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MEAN FIELD LIMITS FOR NONLINEAR SPATIALLY EXTENDED
HAWKES PROCESSES WITH EXPONENTIAL MEMORY KERNELS

By J. Chevallier†, A. Duarte‡, E. Löcherbach† and G. Ost‡

Université de Cergy-Pontoise† and Universidade de São Paulo‡

We consider spatially extended systems of interacting nonlinear
Hawkes processes modeling large systems of neurons placed in R

d

and study the associated mean field limits. As the total number of
neurons tends to infinity, we prove that the evolution of a typical
neuron, attached to a given spatial position, can be described by
a nonlinear limit differential equation driven by a Poisson random
measure. The limit process is described by a neural field equation.
As a consequence, we provide a rigorous derivation of the neural field
equation based on a thorough mean field analysis.

1. Introduction. The aim of this paper is to present a microscopic model describing a
large network of spatially structured interacting neurons, and to study its large population
limits. Each neuron is placed in R

d. Its activity is represented by a point process accounting
for the successive times at which the neuron emits an action potential, commonly referred
to as a spike. The firing intensity of a neuron depends on the past history of the neuron.
Moreover, this intensity is affected by the activity of other neurons in the network. Neurons
interact mostly through chemical synapses. A spike of a pre-synaptic neuron leads to a
change in the membrane potential of the post-synaptic neuron (namely an increase if the
synapse is excitatory or a decrease if the synapse is inhibitory), possibly after some delay. In
neurophysiological terms this is called synaptic integration. Thus, excitatory inputs from
the neurons in the network increase the firing intensity, and inhibitory inputs decrease
it. Hawkes processes provide good models for this synaptic integration mechanism by the
structure of their intensity processes, see (1.1) below. We refer to [8], [9], [15] and to [19]
for the use of Hawkes processes in neuronal modeling. For an overview of point processes
used as stochastic models for interacting neurons both in discrete and in continuous time
and related issues, see also [12].

In this paper, we study spatially structured systems of interacting Hawkes processes rep-
resenting the time occurrences of action potentials of neurons. Each neuron is characterized
by its spike train, and the whole system is described by the multivariate counting process

(Z
(N)
1 (t), . . . , Z

(N)
N (t))t≥0. Here, the integer N ≥ 1 stands for the size of the neuronal net-

work and Z
(N)
i (t) represents the number of spikes of the ith neuron in the network during
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2 J. CHEVALLIER ET AL.

the time interval [0, t]. This neuron is placed in a position xi ∈ R
d, and we assume that the

empirical distribution of the positions µ(N)(dx) := N−1
∑N

i=1 δxi
(dx) converges1 to some

probability measure ρ(dx) on R
d as N → ∞.

The multivariate counting process (Z
(N)
1 (t), . . . , Z

(N)
N (t))t≥0 is characterized by its in-

tensity process (λ
(N)
1 (t), . . . , λ

(N)
N (t))t≥0 (informally) defined through the relation

P
(

Z
(N)
i has a jump in ]t, t+ dt]|Ft

)

= λ
(N)
i (t)dt,

where Ft = σ(Z
(N)
i (s), s ≤ t, 1 ≤ i ≤ N). We work with a spatially structured network of

neurons in which λ
(N)
i (t) is given by λ

(N)
i (t) = f(U

(N)
i (t−)) with

(1.1) U
(N)
i (t) := e−αtu0(xi) +

1

N

N
∑

j=1

w (xj, xi)

∫

]0,t]
e−α(t−s)dZ

(N)
j (s).

Here, f : R → R+ is the firing rate function of each neuron and w : Rd × R
d → R is the

matrix of synaptic strengths ; for each i, j ∈ {1, . . . , N}, the value w(xj , xi) models the
influence of neuron j (located in position xj) on neuron i (in position xi). The parameter
α ≥ 0 is the leakage rate. Moreover, u0(xi) is the initial input to the membrane potential
of neuron i.

Equation (1.1) has the typical form of the intensity of a multivariate nonlinear Hawkes
process, going back to [17] and [16] who introduced Hawkes processes in a univariate
and linear framework. We refer to [4] for the stability properties of multivariate nonlinear
Hawkes processes, and to [10] and [6] for the study of Hawkes processes in high dimensions.

In this paper, we study the limit behavior of the system (Z
(N)
1 (t), . . . , Z

(N)
1 (t))t≥0 as

N → ∞. Our main result states that – under suitable regularity assumptions on the
parameters u0, w and f – the system can be approximated by a system of inhomogeneous
independent Poisson processes (Z̄x(t))t≥0 associated with positions x ∈ R

d which can
informally be described as follows. In the limit system, the spatial positions of the neurons
are distributed according to the probability measure ρ(dx). Given a position x ∈ R

d, the
law of the attached process (Z̄x(t))t≥0 is the law of an inhomogeneous Poisson process
having intensity given by (λ(t, x))t≥0. Here λ(t, x) = f(u(t, x)) and u(t, x) solves the scalar
neural field equation

(1.2)







∂u(t, x)

∂t
= −αu(t, x) +

∫

Rd

w(y, x)f(u(t, y))ρ(dy),

u(0, x) = u0(x).

Such scalar neural field equations (or neural field models) have been studied extensively
in the literature, see e.g. [21], [22] and [1]. They constitute an important example of spa-
tially structured neuronal networks with nonlocal interactions, see [5] for a recent and
comprehensive review. Let us cite a remark made by Paul Bressloff, on page 15 of [5] :

1Convergence in the sense of the Wasserstein W2-distance is considered in Scenario (S2) below.
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There does not currently exist a multi-scale analysis of conductance-based neural net-
works that provides a rigorous derivation of neural field equations, although some progress
has been made in this direction [...]. One crucial step in the derivation of neural field
equations presented here was the assumption of slowly varying synaptic currents, which is
related to the assumption that there is not significant coherent activity at the level of indi-
vidual spikes. This allowed us to treat the output of a neuron (or population of neurons)
as an instantaneous firing rate. A more rigorous derivation would need to incorporate the
mean field analysis of local populations of stochastic spiking neurons into a larger scale
cortical model, and to carry out a systematic form of coarse graining or homogenization in
order to generate a continuum neural field model.

Our model is not a conductance-based neural network. Nevertheless, with the present
work, to the best of our knowledge, we present a first rigorous derivation of the well-known
neural field equation as mean field limit of spatially structured Hawkes processes.

The paper is organized as follows. In Section 2 we introduce the model and provide an
important a priori result, stated in Proposition 3, on the expected number of spikes of a
typical neuron in the finite size system. In Section 3 we present our main results, Theorems
1 and 2, on the convergence of spatially extended nonlinear Hawkes processes towards the
neural field equation (1.2). This convergence is expressed in terms of the empirical measure
of the spike counting processes associated with the neurons as well as the empirical measure
correspondent to their position. Therefore, we work with probability measures on the space
D([0, T ],N) × R

d and a convenient distance defined on this space which is introduced in
(3.8). The main ingredient of our approach is the unique existence of the limit process (or
equivalently, of its intensity process), which is stated in Proposition 5. Once the unique
existence of the limit process is granted, our proof makes use of a suitable coupling technique
for jump processes which has already been applied in [10], [6] and [11], together with a
control of the Wasserstein distance of order 2 between the empirical distribution of the
positions µ(N)(dx) and the limit distribution ρ(dx).

