, or equivalently, G[A] = G− (V (G)\A). Specifically, for x ∈ V (G),

G− x denotes the subgraph of G after deletion of x and all edges incident to x from G.

An outerplanar graph G is a planar graph such that there exists a planar drawing of G for

which all vertices belong to the outer face. When it is 2-connected, it can be represented by a

boundary cycle C containing all vertices of G, with non-crossing chords dividing the interior of

C into faces. A face F of G is called an internal face if F contains more than two chords of G,

and an end face of G if F contains only one chord of G; note that all remaining edges of an end

face belong to C.

The weak dual of G, denoted by TG, is the graph with the set of all faces of G, except the

outer face, as vertex set, and the edge set E(G) = {FF ′|F and F ′ have an edge in common}.

We denote by uF the vertex of TG corresponding to the face F of G and sometimes we identify

a face F and the corresponding vertex uF of TG. It is well known that the weak dual of a

connected outerplanar graph is a forest and of a 2-connected outerplanar graph is a tree. Note

that an end face of an outerplanar graph G corresponds to a leaf of TG and that an internal

face of G corresponds to a vertex of degree at least 3 in TG. Obviously, every end face of a

2-connected outerplanar graph contains at least one vertex of degree 2.

For a graph G, the block graph of G, denoted by BG, is the graph where vertices of BG

represent all maximal 2-connected subgraphs of G (usually called blocks) and two vertices of BG

are adjacent whenever the corresponding blocks share a cut vertex.

For any G1 ⊂ G, let N(G1) = {u ∈ V (G)| uv ∈ E(G) for some v ∈ V (G1)} be the neigh-

bourhood of G1 in G. Specifically, if G1 = {v}, let N(v) denote the neighbourhood of v in G.

For X,Y ⊆ V (G), a shortest (X,Y )-path is a shortest path in G between some vertex of X

and some vertex of Y . If X contains a vertex u only, then we write u instead of {u}. Let

dG(u, v) denote the distance between two vertices u and v in G, i.e., the length of a shortest

(u, v)-path. Analogously, dG(X,Y ) denote the distance between X and Y , i.e., the length of a

shortest (X,Y )-path in G.

Let P∞ denote the two-way infinite path, i.e., V (P∞) = Z and E(P∞) = {i i+1| i ∈ Z} and

let P+
∞ denote the one-way infinite path, i.e., V (P+

∞) = N and E(P+
∞) = {i i+ 1| i ∈ N}.

In our proofs we will use the following statement presented by Goddard et al. in [14].

Proposition A [14]. Let k be a positive integer. Then
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i) Every cycle has packing chromatic number at most 4;

ii) There is a packing colouring of P∞ with colours {k, k + 1, . . . , 3k + 2};

iii) If k ≥ 34, then there is a packing colouring of P∞ with colours {k, k + 1, . . . , 3k − 1}.

2 2-connected subcubic outerplanar graphs with the weak dual

a path

In the different proofs of this paper, we say that we denote the vertices of a path of order n

by x1, x2, . . . , xn in an ordering starting by x and finishing by y, in the case xi and xi+1 are

adjacent, for 1 ≤ i ≤ n − 1, xi and x denote the same vertex and xn and y denote the same

vertex.

The following observation will be used in order to construct some useful shortest path in

2-connected subcubic outerplanar graphs. Moreover, it gives a description of 2-connected out-

erplanar graphs with the weak dual of these graphs.

Observation 1. Let G be a 2-connected outerplanar graph that is not a cycle. Then G

contains at least two end faces. Moreover, if G contains no internal face, then G has exactly two

end faces.

Proof. Considering the weak dual, TG is a tree by connectedness of G. Since every nontrivial

tree has at least two leaves and each leaf of TG corresponds to some end face of G, each 2-

connected outerplanar graph that is not a cycle contains at least two end faces. In particular, if

G has no internal face, then TG is a path (the converse also holds), implying that G has exactly

two end faces.

We begin this section with the following lemma. This lemma will be used in Sections 3 and

4.

Lemma 2. Let G be a 2-connected subcubic outerplanar graph with no internal face. Let

x, y be a pair of vertices of degree 2 in G such that x belongs to one of the end faces of G and y

to the other one, and let P be a shortest x, y-path in G. Then there exists a packing colouring

of G such that the vertices of V (G) \ V (P ) are coloured with colours from {1, 2, 3, 4}.

Proof. Let C denote the boundary cycle of G. If there is no chord in G, then G is a cycle

and, by Proposition A.i), χρ(G) ≤ 4.

Thus we may assume that C contains some chords in G. Note that C −P is not necessarily

connected, but, since there is no internal face, each component of C − P is an induced path of

G. Let Di, i = 1, . . . , k, denote the components of C − P in an ordering from x to y (i.e., for

i < j, Di has a neighbour in P that is closest to x than any neighbour of Dj in P ), and let

li denote the length of Di. We further denote the vertices of each Di by x1i , x
2
i , . . . , x

li
i in an
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Figure 1: Structure of G in Lemma 2.

ordering starting from a vertex of Di which is closest to x in Di. The described structure is

shown in Fig. 1, where the thick x, y-path depicts P .

We colour each component Di of C − P with a pattern 1, 2, 1, 3 starting from x1i (i =

1, 2, . . . , k), i.e., for each odd j, xji is coloured with colour 1, for each j divisible by 4, xji obtains

colour 3, and, for each even j not divisible by 4, we colour vertex xji with colour 2, j = 1, 2, . . . , li.

We denote by χ the defined colouring. Since P is a shortest path and G is subcubic, we are

going to show that there is no collision between any pair of vertices coloured with colour 1 or 2,

respectively. Suppose to the contrary that there is a pair of clashing vertices a and b coloured

with colour 1. Clearly a and b belong to the same component Di of C−P and ab ∈ E(G)\E(C)

by the definition of χ. But then we get a contradiction with the fact that Di is an induced

path of G. Now suppose that there is a pair of clashing vertices a and b coloured with colour 2,

i.e., dG(a, b) ≤ 2. Again, a and b must belong to the same component Di of C − P , otherwise

dG(a, b) > 2 and we obtain a contradiction. Analogously as for colour 1 we can show that

ab 6∈ E(G). Thus a and b must have a common neighbour c in G. From the definition of χ

and also because Di is an induced path in G, c 6∈ V (Di), and c 6∈ P since G is subcubic, a

contradiction with the existence of c.