As a by product of these convergence results, we obtain Corollaries 1 and 2, the former
being closely connected to the classical propagation of chaos property and the latter stating

the convergence of the process (U
(N)
1 (t), . . . , U

(N)
N (t))t≥0 towards to the solution of the

neural field equation.
In Section 4 are given the main technical estimates we use. Sections 5 and 6 are devoted

to the proofs of our two main results, Theorem 1 and 2, together with Corollary 2. In
Section 7 we discuss briefly the assumptions that are imposed on the parameters of the
model by our approach. Finally, some auxiliary results are postponed to A.

2. General Notation, Model Definition and First Results.

2.1. General notation. Let (S, d) be a Polish metric space and S be the Borel σ-algebra
of S. The supremum norm of any real-valued S-measurable function h defined on S will be
denoted by ‖h‖S,∞ := supx∈S |h(x)|. We will often write ‖h‖∞ instead of ‖h‖S,∞ when there
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is no risk of ambiguity. For any real-valued function h(y, x) defined on S×S and x ∈ S, the
x-section of h is the function hx defined on S by hx(y) = h(y, x) for all y ∈ S. Similarly,
for any y ∈ S, the y-section of h is the function hy defined on S by hy(x) = h(y, x) for all
x ∈ S. The space of all continuous functions from (S, d) to (R+, | · |) will be denoted by
C(S,R+). For any measure ν on (S,S) and S-measurable function h : S → R, we shall write
〈h, ν〉 =

∫

S h(x)ν(dx) when convenient. For any p ≥ 1, we shall write Lp(S, ν) to denote the

space of S-measurable functions h : S → R such that ‖h‖Lp(ν) := (
∫

|h(x)|pdν(x))1/p < ∞.
For two probability measures ν1 and ν2 on (S,S), the Wasserstein distance of order p

between ν1 and ν2 associated with the metric d is defined as

Wp(ν1, ν2) = inf
π∈Π(ν1,ν2)

(
∫

S

∫

S
d(x, y)pπ(dx, dy)

)1/p

,

where π varies over the set Π(ν1, ν2) of all probability measures on the product space S×S
with marginals ν1 and ν2. Notice that the Wasserstein distance of order p between ν1 and
ν2 can be rewritten as the infimum of E[d(X,Y )p]1/p over all possible couplings (X,Y ) of
the random elements X and Y distributed according to ν1 and ν2 respectively, i.e.

Wp(ν1, ν2) = inf
{

E[d(X,Y )p]1/p : L(X) = ν1 and L(Y ) = ν2

}

.

Let Lip(S) denote the space of all real-valued Lipschitz functions on S and

‖h‖Lip = sup
x 6=y

|h(x)− h(y)|

d(x, y)
.

We write Lip1(S) to denote the subset of Lip(S) such that ‖h‖Lip ≤ 1. When p = 1,
the Kantorovich-Rubinstein duality provides another useful representation for W1(ν1, ν2),
namely

W1(ν1, ν2) = sup
h∈Lip1(S)∩L1(S,d|ν1−ν2|)

{∫

S
h(x)(ν1 − ν2)(dx)

}

.

Furthermore, the value of the supremum above is not changed if we impose the extra
condition that h is bounded, see e.g. Theorem 1.14 of [20].

2.2. The model and preliminary remarks. Throughout this paper we work on a filtered
probability space (Ω,F , (Ft)t≥0, Q) which is rich enough such that all following processes
may be defined on it. We consider a system of interacting nonlinear Hawkes processes
which is spatially structured. In the sequel, the integer N ≥ 1 will denote the number of
processes in the system. Each process models the behavior of a specific neuron. All neurons
are associated with a given spatial position belonging to R

d. These spatial positions are
denoted by x1, . . . , xN . In the following, Rd will be equipped with a fixed norm ‖ · ‖. The
positions x1, . . . , xN are assumed to be fixed in this section (unlike Section 5 where the
positions are assumed to be random).

We now describe the dynamics of theN Hawkes processes associated with these positions.
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Definition 1. Let f : R → R+, w : Rd × R
d → R and u0 : Rd → R be measurable

functions and α ≥ 0 be a fixed parameter. A (Ft)t≥0-adapted multivariate counting process

(Z
(N)
1 (t), . . . , Z

(N)
1 (t))t≥0 defined on (Ω,F , (Ft)t≥0, Q) is said to be a multivariate Hawkes

process with parameters (N, f,w, u0, α), associated with the positions (x1, . . . , xN ), if

1. Q−almost surely, for all pairs i, j ∈ {1, . . . , N} with i 6= j, the counting processes

(Z
(N)
i (t))t≥0 and (Z

(N)
j (t))t≥0 never jump simultaneously.

2. For each i ∈ {1, . . . , N} and t ≥ 0, the compensator of Z
(N)
i (t) is given by

∫ t
0 λ

(N)
i (s)ds

where (λ
(N)
i (t))t≥0 is the non-negative (Ft)t≥0−progressively measurable process de-

fined, for all t ≥ 0, by λ
(N)
i (t) = f(U

(N)
i (t−)) with

(2.1) U
(N)
i (t) = e−αtu0(xi) +

1

N

N
∑

j=1

w (xj, xi)

∫

]0,t]
e−α(t−s)dZ

(N)
j (s).

Remark 1. Notice that for each i ∈ {1, . . . , N}, the process (U
(N)
i (t))t≥0 satisfies the

following stochastic differential equation

dU
(N)
i (t) = −αU

(N)
i (t)dt+

1

N

N
∑

j=1

w (xj, xi) dZ
(N)
j (t).

The functions f : R → R+ and w : Rd × R
d → R are called spike rate function and

matrix of synaptic strengths respectively. The parameter α ≥ 0 is called the leakage rate.
For each neuron i ∈ {1, . . . , N}, u0(xi) is interpreted as an initial input to the spike rate
of neuron i (its value depends on the position xi of the neuron). 2

An alternative definition of multivariate Hawkes processes which will be used later on is
the following.

Definition 2. Let (Πi(dz, ds))1≤i≤N be a sequence of i.i.d. Poisson random measures
with intensity measure dsdz on R+ × R+. A (Ft)t≥0-adapted multivariate counting pro-

cess (Z
(N)
1 (t), . . . , Z

(N)
N (t))t≥0 defined on (Ω,F , (Ft)t≥0, Q) is said to be a multivariate

Hawkes process with parameters (N, f,w, u0, α), associated with the positions (x1, . . . , xN ),
if Q−almost surely, for all t ≥ 0 and i ∈ {1, . . . , N},

(2.2) Z
(N)
i (t) =

∫ t

0

∫ ∞

0
1{

z≤f
(

U
(N)
i (s−)

)}Πi(dz, ds),

where UN
i (s) is given in (2.1).

2Without too much effort, the initial input u0(xi) could be replaced by a random input of the
form 1

N

∑N

j=1 Ui,j , where the random variables Ui,1, . . . , Ui,N are i.i.d. distributed according to some

probability measure ν(xi, du) defined on R
d. In the limit N → +∞, we have the correspondence

limN→+∞ N−1 ∑N

j=1 Ui,j =
∫
uν(xi, du) = u0(xi).
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Proposition 1. Definitions 1 and 2 are equivalent.

We refer the reader to Proposition 3 of [10] for a proof of Proposition 1. In what follows
we will work under

Assumption 1. The function f is Lipschitz continuous with Lipschitz norm Lf > 0.

Assumption 2. The initial condition u0 is Lipschitz continuous with Lipschitz norm
Lu0 > 0 and bounded, i.e., ‖u0‖Rd,∞ < ∞.

Proposition 2. Under Assumption 1, there exists a path-wise unique multivariate

Hawkes process with parameters (N, f,w, u0, α) such that t 7→ sup1≤i≤N E(Z
(N)
i (t)) is lo-

cally bounded.

The proof of Proposition 2 relies on classical Picard iteration arguments and can be
found (in a more general framework) in Theorem 6 of [10].

The next result provides an upper bound for the expected number of jumps in a finite
time interval [0, T ], for each fixed T > 0, which will be crucial later.

Proposition 3. Under Assumptions 1 and 2, for each N ≥ 1 and T > 0, the following
inequalities hold.

(2.3)
1

N

N
∑

i=1

E
[

(Z
(N)
i (T ))

]

≤ T
(

f(0) + Lf‖u0‖Rd,∞

)

exp

{

TLf sup
j

‖wxj
‖L1(µ(N))

}

,

and

(2.4)
1

N

N
∑

i=1

E
[

(Z
(N)
i (T ))2

]

≤ exp







T



1 + 4L2
f

(

sup
j

‖wxj
‖L2(µ(N))

)2










×

×

[

T
(

f(0) + Lf‖u0‖Rd,∞

)

exp

{

TLf sup
j

‖wxj
‖L1(µ(N))

}

+ 2Tf(0)2 + 4L2
fT‖u0‖

2
Rd,∞

]

,

where µ(N)(dx) = N−1
∑N

i=1 δxi
(dx) is the empirical distribution associated with the fixed

spatial positions x1, . . . , xN ∈ R
d.

The proof of Proposition 3 will be given in A.1.

3. Convergence of Spatially Extended Hawkes processes. In this section, we
present two convergence results for the empirical process of nonlinear spatially extended
Hawkes processes, our main results. We fix a probability measure ρ(dx) on (Rd,B(Rd));
it is the expected limit of the empirical distribution µ(N)(dx) = N−1

∑N
i=1 δxi

(dx). The
following additional set of assumptions will be required as well.
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Assumption 3. The measure ρ(dx) admits exponential moments, i.e., there exists a
parameter β > 0 such that Eβ :=

∫

eβ‖x‖ρ(dx) < ∞.

Assumption 4. The matrix of synaptic strengths w satisfies the following Lipschitz
and boundedness conditions.
1. There exists a constant Lw > 0 such that for all x, x′, y, y′ ∈ R

d,

(3.1) |w(y, x) − w(y′, x′)| ≤ Lw(‖x− x′‖+ ‖y − y′‖).

2. There exist x0 and y0 in R
d such that ||w(y0, ·)||Rd ,∞ < +∞ and ||w(·, x0)||Rd,∞ < +∞.

Remark 2. Notice that the vectors x0 and y0 can be taken as the origin 0d in R
d. This

follows directly from the Lipschitz continuity of w. Moreover, under Assumption 3, notice
that Assumption 4-2. is equivalent to the fact that the y-sections wy and the x-sections wx

of w are uniformly square integrable with respect to ρ(dx), i.e.,

(3.2) sup
y∈Rd

∫

|w(y, x)|2ρ(dx) < ∞,

and

(3.3) sup
x∈Rd

∫

|w(y, x)|2ρ(dy) < ∞.

In fact, (3.2) and (3.3) are the assumptions that naturally appear through the proofs (see
e.g. (5.2) below where we need (3.2), and (4.10) where we need (3.3)).

Proof of the equivalence of Ass. 4-2. with (3.2) and (3.3), under Ass. 3 and (3.1).

We will only show that ‖w0d‖Rd,∞ is finite if and only if (3.3) holds, the other case is

treated similarly. Observe that the Lipschitz continuity of w implies that for each x, y ∈ R
d,

(max{0, |w0d(x)| − Lw‖y‖})
2 ≤ |wx(y)|2 ≤ 2

(

‖w0d‖
2
Rd,∞ + L2

w‖y‖
2
)

.

As a consequence of the inequality above, it follows that

|w0d(x)|
2

4
ρ

(

B
(

0d,
|w0d(x)|

2Lw

)

)

≤

∫

|wx(y)|2ρ(dy) ≤ 2

(

‖w0d‖
2
Rd,∞ + L2

w

∫

‖y‖2ρ(dy)

)

,

where for each z ∈ R
d and r > 0, B(z, r) is the ball of radius r centered at z. Now, taking

the supremum with respect to x, we deduce that

(3.4) sup
x∈Rd

∫

|wx(y)|2ρ(dy) ≤ 2

(

‖w0d‖
2
Rd,∞ + L2

w

∫

‖y‖2ρ(dy)

)
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and

(3.5)
‖w0d‖

2
Rd,∞

4
ρ(B(0d, ‖w0d‖Rd,∞/2Lw)) ≤ sup

x∈Rd

∫

|wx(y)|2ρ(dy).

Under Assumption 3, we know that
∫

‖y‖2ρ(dy) is finite. Therefore, (3.4) shows that
‖w0d‖

2
Rd,∞

< ∞ implies (3.3). On the other hand, (3.5) shows that (3.3) implies ‖w0d‖
2
Rd,∞

<

∞ if ρ(B(0d, ‖w0d‖Rd,∞/2Lw)) > 0. Finally, if ρ(B(0d, ‖w0d‖Rd,∞/2Lw)) = 0, then it triv-

ially holds that ‖w0d‖
2
Rd,∞

< ∞ since Lw > 0 and since ρ(B(0d,∞)) = 1.

Let us now introduce, for each T > 0 fixed, the empirical measure

(3.6) P
(N,N)
[0,T ] (dη, dx) =

1

N

N
∑

i=1

δ(
(Z

(N)
i (t))0≤t≤T ,xi

)(dη, dx).

This measure P
(N,N)
[0,T ]

is a random probability measure on the space D([0, T ],N)×Rd, where

D([0, T ],N) is the space of càdlàg functions defined on the interval [0, T ] taking values in
N. The measure is random since it depends on the realization of the N counting processes

Z
(N)
1 , . . . , Z

(N)
N , defined on (Ω,F , (Ft)t≥0, Q).

Under two frameworks described below, our two main results state that P
(N,N)
[0,T ] converges

as N → ∞ to a deterministic probability measure P[0,T ] defined on the space D([0, T ],N)×

R
d. This convergence is stated with respect to a convenient distance between random

probability measures P and P̃ on the space D([0, T ],N) × R
d which is introduced now.

For càdlàd functions η, ξ ∈ D([0, T ],N) we consider the distance dS(η, ξ) defined by

(3.7) dS(η, ξ) = inf
φ∈I

{

‖φ‖[0,T ],∗ ∨ ‖η − ξ(φ)‖[0,T ],∞

}

,

where I is the set of non-decreasing functions φ : [0, T ] → [0, T ] satisfying φ(0) = 0 and
φ(T ) = T and where for any function φ ∈ I the norm ‖φ‖[0,T ],∗ is defined as

‖φ‖[0,T ],∗ = sup
0≤s<t≤T

log

(

φ(t)− φ(s)

t− s

)

.

The metric dS(·, ·) is equivalent to the classical Skorokhod distance. More importantly the
metric space (D([0, T ],N), dS ) is Polish, see for instance [2].