Therefore the only possible collision in the defined colouring χ could be between vertices

coloured with colour 3. Analogously as for colours 1 and 2, any pair of clashing vertices a and b

cannot be at distance one or two apart. Therefore any such collision happens for a and b with

dG(a, b) = 3. We will check and modify collisions in the defined colouring χ of the components

D1,D2, . . . ,Dk of C − P one-by-one starting from D1 and from the vertex x1i in each Di. Note

that, in each step of the modification process, we check the modified colouring, not the original

one. The following possible collisions can occur:

Case 1: a and b belong to different components Di and Dj of C − P , i, j ∈ {1, 2, . . . , k}. Since

dG(a, b) = 3, (up to a symmetry) a = xlii , b belongs to the chord of Dj∪P which is closest to

a, and j = i+1, otherwise we get dG(a, b) > 3. Then we can modify the colouring χ of Dj by

recolouring vertices xsj, s = 3, . . . , lj − 1, with χ(xsj) := χ(xs+1

j ) and we set χ(x
lj
j ) ∈ {1, 2, 3}

depending on the continuation of the pattern 1, 2, 1, 3 in Dj.

Case 2: a and b belong to the same component Di. Since dG(a, b) = 3, a and b must belong

to consecutive chords of P ∪ Di and there is no vertex between these chords on P . We

call such a pair of vertices coloured with colour 3 a critical pair. Consider a critical pair a

and b such that a = xmi , b = xni , m < n, and that there is no critical pair a′ and a with
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a′ = xoi , o < m. Then we modify the colouring of the vertices of Di starting at vertex a by

3, 1, 4, 1, 2, 1, 3, 1, 2, . . . instead of 3, 1, 2, 1, 3, 1, 2, 1, 3 . . . , i.e., we recolour the vertex xm+2

i

with colour 4 and we switch colours 2 and 3 of the vertices xji for even j > m+2. Note that

the underlined colours represent the critical pair a and b. It is easy to verify that vertices

coloured with colour 4 are mutually at distance more than 4 apart, implying that there is

no collision between any pair of vertices coloured with colour 4.

After these modifications we obtain a colouring of all the vertices of G−P with colours {1, 2, 3, 4}

satisfying the distance constraints of a packing colouring.

Theorem 3. If G is a 2-connected subcubic outerplanar graph with no internal face, then

χρ(G) ≤ 15.

Proof. Let x, y be any pair of vertices of degree 2 in G belonging to distinct end faces of G.

Let P be a shortest x, y-path in G. By Lemma 2, the vertices of V (G) \ V (P ) can be coloured

with colours from {1, 2, 3, 4}. Then the colouring can be completed in a packing 15-colouring

of G by colouring the vertices along the path P starting at x and using a packing colouring of

the infinite path (since P is a shortest path in G, then the distance between any pair of vertices

of P is the same on P and on G). For this, we repeat the following pattern with colours from

{5, . . . , 15} of length 36 along the vertices of P starting at x:

5, 6, 7, 9, 13, 12, 5, 8, 6, 10, 7, 11, 5, 9, 14, 6, 8, 15, 5, 7, 13, 10, 6, 11, 5, 8, 9, 7, 12, 6, 5, 14, 10, 15, 8, 11

(1)

It is easy to check that any two colours i in this repeating sequence are separated by at least

i integers.

Note that the previous pattern was found by a computer search.

3 Asymptotic results for subcubic outerplanar graphs

The main goal of this paper is to study the finiteness of the packing chromatic number of subcubic

outerplanar graphs, i.e, we ask whether the packing chromatic number of an outerplanar graph

with maximum degree at most 3 depends on the order of the graph or not. In this section we

prove that, for any 2-connected outerplanar graph with a fixed number of internal faces and for

any connected outerplanar graph with a fixed number of faces, the packing chromatic number

does not depend on the order of the graph.

We begin this section by proving the following useful lemma that will also be used in Section

4. We recall that the weak dual of a 2-connected outerplanar graph is a tree and that uF is the

vertex of the weak dual corresponding to the face F .

Lemma 4. There exists a packing colouring of P+
∞ with colours {5, . . . , 15} such that the first

vertex along the path is at distance at least ⌈(i − 5)/2⌉ of any vertex of colour i.

6



Proof. By considering Pattern (1) from the proof of Theorem 3 starting at the first vertex

of the path (the vertex of degree 1), we can easily check that the first six vertices of P+
∞ satisfy

the property. Since the colours used in Pattern (1) are bounded by 15, the other vertices (other

than the first six vertices) satisfy the property as well.

For positive integers i, j and k, let rki,j ∈ Z such that rki,j ≡ i − j (mod k) with minimum

absolute value. The value |rki,j| corresponds to the distance between two vertices i and j in a

cycle Ck with vertex set {0, . . . , k−1} (the vertices are enumerated along the cycle). A subset of

vertices A of a graph G is a cycle-distance-preserved set if there exists an ordering v0A, . . . , v
|A|−1

A

of the vertices of A satisfying dG(v
j
A, v

j′

A) ≥ |r
|A|
j,j′|, for integers 0 ≤ j < j′ ≤ |A| − 1.

Lemma 5. For any positive integers k and n > 2, there exists a packing colouring of the cycle

Cn with colours from {k, . . . , 6k + 4}.

Proof. Let Cn be a cycle of length n. First, if n ≤ 5k + 5, then we can colour each vertex of

Cn with a different colour from {k, . . . , 6k + 4}.

Second, if 5k + 5 < n ≤ 6k + 5, then we colour 3k consecutive vertices of C with colours

k, . . . , 3k−1, k, . . . , 2k−1, and colour the remaining n−3k ≤ 3k+5 vertices of Cn with mutually

distinct colours from {3k, . . . , 6k + 4}.