Finally, for any random probability measures P and P̃ on D([0, T ],N) × R
d, we define

the Kantorovich-Rubinstein like distance between P and P̃ as

(3.8) dKR(P, P̃ ) = sup
g∈Lip1(D([0,T ]×N)×Rd)

E
[

|
〈

g, P − P̃
〉

|
]

,
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where we recall that 〈g, P−P̃ 〉 =
∫

Rd

∫

D([0,T ],N) g(η, x)(P−P̃ )(dη, dx). Here the expectation

is taken with respect to the probability measure Q on (Ω,F , (Ft)t≥0), that is with respect
to the randomness present in the jumps of the process.

Our convergence results are valid under two scenarios.

Definition 3. Consider the two following assumptions:

(S1):
Random spatial distribution.
The positions x1, . . . , xN are the realizations of an i.i.d. sequence of random
variables X1, . . . ,XN , . . . , distributed according to ρ(dx).

(S2):
Deterministic spatial distribution.
The positions x1, . . . , xN are deterministic (depending on ρ(dx)) such that
the sequence of associated empirical measures µ(N)(dx) = N−1

∑N
i=1 δxi

(dx)
satisfies W2(µ

(N), ρ) ≤ KN−1/d′ for any d′ > d and for all N sufficiently large,
for a fixed constant K > 0.

Remark 3. Under Scenario (S1), the random positions x1, . . . , xN are interpreted as
a random environment for our dynamics. This random environment is supposed to be
independent of the Poisson random measures Πi(dz, ds), i ≥ 1.

In Scenario (S2), the bound N−1/d′ is reasonable compared to the generic optimal quan-
tization rate N−1/d [13, Theorem 6.2]. This bound is used afterwards to control the contri-
bution of the spatial approximation in our spatial mean field approximation context. The
construction of a sequence satisfying the claimed bound is described in Section 6.

In Theorems 1 and 2 below we will prove that as N → ∞,

(3.9) dKR(P
(N,N)
[0,T ] , P[0,T ]) → 0,

almost surely with respect to the random environment under Scenario (S1).
Let us now discuss briefly the properties that this limit P[0,T ] should a priori satisfy.

First, we obtain the following integrability property.

Proposition 4. Under Assumptions 1, 2, 4 and either Scenario (S1) or (S2), the limit
measure P[0,T ] a priori satisfies that

(3.10)

∫

Rd

∫

D([0,T ],N)
[η2T + ηT ]P[0,T ](dη, dx) < ∞.

Proposition 4 is the limit version of Proposition 3, and its proof is postponed to A.2.
Let us now precisely define the limit measure P[0,T ]. Firstly, consider any real-valued

smooth test function (η, x) 7→ g(η, x) ≡ g(x) defined on D([0, T ],N) × R
d which does

not depend on the variable η. Evaluating the integral of g with respect to the probability
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measure P
(N,N)
[0,T ] , and then letting N → ∞, one deduces that the second marginal of P[0,T ]

on Rd must be equal to the probability measure ρ(dx) (since µ(N)(dx) converges to ρ(dx)).
Since (D([0, T ],N), dS) is Polish, it follows from the Disintegration Theorem that P[0,T ]

can be rewritten as

(3.11) P[0,T ](dη, dx) = P[0,T ](dη|x)ρ(dx),

where P[0,T ](dη|x) denotes the conditional distribution of P[0,T ] given the position x ∈ R
d.

Here, x 7→ P[0,T ](dη|x) is Borel-measurable in the sense that x 7→ P[0,T ](A|x) is Borel-
measurable for any measurable subset A ⊂ D([0, T ],N). From a heuristic which is explained
below, the conditional distribution P[0,T ](dη|x) (for each x ∈ Supp(ρ), the support of ρ)
turns out to be the law of a inhomogeneous Poisson point process with intensity process
(λ(t, x))0≤t≤T where λ = (λ(t, x), 0 ≤ t ≤ T, x ∈ R

d) is solution of the nonlinear equation

(3.12) λ(t, x) = f

(

e−αtu0(x) +

∫

Rd

w(y, x)

∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

)

.

The heuristic relies on the following argument: at the limit, we expect that the firing rate
at time t of the neurons near location y should be approximately equal to λ(t, y). Taking
this into account, Equation (3.12) is the limit version of the interaction structure of our
system described in Definition 1. In particular, the empirical mean with respect to the
positions, i.e. the integral with respect to µ(N)(dx), is replaced by an integral with respect
to ρ(dx).

Rewriting (3.10) in terms of the intensities, we obtain moreover that a priori,

∫

Rd

[

(
∫ T

0
λ(t, x)dt

)2

+

∫ T

0
λ(t, x)dt

]

ρ(dx) < ∞,

for each fixed T > 0. Existence and uniqueness of solutions for the nonlinear equation
(3.12) is now ensured by

Proposition 5. Under Assumptions 1, 2 and 4, for any solution λ of the equation

(3.12) such that t 7→
∫

Rd

∫ t
0 λ(s, y)dsρ(dy) and t 7→

∫

Rd

(

∫ t
0 λ(s, y)ds

)2
ρ(dy) are locally

bounded, the following assertions hold.
1. For any T > 0, λ ∈ C([0, T ]× R

d,R+) and ‖λ‖Rd×[0,T ],∞ < ∞.
2. λ is Lipschitz-continuous in the space variable, that is, there exists a positive constant
C = C(f, u0, w, α, ‖λ‖[0,T ]×Rd ,∞, T ) such that for all x, y ∈ R

d and for all t ≤ T,

(3.13) |λ(t, x) − λ(t, y)| ≤ C‖x− y‖.

Furthermore, if we consider the map F from C([0, T ]× R
d,R+) to itself defined by

λ 7→ F (λ)(t, x) = f

(

e−αtu0(x) +

∫

Rd

w(y, x)

∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

)

,
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then for any λ, λ̃ ∈ C([0, T ]× R
d,R+), the following inequality holds

(3.14) ‖F (λ)− F (λ̃)‖[0,T ]×Rd,∞ ≤
(

1− e−αT
)

α−1Lf sup
x∈Rd

‖wx‖L1(ρ)‖λ− λ̃‖[0,T ]×Rd,∞.

The proof of Proposition 5 is postponed to A.3. The inequality (3.14) together with a
classical fixed point argument imply not only the existence but also the uniqueness of a
solution of the equation (3.12).

We are now in position to state the two main results of the present paper.

Theorem 1. Under Assumptions 1–4 and Scenario (S1), there exists a positive con-
stant C = C(T, f, w, u0, α, β) and a random variable N0 depending only on the realization
of the random positions X1, . . . ,XN , . . . , such that for all N ≥ N0,

(3.15) dKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

≤ C
(

N−1/2 +W2(µ
(N), ρ)

)

.

Moreover, if ‖w‖Rd×Rd,∞ < ∞, then N0 = 1 is valid. Furthermore, for any fixed d′ > d, it
holds that

(3.16) dKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

≤ CN
− 1

4+d′

eventually almost surely as N → ∞.

Theorem 2. Under Assumptions 1–4 and Scenario (S2), for each T > 0, there exists
a positive constant C = C(T, f, w, u0, α, β) such that for all N ∈ N,

(3.17) dKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

≤ C
(

N−1/2 +W2(µ
(N), ρ)

)

.

Furthermore, for any fixed d′ > 2 ∨ d, it holds that

(3.18) dKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

≤ CN− 1
d′

eventually as N → ∞.

The proofs of Theorems 1 and 2 are respectively postponed to Sections 5 and 6. Here
are given two corollaries that are valid under either Scenario (S1) or Scenario (S2).