Third, suppose n > 6k + 5. By Proposition A.ii), we can colour P∞ with colours from

{k, . . . , 3k+2}. Let P ′ be any subpath of Cn on 3k+2 vertices. Since the distance between the

two ends of Cn − P ′ is at least 3k + 3 in Cn − P ′ and exactly 3k + 3 in Cn, we can colour the

vertices of Cn − P ′ with the colours {k, . . . , 3k + 2} (using Proposition A.ii) ) and the vertices

of P ′ with mutually distinct colours from {3k + 3, . . . , 6k + 4}.

A subset of vertices A of a graph G is decomposable into r cycle-distance-preserved sets if

there exist r sets of vertices A1, A2, . . ., Ar, such that A1 ∪ . . . ∪ Ar = A and for each integer

i, Ai is a cycle-distance-preserved set. The following lemma will be useful in order to prove

Theorems 7 and 8.

Lemma 6. Let G be a graph and let A ⊆ V (G) be a subset decomposable into r cycle-distance-

preserved sets. The vertices of A can be packing-coloured with colours {k, . . . , 6r(k + 1) − 2},

for any positive integer k.

Proof. We proceed by induction on r. For r = 1, since A is a cycle-distance-preserved set, by

Lemma 5, we can colour the vertices of A with colours {k, . . . , 6k+4}. Now suppose that a subset

A ⊂ V (G) is decomposable into r+1 cycle-distance-preserved sets. Using induction hypothesis

we can colour the vertices of A1, . . ., Ar with colours {k, . . . , 6r(k + 1)− 2}. For the vertices of

Ar+1, by Lemma 5, we can use colours {6r(k+1)− 1, . . . , k′}, where k′ = 6(6r(k+1)− 1)+ 4 =

6r+1(k+1)−2. Note that we do not need to change colours of the vertices from ∪r
i=1(Ai∩Ar+1)

(in the case it is not empty).
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The following theorem is one of our main results. It shows that the packing chromatic

number of a 2-connected subcubic outerplanar graph with bounded number of internal faces is

bounded by a constant.

Theorem 7. If G is a 2-connected subcubic outerplanar graph with r internal faces, then

χρ(G) ≤ 17× 63r − 2.

Proof. Let F1, . . . , Fr denote the r distinct internal faces of G, and uF1 , . . . uFr the corre-

sponding vertices of TG (note that each uFi
has degree at least 3 in TG). Figure 2 illustrates a

subcubic outerplanar graph and its dual. Then, removing the vertices uF1 , . . . , uFr from TG, we

obtain a union of disjoint paths. The connected components with one end vertex adjacent in

TG to uFi
and the other end vertex adjacent in TG to uFj

are denoted by Ui,j . In the case uFi

and uFj
are adjacent, Ui,j is not defined (all the vertices in the face ”between” Fi and Fj are

colored in Step 3). For any uFi
, i = 1, . . . , r, the paths with one end vertex of degree 1 and the

other one adjacent to uFi
, are denoted by U1

i , . . . , U
ℓi
i , where ℓi is the number of such paths for

uFi
. Note that some of the paths Ui,j,U

q
i may be trivial or empty.

F1 F2

F̂1

1

F̂2

1

F̂1

2

F̂2

2

F̂3

2

y1

1

y2

1

y1

2

y2

2

y3

2

(p2
2
)1

(p2
2
)2 (p2

2
)3

(p1
1
)1

p1
1,2

p2
1,2

p3
1,2

p4
1,2

p5
1,2

p6
1,2

p7
1,2

uF1
= z uF2−→

TG

Figure 2: A subcubic outerplanar graph G with two internal faces (on the top) and its oriented

dual (on the bottom) (dashed lines : paths P1,2, P
1
1 and P 2

2 ; vertex in dotted circle : vertex in

B1 ∪B2 or V (F1) ∪ V (F2); vertex in simple circle: vertex in D1 ∪D2).

For any i, 1 ≤ i ≤ r, let Bi = N(Fi) \
⋃r

i=1
V (Fi), and let B =

⋃r
i=1

(Fi ∪ Bi). Let i and q

be integers such that 1 ≤ i ≤ r, 1 ≤ q ≤ ℓi. Consider an end face F̂ q
i in G corresponding to an

end vertex of V (U q
i ) of degree 1 in TG. We denote by yqi a vertex of F̂ q

i of degree 2 (note that

such a vertex always exists) and by P q
i a shortest (Bi, y

q
i )-path in G. Let (pqi )1, (p

q
i )2, . . . denote

vertices of P q
i in an ordering starting from the vertex of Bi.
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Choose any vertex z of TG such that z has degree 3 in TG and let
−→
TG be the digraph obtained

from TG by replacing each edge uv ∈ E(TG) satisfying dTG(u, z) < dTG(v, z) with an arc from u

to v.

Now we consider the paths Ui,j in TG. Let i, j be positive integers such that 1 ≤ i <

j ≤ r and Ui,j is defined and has length at least one. Let Pi,j be a shortest (Bi, Bj)-path

and p1i,j, p
2
i,j . . . , p

li,j
i,j its vertices in an ordering starting from the vertex of Bi, if dTG(uFi

, z) <

dTG(uFj
, z), or from the vertex of Bj otherwise (by li,j we mean the order of Pi,j). The upper

part of Figure 2 illustrates the notations used in this proof.

Let P =

(

⋃

1≤i≤r

⋃

1≤q≤ℓi

V (P q
i )

)

⋃

(

⋃

1≤i<j≤k

V (Pi,j)

)

.

Step 1: Colouring the vertices of V (G) \ (B ∪ P ) with colours {1, 2, 3, 4}.

We colour the vertices of V (G) \ (B ∪ P ) by colouring each connected component (one by

one) of G − (B ∪ P ) in the same way as in the proof of Lemma 2, i.e., we use the pattern

1, 2, 1, 3. Note that the distance between any two vertices from V (G) \ (B ∪ P ) in two

different connected components of G−B is at least 5. Moreover, we proceed as in the proof

of Lemma 2 to avoid clashing vertices of colour 3, i.e., we use colour 4.

Step 2: Colouring vertices of P .

Let i, j, i′ and q be integers such that Ui,j and U q
i′ are defined.

For the vertices of P q
i′ , we use Pattern (1) and Lemma 4 starting at the vertex (pqi′)3. For the

vertices of Pi,j, we use Pattern (1) and Lemma 4, starting at the vertex p3i,j and finishing at

the vertex p
ki,j−3

i,j . Note that every vertex of V (
−→
TG) has in-degree at most one. This property,

along with Lemma 4, ensure us that a vertex coloured with colour a in Pi,j, a ∈ {5, . . . , 15},

is at distance at least a+ 1 from any other vertex coloured by a in Pī,j̄, for 1 ≤ ī < j̄ ≤ r.

Step 3: Colouring the remaining vertices of G.

Let wi,j be a vertex among {p2i,j, p
li,j−2

i,j } at distance 2 from a vertex of V (Fi) (when Ui,j

is defined). Let Di be the set {(pAi )2| 1 ≤ A ≤ ℓi} ∪ {wi,j | Ui,j is defined, 1 ≤ j ≤ k}.

Since the sets V (Fi), Bi and Di , 1 ≤ i ≤ r, are cycle-distance-preserved sets, the set
⋃r

i=1
V (Fi)

⋃r
i=1

Bi

⋃r
i=1

Di is decomposable into 3r cycle-distance-preserved sets. Hence,

using Lemma 6, the remaining uncoloured vertices can be coloured with colours {16, . . . , 17×

63r − 2}.

Sloper in [21] defined an expandable broadcast-colouring of a complete binary tree T as a

colouring c of V (T ) with colours 1, 2, . . . , 7 such that:

(i) ∀u, v ∈ V (T ) c(u) = c(v) ⇒ dT (u, v) > c(u),

(ii) the root x of T has colour 1,

(iii) all vertices at even distance from x have colour 1,

(iv) every vertex of colour 1 has at least one child of colour 2 or 3,

(v) c(u) = 6, c(v) = 7 ⇒ dT (u, v) ≥ 5,

(vi) c(u) ∈ {4, 5, 6, 7} ⇒ u’s children each have children coloured with 2 and 3.

9



Notice that an expandable broadcast-colouring of a tree is a packing 7-colouring. Sloper has

shown that given an expandable colouring of a (complete) binary tree of height n, it is possible

to create an expandable colouring of a (complete) binary tree of height (n + 1) by using the

colouring for the tree of height n as a basis [21]. Note that the colouring of a complete binary

tree of height 3 that consists in giving the colours 2 and 3 to the two neighbours of x, giving the

colour 1 to the vertex at distance 2 from x, and giving colours from {2, 3, 4, 5} to the remaining

vertices is an expendable broadcast-colouring. This colouring is described in Figure 3.

x

1

2 3

1 1 1 1

4 3 5 3 4212

Figure 3: An expendable broadcast-colouring of a complete binary tree of height 3.

The following statement is true for a more general class of graphs than in Theorem 7 since

it gives an upper bound for all connected outerplanar graphs (not necessarily 2-connected).

However, since the parameter is the number of faces, the bound is weaker than the bound in

Theorem 7.

Theorem 8. If G is a connected subcubic outerplanar graph with r (non external) faces,

then χρ(G) ≤ 9× 6r − 2.

Proof. Let F1, . . . , Fr denote the r (non external) faces of G. The graph O = G−
⋃r

i=1
V (Fi)

consists of components O1, O2, . . . , Os such that each Oj (j = 1, . . . , s) is a tree. And, since G

is subcubic, each Oj is subcubic as well. In the weak dual TG of G, choose arbitrary vertex z

and let Fz denote a face corresponding to z in G. We colour the vertices of G in two steps.

Step 1: Colouring the vertices of O with colours {1, . . . , 7}.

Consider each component Oj of O separately (i = 1, . . . , s) and let zj denote the vertex of

Oj closest to Fz. Then we use an expandable broadcast-colouring to colour vertices of Oj

with colours 1, 2, . . . , 7 such that the vertices at distance at most 3 from zj are coloured

as in Figure 3 (by considering zj as x in this figure). Using the result of Sloper [21], it is

possible to extend this packing colouring to the graph Oj . Note that zj has colour 1, the

neighbour(s) of zj in Oj has (have) colour 2 (and 3), vertices of Oj at distance 2 from zj are

coloured with colour 1 and vertices of Oj at distance 3 have colours 2, 3, 4 and 5. Obviously,

since G is subcubic, zj is at distance at least 3 from any vertex of any Oℓ 6= Oi. Note that,

except one vertex, every vertex of O having a neighbor in Fi is at shortest distance of Fz

(compared to the other vertices in the same component of O). Consequently, by definition

of zj , in every face Fi there is at most one vertex which has a neighbour in O which is not

zj for some j ∈ {1, . . . , s}.
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Let wi be this possible neighbour in O. Note that wi can have any colour among {1, . . . , 7}.

If wi has colour in {2, 3}, then the other vertices of colour 2 or 3 at close distance from

vertices of Fi are the neighbours of the vertices zj , j ∈ {1, . . . , s}, which are at distance 4

from wi. If wi has colour in {4, 5}, then, also, the vertices of colour 4 or 5 at close distance

from vertices of Fi are the vertices at distance 3 (in Oj) of the vertices zj , j ∈ {1, . . . , s},

and these vertices are at distance 6 from wi. Finally, since the vertices at even distance of

zj in Oj are coloured with colour 1, the other vertices of colour 6 or 7 are at distance at

least 8 from wi. Hence, the above defined colouring satisfies the distance constraints of a

packing colouring.

Step 2: Colouring the remaining vertices of G.

The sets V (F1), . . . , V (Fr) are cycle-distance-preserved sets. Hence, by Lemma 6, the re-

maining uncoloured vertices can be coloured with colours {8, . . . , 9× 6r − 2}.

4 Some 2-connected outerplanar graphs with finite packing chro-

matic number

In this section we consider some special classes of subcubic outerplanar graphs for which we can

decrease the upper bound on the packing chromatic number given in Theorem 7.

Theorem 9. If G is a 2-connected subcubic outerplanar graph with exactly one internal face,

then χρ(G) ≤ 51.

Proof. Suppose G is a 2-connected subcubic outerplanar graph with exactly one internal face.