Corollary 1. 1. For any bounded functions g, g̃ ∈ Lip1,

∣

∣

∣
E
[〈

g, P
(N,N)
[0,T ]

〉〈

g̃, P
(N,N)
[0,T ]

〉]

−
〈

g, P[0,T ]

〉 〈

g̃, P[0,T ]

〉

∣

∣

∣

≤ (‖g‖∞ + ‖g̃‖∞) dKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

.
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2. Suppose moreover that ρ admits a C1 density, denoted by fρ, with respect to the Lebesgue
measure. Then for any 1-Lipschitz bounded functions ϕ, ϕ̃ : D([0, T ],N) → [−1, 1] and any
x, x̃ ∈ R

d such that fρ(x) 6= 0 and fρ(x̃) 6= 0, there exist kernel functions ΦN (z), Φ̃N (z)

with ΦN (z)fρ(z)dz
w
→ δx(dz) and Φ̃N (z)fρ(z)dz

w
→ δx̃(dz), as N → ∞, such that for

gN (η, z) = ϕ(η)ΦN (z) and g̃N (η, z) = ϕ̃(η)Φ̃N (z),

we have

(3.19) E
[〈

gN , P
(N,N)
[0,T ]

〉〈

g̃N , P
(N,N)
[0,T ]

〉]

→
〈

ϕ,P[0,T ](·|x)
〉 〈

ϕ̃, P[0,T ](·|x̃)
〉

.

Remark 4. Equation (3.19) has to be compared to the property of propagation of
chaos for standard or multi-class mean field approximations. Thanks to a suitable spatial
scaling, which is contained in the test functions gN and g̃N and is explicit in the proof, we
find that the activity near position x is asymptotically independent of the activity near
position x̃. Relating this result with multi-class propagation of chaos as defined in [14] for
instance, let us mention that:

• if x = x̃, one recovers the chaoticity within a class,
• if x 6= x̃, one recovers the chaoticity between two different classes.

The functions ΦN and Φ̃N are approximations to the identity with spatial scaling Np(d).
The optimal scaling obviously depends on the scenario under study. Under Scenario (S1), we
need p(d) < [(4+d)(2d+1)]−1 whereas (S2) the weaker condition p(d) < [(2∨d)(2d+1)]−1

is needed (the condition is weaker since the convergence is faster).

Proof of Corollary 1. For any bounded functions g, g̃ ∈ Lip1, we apply the triangle
inequality to obtain the following bound

(3.20)
∣

∣

∣
E
[〈

g, P
(N,N)
[0,T ]

〉〈

g̃, P
(N,N)
[0,T ]

〉]

−
〈

g, P[0,T ]

〉 〈

g̃, P[0,T ]

〉

∣

∣

∣

≤ ‖g‖∞

∣

∣

∣E
[〈

g̃, P
(N,N)
[0,T ] − P[0,T ]

〉]∣

∣

∣+ ‖g̃‖∞

∣

∣

∣E
[〈

g, P
(N,N)
[0,T ] − P[0,T ]

〉]∣

∣

∣

from which we deduce the first statement.
Next, to construct suitable sequences (gN )N≥1 and (g̃N )N≥1, let us first give some control

for the density fρ. Since fρ is C1, let r > 0, ε > 0 and M > 0 be such that for all y in
B(x, r) ∪B(x̃, r), fρ(y) ≥ ε (recall that fρ(x) 6= 0, fρ(x̃) 6= 0) and ‖∇fρ(y)‖ ≤ M .

Then, let Φ : Rd → R be a mollifier, that is a compactly supported smooth function
such that

∫

Φ(y)dy = 1. Let us define ΦN and Φ̃N by

ΦN (y) = Ndp(d)Φ(N
p(d)(y − x))

fρ(y)
and Φ̃N (y) = Ndp(d)Φ(N

p(d)(y − x̃))

fρ(y)
,
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where p(d) > 0 gives the spatial scaling of the approximations ΦN and Φ̃N (conditions on
p(d) raising to convergence are given in Remark 4 above and proved below). Since Φ is
compactly supported, there exists R > 0 such that Supp(Φ) ⊂ B(0, R) which in particular
implies that Supp(ΦN ) ⊂ B(x,RN−p(d)) and Supp(Φ̃N ) ⊂ B(x̃, RN−p(d)). Until the end
of the proof, we will assume that N is large enough so that RN−p(d) ≤ r. Furthermore, we
have

(3.21) max(‖ΦN‖∞, ‖Φ̃N‖∞) ≤ Ndp(d) ‖Φ‖∞
ε

= αN ,

and, by applying the quotient rule,

max
(

‖∇ΦN (y)‖, ‖∇Φ̃N (y)‖
)

≤ Ndp(d)

[

Np(d)‖∇Φ‖∞
ε

+
‖Φ‖∞M

ε2

]

= βN .

We are now in position to define suitable sequences (gN )N≥1 and (g̃N )N≥1 by

gN (η, y) = ϕ(η)ΦN (y) and g̃N (η, y) = ϕ̃(η)Φ̃N (y).

Obviously, the functions β−1
N gN and β−1

N g̃N belong to Lip1 and max(‖gN‖∞, ‖g̃N‖∞) ≤ αN .
On the one hand, applying the inequality obtained in the first step to β−1

N gN and β−1
N g̃N ,

we deduce that
∣

∣

∣
E
[〈

gN , P
(N,N)
[0,T ]

〉〈

g̃N , P
(N,N)
[0,T ]

〉]

−
〈

gN , P[0,T ]

〉 〈

g̃N , P[0,T ]

〉

∣

∣

∣

is upperbounded by 2βNαNdKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

.

On the other hand, we have

〈

gN , P[0,T ]

〉

=

∫

Rd

E
[

ϕ(Z̄y)
]

Ndp(d)Φ(Np(d)(y − x))dy →

∫

Rd

E
[

ϕ(Z̄y)
]

δx(dy),

thanks to the continuity of y 7→ E[ϕ(Z̄y)], which is a consequence of (4.13) proven below.
Therefore,

〈

gN , P[0,T ]

〉

→
〈

ϕ,P[0,T ](·|x)
〉

and
〈

g̃N , P[0,T ]

〉

→
〈

ϕ̃, P[0,T ](·|x̃)
〉

.

Gathering the steps above, we deduce (3.19) provided that βNαNdKR

(

P
(N,N)
[0,T ] , P[0,T ]

)

goes

to 0, which holds true if p(d) < [(4 + d)(2d+1)]−1 under Scenario (S1) (apply Theorem 1)
or if p(d) < [(2 ∨ d)(2d + 1)]−1 under Scenario (S2) (apply Theorem 2).

We close this section with the following observation. If for each t ≥ 0 and x ∈ R
d we call

(3.22) u(t, x) = e−αtu0(x) +

∫

Rd

w(y, x)

∫ t

0
e−α(t−s)λ(s, y)dsρ(dy),
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then clearly λ(t, x) = f(u(t, x)) and u(t, x) satisfies the scalar neural field equation

(3.23)







∂u(t, x)

∂t
= −αu(t, x) +

∫

Rd w(y, x)f(u(t, y))ρ(dy)

u(0, x) = u0(x).

Writing U (N)(t, xi) := U
(N)
i (t), where U

(N)
i (t) has been defined in (2.1) above, we obtain

the convergence of U (N)(t, xi) to the solution u(t, x) of the neural field equation in the
following sense.