Let C denote the boundary cycle of G and F the internal face of G. Let C ′ = {v0, . . . , vN−1}

denote the set of vertices which belong to F , with vi adjacent to vi+1, for 0 ≤ i < N . When

N is odd, we suppose that vN−1 is a vertex with dG(vN−1) = 2. Such a vertex exists since the

number of vertices of degree 3 in C ′ is even. By removing the edges of C ∩ F from G, and by

removing the isolated vertices from the resulting graph, we obtain a graph G′ which is a disjoint

union of 2-connected outerplanar graphs having no internal face.

Let F0, . . ., Fs−1 denote the 2-connected components of G′, enumerated in the clockwise

order along the cycle C in G (for details, see Fig. 4). Note that, since any Fi contains no

internal face, each Fi has exactly two end faces or Fi is a cycle. Let i be an integer with

0 ≤ i < s, and let uai and ubi denote the two adjacent vertices of degree 3 in G which belong

to V (Fi) ∩ C ′, as it is depicted in Fig. 4. Let yi be a vertex of degree 2 in the end face of Fi

which does not contain uai (for Fi a cycle we denote by yi a vertex of Fi at maximum distance

from F in G). Let xi ∈ {uai , u
b
i} denote a vertex at minimal distance from yi. Finally, let Pi be

a shortest (xi, yi)-path in G. We further denote the vertices of each Pi by xi, p
1
i , p

2
i , . . . , yi in an

ordering starting from xi. Let D1
i , . . ., D

ki
i denote the connected components of Fi − Pi with

D1
i containing a vertex among uai and ubi and with Dk

i being at larger distance than Dk−1

i from

xi, 2 ≤ k ≤ ki.

11



F

Fs−1

F0

F1

Fi

ub0

ubs−1

ua0

uas−1

ub1
ua1

ubi

uai

Figure 4: A 2-connected outerplanar graph with one internal face and its different subgraphs

(C is represented by a dashed line).

The proof will be organized as follows. First, we will colour the vertices of C ′. Second, we

will colour the vertices of ∪0≤i<sFi−Pi with colour 1, 2 and 3. Note that the obtained colouring

does not necessarily satisfy the distance constraints of a packing colouring of G. Third, we will

modify colouring of some vertices of Fi − Pi (i = 0, . . . , s− 1) to save colour 1 for some vertices

of the paths Pi and to prevent collisions in colour 2. Fourth, we will recolour some vertices of

F0, . . . , Fs−1 with colour 4 in order to satisfy the distance constraints of a packing colouring.

Finally, we will colour vertices of the paths ∪0≤i<sPi \ {xi}.

Step 1: Colouring the vertices of C ′ with colours 1, 2, 29, 30, . . . , 45.

For integers j, j′, let rj,j′ be an integer such that rj,j′ ≡ j − j′ (mod N) and −⌊N/2⌋ ≤

rj,j′ ≤ ⌊N/2⌋. Note that dG(vj , vj′) = |rj,j′|. We begin with a partitioning of C ′ into five

subsets: C ′
1 = {vj | j ≡ 0 (mod 2), 0 ≤ j < N}, C ′

2 = {vj | j ≡ 1 (mod 4), 0 ≤ j < N},

C ′
3 = {vj | j ≡ 3 (mod 12), 0 ≤ j < N}, C ′

4 = {vj | j ≡ 7 (mod 12), 0 ≤ j < N} and

C ′
5 = {vj | j ≡ 11 (mod 12), 0 ≤ j < N}. Let mk denote the vertex with the largest index

in C ′
k, for k ∈ {1, 2, 3, 4, 5}. We use the following patterns to colour the vertices of C ′.

1. if |C ′
1| ≡ 0 (mod 2) (or |C ′

1| ≡ 1 (mod 2)), then we colour all vertices of C ′
1 (or C ′

1 \

{m1}, respectively) with colour 1;

2. we colour all vertices of C ′
2 \ {m2} with colour 2;

3. if |C ′
3| ≡ 0 (mod 4) (or |C ′

3| ≡ 1 (mod 4), respectively), then we use the pattern

29, 30, 35, 36, 29, 30, 35, 36, . . . , 29, 30, 35, 36 to colour the vertices of C ′
3 (or C ′

3 \ {m3},

respectively);
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xi x′i

p2i
p1i

wi

. . .

. . .

(a)
xi x′i

w′
i

p2i
p1i

wi

p3i
. . .

. . .

(c)
xi x′i

p1i

p2i

. . .
wi

w′
i

. . .

(b)

xi x′i

p2i
p1i w′

i

. . .

(d)
xi x′i

p2i

p1i

. . .

w′
i

(e)

w′
i

xi x′i

p2i
p1i

p3i

. . .

(f)

xi x′i

p2i
p1i

w′
i

. . .

. . .

(g)
xi x′i

p2i

p1i

. . .

w′
i

. . .

(h)

Figure 5: Eight configurations in step 3 (Pi is represented by a dashed line).

if |C ′
3| ≡ 2 (mod 4) (or |C ′

3| ≡ 3 (mod 4)), then we use the pattern 29, 30, 35,36,

29, 30,35, 36, . . . , 29, 30, 35, 29, 30, 36 to colour the vertices of C ′
3 (or C ′

3 \ {m3}, respec-

tively);

4. if |C ′
4| ≡ 0 (mod 4) (or |C ′

4| ≡ 1 (mod 4)), then we use the pattern 31, 32, 37, 38,

31, 32, 37, 38, . . . , 31, 32, 37, 38 to colour the vertices of C ′
4 (or C ′

4 \{m4}, respectively);

if |C ′
4| ≡ 2 (mod 4) (or |C ′

4| ≡ 3 (mod 4)), then we use the pattern 31, 32, 37, 38, 31, 32,

37, 38, . . . , 31, 32, 37, 31, 32, 38 to colour the vertices of C ′
4 (or C ′

4 \{m4}, respectively);

5. if |C ′
5| ≡ 0 (mod 4) (or |C ′

5| ≡ 1 (mod 4)), then we use the pattern 33, 34, 39, 40,

33, 34, 39, 40, . . . , 33, 34, 39, 40 to colour the vertices of C ′
5 (or C ′

5 \{m5}, respectively);

if |C ′
5| ≡ 2 (mod 4) (or |C ′

5| ≡ 3 (mod 4)), then we use the pattern 33, 34, 39, 40, 33, 34,

39, 40, . . . , 33, 34, 39, 33, 34, 40 to colour the vertices of C ′
5 (or C ′

5 \{m5}, respectively);

6. when it is necessary, we use the colours 41, 42, 43, 44, 45 to colour the vertices of
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{mk| 1 ≤ k ≤ 5}.