Corollary 2. Under the conditions of either Theorem 1 or Theorem 2, we have that

(3.24) lim
N→∞

E

(∫

R

∫ T

0
|U (N)(t, x)− u(t, x)|dtµ(N)(dx)

)

= 0,

for any T > 0, where expectation is taken with respect to the randomness present in the
jumps of the process.

The proof of this corollary goes along the lines of the proof of Theorem 1 and Theorem
2, in Sections 5 and 6 below.

4. Estimating dKR(P
(N,N)
[0,T ] , P[0,T ]) for fixed positions x1, . . . , xN . Assume that

the following quantities are given and fixed:

• the number of neurons N ,
• the positions of the neurons x1, . . . , xN .

Hereafter the following empirical measures will be used (the first and the last one are
just reminders of (3.6) and (3.11) respectively),

(4.1)















P
(N,N)
[0,T ] (dη, dx) = 1

N

∑N
i=1 δ

(

(Z
(N)
i (t))0≤t≤T ,xi

)(dη, dx),

P
(∞,N)
[0,T ] (dη, dx) = P[0,T ](dη|x)µ

(N)(dx),

P[0,T ](dη, dx) = P[0,T ](dη|x)ρ(dx).

To estimate dKR(P
(N,N)
[0,T ] , P[0,T ]) we shall proceed as follows. We will first show that

P
(N,N)
[0,T ] and P

(∞,N)
[0,T ] are close to each other by using a suitable coupling. The rate of conver-

gence of such a coupling is a balance between the variance coming from the N particles and
the bias induced by the replacement of ρ(dx) by µ(N)(dx). Next, it will be shown that the

dKR-distance between P
(∞,N)
[0,T ] and P[0,T ] is controlled in terms of the Wasserstein distance

between µ(N)(dx) and ρ(dx).
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4.1. Estimating the dKR-distance between P
(N,N)
[0,T ] and P

(∞,N)
[0,T ] . The aim of this sub-

section is to upper-bound dKR(P
(N,N)
[0,T ] , P

(∞,N)
[0,T ] ) when the positions x1, . . . , xN ∈ R

d are
fixed.

Theorem 3. Under Assumptions 1, 2 and 4, for each N in N and T > 0 there exists a
constant C = C(α, f,w, T, u0) > 0 such that for a fixed choice x1, . . . , xN ∈ R

d of positions,

(4.2) dKR

(

P
(N,N)
[0,T ] , P

(∞,N)
[0,T ]

)

+ E

(∫

R

∫ T

0
|U (N)(t, x)− u(t, x)|dtµ(N)(dx)

)

≤ CN−1/2





(

∫

Rd

(∫ T

0
λ(t, x)dt

)2

µ(N)(dx)

)1/2

+

(

sup
j

‖wxj
‖L2(µ(N)) exp

(

sup
j

‖wxj
‖L1(µ(N))T

)

+ 1

)

(
∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx)

)1/2
]

+ CW2(µ
(N), ρ) exp

(

sup
j

‖wxj
‖L1(µ(N))T

)

.

Proof. Fix a test function g ∈ Lip1 and observe that by definition

∣

∣

∣

〈

g, P
(N,N)
[0,T ] − P

(∞,N)
[0,T ]

〉∣

∣

∣ =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

g
(

(Z
(N)
i (t))0≤t≤T , xi

)

−

∫

g (η, xi)P[0,T ](dη|xi)

]

∣

∣

∣

∣

∣

.

We will introduce in Equation (4.5) below a suitable coupling between the processes

(Z
(N)
i (t))0≤t≤T , i = 1, . . . , N and the processes (Z̄i(t))0≤t≤T , i ≥ 1, the latter being in-

dependent and distributed according to P[0,T ](dη|xi). In particular, we can decompose the
equation above as

∣

∣

∣

〈

g, P
(N,N)
[0,T ] − P

(∞,N)
[0,T ]

〉∣

∣

∣
≤

∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

g
(

(Z
(N)
i (t))0≤t≤T , xi

)

− g
(

(Z̄i(t))0≤t≤T , xi
)

]

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

g
(

(Z̄i(t))0≤t≤T , xi
)

−

∫

g (η, xi)P[0,T ](dη|xi)

]

∣

∣

∣

∣

∣

≤ AN (T ) +BN(T ),

with






AN (T ) := 1
N

∑N
i=1 sup0≤t≤T

∣

∣

∣
Z

(N)
i (t)− Z̄i(t)

∣

∣

∣

BN (T ) :=
∣

∣

∣

1
N

∑N
i=1 Gi − E[Gi]

∣

∣

∣
,

where Gi := g
(

(Z̄i(t))0≤t≤T , xi
)

for each i ∈ {1, . . . , N}. To obtain the upper bound AN (T )
we have used the 1-Lipschitz continuity of g and the inequality dS(η, ξ) ≤ supt≤T |η(t)−ξ(t)|
which is valid for all η, ξ ∈ D([0, T ],N).
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Thus it suffices to obtain upper bounds for the expected values of AN (T ) and BN(T ).
We start studying BN (T ). By the Cauchy-Schwarz inequality and the independence of the
Z̄i’s, it follows that

E[BN (T )] ≤

[

1

N2

N
∑

i=1

Var[Gi]

]1/2

,

so that we only need to control the variance of each Gi. Now, let (Z̃i(t))0≤t≤T be an

independent copy of (Z̄i(t))0≤t≤T and set G̃i = g
(

(Z̃i(t))0≤t≤T , xi

)

. In what follows, the

expectation Ẽ is taken with respect to G̃i. Thus, by applying Jensen’s inequality we deduce
that

Var(Gi) = E
[

(Gi − E[Gi])
2
]

= E

[

[

Ẽ(Gi − G̃i)
]2
]

≤ E
[

Ẽ
[

(Gi − G̃i)
2
]]

.

Then, since dS(η, ξ) ≤ sup0≤t≤T |η(t) − ξ(t)| for all η, ξ ∈ D([0, T ],N) and both processes

(Z̄i(t))0≤t≤T and (Z̃i(t))0≤t≤T are increasing, the 1-Lipschitz continuity of g implies that

|Gi − G̃i| ≤ sup
0≤t≤T

|Z̄i(t)− Z̃i(t)| ≤ Z̄i(T ) + Z̃i(T ).

Therefore, by applying once more Jensen’s inequality we obtain that

Ẽ
[

(Gi − G̃i)
2
]

≤ 2Ẽ
[(

Z̄i(T )
2 + Z̃i(T )

2
)]

= 2
(

Z̄i(T )
2 + E

[

Z̄i(T )
2
])

.

Collecting all the estimates we then conclude that

Var(Gi) ≤ 4E
[

Z̄i(T )
2
]

.

Now, noticing that Z̄i(T ) is a Poisson random variable with rate
∫ T
0 λ(t, xi)dt,

E
[

Z̄i(T )
2
]

= Var(Zi(T )) +
(

E[Z̄i(T )]
)2

=

∫ T

0
λ(t, xi)dt+

(∫ T

0
λ(t, xi)dt

)2

.

Hence, we have just shown that

E[BN (T )] ≤ 2N−1/2

[

∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx) +

∫

Rd

(
∫ T

0
λ(t, x)dt

)2

µ(N)(dx)

]1/2

.