One can check that, for any pair of vertices u, v of C ′ with the same colour k, dG(u, v) > k.

For example, in the pattern 29, 30, 35, 36 of length four, two vertices with the same colour

are at distance at least 48, since the pattern has length four and we colour vertices with the

same remainder modulo 12. The same goes for the pattern 29, 30, 35, 29, 30, 36 of length six.

Note that, for every pair of vertices (uai , u
b
i), at least one of them is coloured with 1.

Step 2: Colouring the vertices of Fi − Pi with colours 1, 2 and 3, for every i = 0, . . . , s− 1.

Let x′i be the vertex among uai and ubi different from xi. Let li be the order of D1
i and let

x′i, x
1
i , . . . , x

li−1

i be the vertices of D1
i in an ordering starting from x′i. If x

′
i is coloured with

colour 1, then we use the pattern 3, 1, 2, 1 to colour the vertices x1i , . . . , x
li−1

i . If x′i is not

coloured with colour 1, then we use the pattern 1, 3, 1, 2 to colour the vertices x1i , . . . , x
li−1

i .

Analogously as in the proof of Lemma 2, we colour vertices of Dj
i (j = 2, 3, . . . , ki) using

the pattern 1, 2, 1, 3 starting from the vertex of Dj
i at shortest distance from C ′. At this

step we do not change the colouring in order to avoid clashing vertices of colour 3.

Step 3: Recolouring some vertices in Fi, for every i = 0, . . . , s− 1.

In this step we deal with possible collisions in colour 2 between vertices of F and vertices of

D1
i at distance 2 from F . We also change colours of neighbours of p2i coloured with 1 since,

in Step 5, we will colour p2i with 1 for reducing the number of colours used for the whole

graph G.

Since we used the patterns 1, 3, 1, 2 and 3, 1, 2, 1 to colour the vertices of V (D1
i ) \ {xi}, no

vertex at distance 2 from x′i has colour 2. For any i = 0, . . . , s− 1, let wi denote the vertex

of Fi − Pi at distance 2 from xi and let w′
i be the possible neighbour of p2i in Fi − Pi.

Case i) wi has colour 2. First suppose that p2i has no neighbour of colour 1 (see Fig. 5(a))

or p2i has a neighbour w′
i with colour 1 in D1

i (see Fig. 5(b)). In both possibilities

we recolour the vertices xji = wi, x
j+1

i , xli−1

i of D1
i with 4, 2, 1, 3, 1, 2, 1 . . . instead of

2, 1, 3, 1, 2, . . .. Note that the underlined colours belong to the vertex wi.

Now we assume that p2i has a neighbour w′
i of colour 1 which does not belong to D1

i .

Thus p2i p
3
i is a chord (see Fig. 5(c)). We recolour the vertices xji = wi, x

j+1

i , . . . , xli−1

i of

D1
i with 4, 1, 2, 1, 3, . . . instead of 2, 1, 3, 1, 2, . . . (the underlined colours belong to wi),

and the vertices of D2
i with pattern 2, 1, 3, 1, . . . instead of 1, 2, 1, 3, . . . (the underlined

colours belong to w′
i). Note that if w′

i had colour 1, the colour 1 was changed.

Case ii) wi does not have colour 2. If p2i has no neighbour w′
i of colour 1, then we do not

modify the colouring of D1
i in this step. Suppose that p2i has a neighbour w′

i of colour

1. Suppose that w′
i is a neighbour of x′i (see Fig. 5(d,e)). Clearly x′i does not have

colour 1 and xi has colour 1 (by Step 1). Then we modify the path Pi by replacing

vertex xi with x′i and p1i with w′
i and recolour the modified path Di

1 with pattern

3, 1, 2, 1, 3, . . . .

Now suppose that w′
i is at distance at least 2 from x′i and that p2iw

′
i and p1i p

2
i are not

chords (see Fig. 5(f)). We recolour vertices of Di
2 with pattern 2, 1, 3, 1, . . . instead

of 1, 2, 1, 3, . . .. If w′
i is at distance at least 2 from x′i and p2iw

′
i is a chord (see Fig.

5(g)), we recolour vertices xji = w′
i, x

j+1

i , . . . xli−1

i of Di
1 with 4, 1, 2, 1, 3, . . . instead of
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1, 2, 1, 3, . . . or 1, 3, 1, 2, . . .. Finally, if w′
i is at distance at least 2 from x′i and p1i p

2
i is a

chord (see Fig. 5(h)), then we change the colour of w′
i to 4. Note again that, in each

possibility, the underlined colours belong to w′
i.

Step 4: Avoid collisions in colouring of vertices of Fi − Pi for i = 0, . . . , s− 1.

Now we check and modify (analogously as in the proof of Lemma 2) the defined colouring of

Fi−Pi to avoid collisions between pairs of vertice with the same colour. Obviously, there is

no collision between vertices coloured with colour 1 or 2. Hence the only possible collision

is in colour 3. Let a and b be a pair of clashing vertices in colour 3. If a and b belong

to the same component Dk
i of Fi − Pi, k,∈ {1, 2, . . . , ki}, then we proceed as in Case 2 of

the proof of Lemma 2. Thus we may assume that a and b belong to different components

Dk
i and Dk′

i of Fi − Pi, k, k
′ ∈ {1, 2, . . . , ki}. If we changed the colouring of D2

i in Step 3,

then we recolour the vertices of D2
i starting from w′

i (also defined in Step 3) with pattern

2, 3, 1, 2, 1, 3, 1, . . . instead of 2, 1, 3, 1, 2, 1, . . . . Then we proceed as in Case 1 of the proof

of Lemma 2.

Now we have to check that the vertices coloured with colour 4 in Step 3 are pairwise at

distance at least 5, and that the vertices coloured with colour 4 in Step 3 are pairwise at

distance at least 5 from the added vertices of colour 4 in Step 4 of applying Lemma 2.