Since clearly (u+ v)1/2 ≤ u1/2 + v1/2 for all u, v ≥ 0, it follows that

(4.3) E[BN (T )] ≤ 2N−1/2

[

(∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx)

)1/2

+

(

∫

Rd

(∫ T

0
λ(t, x)dt

)2

µ(N)(dx)

)1/2


 .
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We shall next deal with AN (T ). Let us now introduce the coupling we consider here.
Let (Πi(dz, ds))i≥1 be a sequence of i.i.d. Poisson random measures with intensity measure

dsdz on R+ ×R+. By Proposition 1 the process (Z
(N)
i (t))t≥0,i=1,...,N defined for each t ≥ 0

and i ∈ {1, . . . , N} by

(4.4) Z
(N)
i (t) =

∫ t

0

∫ ∞

0
1{

z≤f

(

e−αsu0(xi)+
1
N

∑N
j=1 w(xj ,xi)

∫ s

0 e−α(s−h)dZ
(N)
j (h)

)}Πi(dz, ds),

is also a multivariate nonlinear Hawkes process with parameters (N, f,w, u0, α), and the
processes (Z̄i(t))t≥0,i=1,...,N defined for each i ∈ {1, . . . , N} and t ≥ 0 as

(4.5) Z̄i(t) =

∫ t

0

∫ ∞

0
1{

z≤f

(

e−αsu0(xi)+
∫

Rd
w(y,xi)

∫ s

0 e−α(s−h)λ(h,y)dhρ(dy)

)}Πi(dz, ds),

are independent and such that (Z̄i(t))t≥0 is distributed according to P (·|xi) for each i ∈
{1, . . . , N}. Now, for each i and t ≥ 0, let us define the following quantity

∆
(N)
i (t) =

∫ t

0
|d(Z

(N)
i (s)− Z̄i(s))|.

Using successively that f is Lipschitz and the triangle inequality we deduce that

(4.6) E[∆
(N)
i (T )] ≤ LfE

(∫ T

0
|U (N)(s, xi)− u(s, xi)|ds

)

:= Lf

(

F
(N)
i (T ) +G

(N)
i (T ) +H

(N)
i (T )

)

,

where U (N)(s, xi) := U
(N)
i (s), with U

(N)
i (s) as in (2.1), and



















F
(N)
i (T ) := E

[∣

∣

∣

∫ T
0

1
N

∑N
j=1w (xj , xi)

∫

[0,t[ e
−α(t−s)

[

dZ
(N)
j (s)− dZ̄j(s)

]

dt
∣

∣

∣

]

,

G
(N)
i (T ) := E

[∣

∣

∣

∫ T
0

1
N

∑N
j=1w (xj, xi)

∫

[0,t[ e
−α(t−s)

[

dZ̄j(s)− λ(s, xj)ds
]

dt
∣

∣

∣

]

,

H
(N)
i (T ) :=

∣

∣

∣

∫ T
0

∫

[0,t[ e
−α(t−s)

[

1
N

∑N
j=1w(xj , xi)λ(s, xj)−

∫

Rd w(y, xi)λ(s, y)ρ(dy)
]

dsdt
∣

∣

∣
.

Notice that since e−α(s−h) ≤ 1 for 0 ≤ h ≤ s, we have

F
(N)
i (T ) ≤

1

N

N
∑

j=1

|w(xj , xi)|

∫ T

0
E[∆

(N)
j (s)]ds,

which in turn implies that

(4.7)
1

N

N
∑

i=1

F
(N)
i (T ) ≤ sup

j
‖wxj

‖L1(µ(N))

∫ T

0

1

N

N
∑

j=1

E[∆
(N)
j (s)]ds.
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Now, write Wj(t) := w (xj , xi)
∫

[0,t[ e
−α(t−s)dZ̄j(s). By the triangle inequality, we have

G
(N)
i (T ) ≤ E





∫ T

0

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

Wj(t)−E[Wj(t)]

∣

∣

∣

∣

∣

∣

dt



 .

Then the Cauchy-Schwarz inequality and the independence of the Wj ’s implies that

G
(N)
i (T ) ≤

∫ T

0





1

N2

N
∑

j=1

Var(Wj(t))





1/2

dt.

Now, Var(Wj(t)) = w(xj , xi)
2
∫ t
0 e

−2α(t−s)λ(s, xj)ds, whence

1

N

N
∑

i=1

G
(N)
i (T ) ≤

∫ T

0

1

N

N
∑

i=1





1

N2

N
∑

j=1

w(xj , xi)
2

∫ t

0
e−2α(t−s)λ(s, xj)ds





1/2

dt.

Applying Jensen’s inequality twice, the right-hand side of the inequality above can be
upper-bounded by

sup
j

‖wxj
‖L2(µ(N))T





1

T

1

N2

N
∑

j=1

∫ T

0

∫ t

0
e−2α(t−s)λ(s, xj)dsdt





1/2

.

Since
∫ T
0

∫ t
0 e

−2α(t−s)λ(s, xj)dsdt =
∫ T
0 λ(t, xj)(2α)

−1(1 − e−2α(T−t))dt ≤ T
∫ T
0 λ(s, xj)dt

(recall that 1− e−v ≤ v for all v ≥ 0), we deduce that

1

N

N
∑

i=1

G
(N)
i (T ) ≤ sup

j
‖wxj

‖L2(µ(N))T

(∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx)

)1/2

N−1/2.

Finally we shall deal with H
(N)
i (T ). Proceeding similarly as above, we have

H
(N)
i (T ) ≤

∫ T

0

∫ t

0
e−α(t−s)

∣

∣

∣

∣

∫

Rd

w(y, xi)λ(s, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

dsdt

≤ T

∫ T

0

∣

∣

∣

∣

∫

Rd

w(y, xi)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

dt,

and therefore it follows that

1

N

N
∑

i=1

H
(N)
i (T ) ≤ T

∫ T

0

∫

Rd

∣

∣

∣

∣

∫

Rd

w(y, x)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

µ(N)(dx)dt.
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Thus, defining δ(t) = N−1
∑N

i=1E[∆i(t)] and then gathering the steps above gives

δ(T ) ≤ T

(

sup
j

‖wxj
‖L2(µ(N))

(∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx)

)1/2

N−1/2

+

∫ T

0

∫

Rd

∣

∣

∣

∣

∫

Rd

w(y, x)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

µ(N)(dx)dt

+sup
j

‖wxj
‖L1(µ(N))

∫ T

0
δ(t)dt

)

.

Now, Gronwall’s lemma implies

(4.8) δ(T ) ≤ T

(

sup
j

‖wxj
‖L2(µ(N))

(∫

Rd

∫ T

0
λ(t, x)dtµ(N)(dx)

)1/2

N−1/2

+

∫ T

0

∫

Rd

∣

∣

∣

∣

∫

Rd

w(y, x)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

µ(N)(dx)dt

)

exp

(

sup
j

‖wxj
‖L1(µ(N))T

)

.

To deduce (4.2), it suffices to observe that E[AN (T )] ≤ δ(T ) and the following control
proven below: there exists a constant C = C(α, f,w, T, u0) > 0 such that

(4.9)

∫ T

0

∫

Rd

∣

∣

∣

∣

∫

Rd

w(y, x)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

µ(N)(dx)dt ≤ CW2(µ
(N), ρ).