By definition, wi is at distance at most 2 from both xi and x′i. Moreover, since w′
i is the

neighbour of p2i and since we did not recolour w′
i with colour 4 in the configurations described

in Fig. 5(d,e) of Step 3, w′
i is either at distance at least 2 from both xi and x′i or does not

have colour 4. Thus, the vertices recoloured with colour 4 in Step 3 are at mutual distance

at least 5.

Let a be a vertex of colour 4 from Step 3 (one of wi, w
′
i denoted in Step 3). Suppose that b

is a vertex of colour 4 not in D1
i . The minimal distance between any vertex of D1

i and any

vertex of D2
i is at least 3. Moreover, because we have proceeded as in the proof of Lemma

2, b is at distance at least 2 from a vertex at minimal distance from a. Hence, d(a, b) ≥ 5.

Now suppose b is a vertex of colour 4 in D1
i . Since, in every case, a is at distance at least 3

from another vertex of colour 3 in D1
i , we obtain that d(a, b) ≥ 5.

Step 5: Colouring the vertices of Pi \ {xi} with colours 5 to 28 and 46 to 51, for every i =

0, . . . , s− 1.

We start with colouring of the vertices p2i by 1 for each i = 0, . . . s − 1. Since we have

changed the colours of the eventual neighbours of p2i of colour 1 in Step 3, there are no

possible collisions.

For the vertices of Pi, we use Pattern (1) beginning at the fourth vertex of Pi, i.e., the

vertex p3i . By the proof of Lemma 4, we know that such a colouring satisfies the distance

constraints of a packing colouring.

Let B = {p1i | 0 ≤ i < s}. We colour the vertices of B with colours 16 to 28 and (if

necessary) 46 to 51. For integers j, j′, let rj,j′ be an integer such that rj,j′ ≡ j− j′ (mod s)

and −⌊s/2⌋ ≤ rj,j′ ≤ ⌊s/2⌋. Note that the vertices p1j and p1j′ are at distance 2|rj,j′| + 1.

We begin by a partitioning of B into three subsets B1, B2 and B3, with Bk = {p1i | i ≡ k− 1

(mod 3), 0 ≤ i < s}, k = 1, 2, 3. Let mk (m′
k) denote the vertex with the largest (second
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largest, respectively) index in Bk, for k ∈ {1, 2, 3}. We use the following patterns to colour

the vertices of B.

1. For vertices of B1, we use the pattern 16, 17, 18, 16, 17, 18, . . . , 16, 17, 18. If |B1| ≡

1 (mod 3) (or |B1| ≡ 2 (mod 3)), then we erase colours of m1 (or of m1 and m′
1,

respectively).

2. For vertices of B2, we use the pattern

19, 20, 21, 25, 26, 19, 20, 21, 25, 26, . . . , 19, 20, 21, 25, 26

when |B2| ≡ 0, 1, 2 (mod 5), or the pattern

19, 20, 21, 25, 26, 19, 20, 21, 25, 26, . . . , 19, 20, 21, 25, 26, 19, 20, 21, 25, 19, 20, 21, 26

when |B2| ≡ 3, 4 (mod 5). Then, for |B2| ≡ 1, 4 (mod 5) we erase colour of m2, and

for |B2| ≡ 2 (mod 5) we erase colours of m2 and m′
2.

3. For vertices of B3, we use the pattern

22, 23, 24, 27, 28, 22, 23, 24, 27, 28, . . . , 22, 23, 24, 27, 28

when |B3| ≡ 0, 1, 2 (mod 5), or the pattern

27, 28, 22, 23, 24, 27, 28, . . . , 22, 23, 24, 27, 28, 22, 23, 24, 27, 22, 23, 24, 28

when |B3| ≡ 3, 4 (mod 5). Then, for |B3| ≡ 1, 4 (mod 5) we erase colour of m3, and

for |B3| ≡ 2 (mod 5) we erase colours of m3 and m′
3.

4. When it is necessary, we use the colours 46, 47, 48, 49, 50, 51 to colour the vertices of

{mk,m
′
k| 1 ≤ k ≤ 3}.

For checking that the defined colouring satisfies the distance constraints of a packing colour-

ing, we recall that any two consecutive vertices in each Bk (k = 1, 2, 3) are pairwise at distance

at least 7, implying that vertices having the same colour are pairwise at distance at least 19 in

B1 and at distance at least 31 in B2 and in B3 (except some vertices of colours from 19 to 24

that can be at distance 25 apart).

Note that in some cases (depending on the size of B and C ′) we can decrease the upper

bound 51 of Theorem 9. For example, if the internal face C ′ has length 4k (k ∈ N) and if the

number of 2-connected components of G − C ′ is 15r, r ∈ N, then we can use only 40 colours

instead of 51.

The following statement will be used in the proof of Theorem 11.

Proposition 10. There is a packing colouring of even vertices of P∞ with colours {k, k +

1, . . . , 2k − 1}.

Proof. For the colouring of the vertices of the path P∞ we use pattern 1, k, 1, k + 1, 1, k +

2, . . . , 1, 2k− 1 and after deleting colour 1 we get the required colouring. Note that the distance

between any pair of vertices coloured with the same colour in two consecutive copies of this

pattern is 2k.
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The last class of outerplanar graphs we consider in this paper is a class of not necessarily

2-connected graphs.

Theorem 11. Let G be a connected subcubic outerplanar graph with no internal face such

that the block graph of G is a path. Then χρ(G) ≤ 305.

Proof.

Let G be a sucubic outerplanar graph, BG the block graph of G and let B1, . . . , Bk denote

the blocks of G such that Bi, Bi+1 are consecutive in BG, i = 1, . . . , k − 1 (i.e., since ∆(G) ≤ 3,

they are connected by a path which intersects no other block of G). Let Ci denote the boundary

cycle of Bi, i = 1, . . . , k. Since G contains no internal face, each Bi contains no internal face

as well, implying that every Bi which is not a cycle contains exactly two end faces. Let x1

denote any vertex of degree two (in B1) in one end face of B1, xk any vertex of degree two (in

Bk) in one end face of Bk and let P denote a shortest x1, xk-path in G. Among all possible

choices of the vertices x1, xk we choose x′1 and x′k such that the path P is shortest possible. Let

Pi = P ∩Bi, i = 1, . . . , k. Obviously P goes through all the blocks of G, hence Pi is nonempty

for each i = 1, . . . , k, every Pi is a path since the block graph of G is a path, and each Pi is

shortest in G since P is shortest in G. In an orientation of P from x1 to xk, we denote by zi the

first vertex of P in Bi and by z′i the neighbour of zi in Bi which does not belong to P . Note

that there must be exactly one such vertex z′i in each Bi since P is shortest possible and, clearly,

each zi must have degree three. For every block which is not a cycle, we further denote by xi

any vertex of degree two (in Bi) in one end face of Bi, i = 2, . . . , k − 1 and by yi any vertex of

degree two (in Bi) in the end face of Bi which does not contain vertex xi, i = 1, . . . , k.
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Figure 6: Structure of blocks of the graph G in Theorem 11.

Among all possible choices of the vertices xi, yi (i = 1, . . . , k) we choose x′i, y
′
i in such a way

that x′i, P -path and y′i, P -path, respectively, is shortest possible. For each i = 1, . . . , k, let Q2i−1

be a shortest y′i, P -path in G, and let Q2i be a shortest x′i, P -path in G. Note that Q2 and Q2k

are empty and that some other paths Qi may be trivial or empty (e.g., in the case when Bi is
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x′i

Bi

y′i

x′i+1

Bi+1 y′i+1

. . .

. . .

Figure 7: Example of two blocks Bi and Bi+1 and the paths considered in the proof of Theorem

11 in these blocks (thick line: path P ; dashed lines: paths Q2i−1, Q2i, Q2i+1 and Q2i+2).

a cycle). The structure of the graph G is depicted in Fig. 6 (the thick path represents the path

P ) and the paths Q2i−1, Q2i are illustrated in Fig. 7.

Consider each block Bi separately. Note that, for each i = 1, . . . , k, the graph Gi = G[Bi −

(V (Pi)∪V (Q2i−1)∪V (Q2i))] consists of path components. Thus, analogously as in the proof of

Lemma 2, we can colour vertices of Gi with colours 1, 2, 3, 4 using the periodic pattern 1, 2, 1, 3

and modifications introduced in the proof of Lemma 2, starting at the end face of Bi containing

vertex xi. Note that, if Bi is a cycle, χρ(Bi) ≤ 4. Moreover, we can colour the vertices of Gi in

such a way that the vertex z′i gets colour 1 (if not so, then we can interchange roles of xi and yi

for colouring of V (Gi), i.e., we start such a colouring from yi instead of xi).

Now we check that the defined colouring meets the conditions of a packing colouring. First,

there is no collision in colours 1 and 2, since distG(a, b) ≥ 3 for any a ∈ V (Gi) and b ∈ V (Gj), i <

j. From the modifications described in the proof of Lemma 2, it follows that no end vertex of

any path component of any Gi is coloured with colour 4 since colour 4 was used for a vertex

between vertices of a critical pair belonging to one path component. This implies that the

distance between two vertices coloured with 4 which belong to different block Bi, Bj is at least

5, hence there is no collision in colour 4. For colour 3, since no z′i is coloured with colour 3,

there is no collision in colour 3 as well. And since there is no edge in G connecting the path

components of the blocks Bi, the defined colouring meets the distance constraints of a packing

colouring of
k
⋃

i=1

[Bi − (V (Pi) ∪ V (Q2i−1) ∪ V (Q2i))].

Now we colour the paths Qj, j = 1, 2, . . . , 2k. The distance from P to any vertex of Qj

in G is the same as on Qj , hence each Qj is a shortest path in G between P and the relevant

vertex x′i or y
′
i, respectively. Thus, by Lemma 4, we can colour the vertices of each path Q2i−1

(i = 1, 2, . . . , k) with Pattern (1), starting at the vertex of Q2i−1 at distance two from P (square

vertices in Fig. 7). Analogously we can colour the vertices of the paths Q2i (i = 1, 2, . . . , k)

using Pattern (1), starting at the vertex of Q2i at distance three from P (triangle vertices in
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Figure 8: An outerplanar subcubic graph with packing chromatic number 7.

Fig. 7). Then the distance between vertices on distinct paths Qm, Qn coloured with colour 5 is

at least 3+1+2, the distance between vertices on distinct paths Qm, Qn coloured with colour 6

is at least 4 + 1 + 3, etc. Therefore the defined colouring of the paths Qj , j = 1, . . . , 2k satisfies

the distance constraints of a packing colouring.

Now we colour the remaining vertices of G. We start with colouring of the path P with a

pattern using colours 16, 17, . . . , 50 by Proposition A.ii). Then we colour all uncoloured vertices

of Qj (j = 1, . . . , 2k) at distance one from P with colours 51, 52, . . . , 152 by Proposition A.iii).

For the remaining vertices of Q2i at distance two from P , the distance between any such vertices

on Q2m and Q2n (m,n ∈ {1, 2, . . . , k− 1}, m 6= n) is at least 2|m− n|+4. Hence we can colour

these vertices with colours 153, . . . , 305 by Proposition 10.

5 Concluding remarks

In the previous sections, we have determined some classes of outerplanar graphs with finite

packing chromatic number. As for lower bounds, we are (only) able to state the following, where

symbols � and ⊠ denote the Cartesian and strong product of graph, respectively (see [15]).

Proposition 12. There exists an infinite family of 2-connected subcubic outerplanar graphs

without internal faces and with packing chromatic number 5.

Proof. It has been proven in [14] that χρ(G) = 5 for G = Pn�P2 and n ≥ 6.

Remark 1 The graph G illustrated in Figure 8 is a 2-connected subcubic outerplanar graph with

packing chromatic number 7. We verified by computer that every proper colouring of G with 6

colours is not a packing colouring and we found a packing colouring of G with 7 colours.

Brešar et al. [4] have proven that for any finite graph G, the graph G⊠P∞ has finite packing

chromatic number. The degree of G⊠ P∞ can be arbitrary large. This property illustrates the

fact that the degree of a graph is not the only parameter to consider in order to have finite
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packing chromatic number. Maybe the fact that the weak dual is a path (and is not any tree)

helps to bound the packing chromatic number. It remains an open question to determine if the

packing chromatic number of subcubic outerplanar graphs is finite or not.
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