Indeed, let (Ω̃, Ã, P̃ ) be a probability space on which are defined random variables Y
(N)
1

and Y
(N)
2 such that their joint law under P̃ is the optimal coupling achieving the Wasser-

stein distance W2(µ
(N), ρ) of order 2 between µ(N) and ρ. Then for all t ≤ T, using Hölder’s

inequality,

(4.10)

∣

∣

∣

∣

∫

Rd

w(y, x)λ(t, y)
[

µ(N)(dy)− ρ(dy)
]

∣

∣

∣

∣

=
∣

∣

∣
Ẽ(w(Y

(N)
1 , x)λ(t, Y

(N)
1 )− w(Y

(N)
2 , x)λ(t, Y

(N)
2 )

∣

∣

∣

≤ ‖λ‖[0,T ]×Rd,∞Ẽ(|w(Y
(N)
1 , x)−w(Y

(N)
2 , x)|)

+ ‖wx‖L2(ρ)

(

Ẽ(|λ(t, Y
(N)
1 )− λ(t, Y

(N)
2 )|2)

)1/2
.
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By Assumption 4,

Ẽ(|w(Y
(N)
1 , x)− w(Y

(N)
2 , x)|) ≤ LwẼ(|Y

(N)
1 − Y

(N)
2 |) ≤ LwW2(µ

(N), ρ).

Moreover, using (3.13),

(

Ẽ(|λ(t, Y
(N)
1 )− λ(t, Y

(N)
2 )|2)

)1/2
≤ CW2(µ

(N), ρ),

implying (4.9). Finally, observe that together with (4.6), we obtain the same control for

E
(

∫

R

∫ T
0 |U (N)(t, x)− u(t, x)|dtµ(N)(dx)

)

.

4.2. Estimating the dKR-distance between P
(∞,N)
[0,T ] and P[0,T ]. In this subsection we give

an upper bound for dKR(P
(∞,N)
[0,T ] , P[0,T ]) in terms of the Wasserstein distance between the

empirical distribution µ(N)(dx) and the limit measure ρ(dx).

Proposition 6. Grant Assumptions 1–4. For each N ≥ 1 and T > 0, there exists a
positive constant C = C(f, u0, w, α, T ) such that for any choice of x1, . . . , xN ∈ R

d the
following inequality holds

(4.11) dKR

(

P
(∞,N)
[0,T ] , P[0,T ]

)

≤ CW1(µ
(N), ρ),

where W1(µ
(N), ρ) is the Wasserstein distance between µ(N)(dx) and ρ(dx) associated with

the metric d(x, y) = ‖x− y‖ for x, y ∈ R
d.

Proof. Notice that for deterministic probability measures P and P̃ which are defined

on D([0, T ],N) × R
d, the distance dKR

(

P, P̃
)

reduces to

(4.12) dKR

(

P, P̃
)

= sup
g∈Lip1,‖g‖∞<∞

〈

g, P − P̃
〉

.

Now, fix a test function g ∈ Lip1. We take any coupling W (N)(dx, dy) of µ(N)(dx) and
ρ(dy). Given x and y in R

d, we use the canonical coupling of Z̄x(t) and Z̄y(t). That is, we
pose

Z̄x(t) =

∫ t

0

∫ ∞

0
1{

z≤f

(

e−αsu0(x)+
∫

Rd
w(y,x)

∫ s

0 e−α(s−h)λ(h,y)dhρ(dy)

)}Π(dz, ds),

and

Z̄y(t) =

∫ t

0

∫ ∞

0
1{

z≤f

(

e−αsu0(y)+
∫

Rd
w(y′,y)

∫ s

0 e−α(s−h)λ(h,y′)dhρ(dy′)

)}Π(dz, ds),



21

where we use the same Poisson random measure Π(dz, ds) for the construction of Z̄x(t)
and of Z̄y(t). Then

〈

g, P
(∞,N)
[0,T ] − P[0,T ]

〉

= E

(∫

Rd

g(Z̄x(t), x)µ
(N)(dx)−

∫

Rd

g(Z̄y(t), y)ρ(dy)

)

= E

∫

Rd

∫

Rd

[

g(Z̄x(t), x)− g(Z̄y(t), y)
]

W (N)(dx, dy),

since µ(N)(Rd) = ρ(Rd) = 1. By the Lipschitz continuity of g,

∣

∣

∣

〈

g, P
(∞,N)
[0,T ] − P[0,T ]

〉∣

∣

∣
≤ E

∫∫

[

dS((Z̄x(t))0≤t≤T , (Z̄y(t))0≤t≤T ) + ‖x− y‖
]

WN(dx, dy).

Yet, as a consequence of the canonical coupling, it follows that

(4.13) E
[

dS(Z̄x, Z̄y)
]

≤ E

[

sup
[0,T ]

|Z̄x(t)− Z̄y(t)|

]

≤

∫ T

0
|λ(t, x)− λ(t, y)|dt ≤ CT ||x− y||,

where we used (3.13). Finally, the assertion follows from the definition of W1.

Before going to the proofs of Theorems 1 and 2, let us sum up the results obtained above
and then present the scheme of the remaining proofs.

Remark 5. Combining Theorem 3 and Proposition 6 together with the inequalities
W1(µ

(N), ρ) ≤ W2(µ
(N), ρ) and ‖ · ‖L1(µ(N)) ≤ ‖ · ‖L2(µ(N)), it follows that to conclude the

proofs of Theorems it suffices to control as N → +∞:
1- the Wasserstein distance W2(µ

(N), ρ); 2- the supremum supj ‖wxj
‖L2(µ(N)).

To treat the second point of the remark above, we use the following technical lemma in
order to use (3.2).

Lemma 1. Grant Assumption 4. Let µ, ρ be two probability measures. Assume that ρ
satisfies Assumption 3 and that µ is supported in B(0d, r) for some r > 0. Then, for any
β′ < β, there exists a constant C = C(w, β, β′) such that

(4.14) sup
||y||≤r

∣

∣

∣||wy||
2
L2(µ) − ||wy||

2
L2(ρ)

∣

∣

∣ ≤ C
(

1 + r
)

W1(µ, ρ) + CEβe
−β′r.

Proof. The proof is based on a truncation argument. Let us define the auxiliary mea-
sure ρr(dx) by

(4.15) ρr(dx) := ρ(dx)1B(0d ,r)(x) +
(

1− ρ(B(0d, r))
)

δ0d(dx),
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which is the truncated version of ρ(dx) to which we add a Dirac mass at 0d.
The Lipschitz continuity of w implies that for any y, x, z ∈ B(0d, r),

|w2
y(x)− w2

y(z)| ≤ Cw(1 + r)‖x− z‖,

that is, x ∈ B(0d, r) 7→ (wy(x))
2 is Lipschitz with explicit constant, where the positive

constant Cw depends only on w(0, 0) and Lw. We hence deduce that for all y ∈ B(0d, r),

∣

∣

∣||wy||
2
L2(µ) − ||wy||

2
L2(ρr)

∣

∣

∣ =

∣

∣

∣

∣

∣

∫

B(0d ,r)
wy(x)

2d(µ − ρr)(x)

∣

∣

∣

∣

∣

≤ Cw(1 + r)W1(µ, ρr),

thanks to the Kantorovich-Rubinstein duality. By the triangle inequality it follows then
∣

∣

∣
||wy||

2
L2(µ) − ||wy||

2
L2(ρr)

∣

∣

∣
≤ Cw(1 + r)(W1(µ, ρ) +W1(ρ, ρr)).

By the canonical coupling, we have

W1(ρ, ρr) ≤

∫

‖x‖>r
‖x‖ρ(dx).

Now, since for any β′ < β, there exists a constant C > 0 depending only on β and β′

such that ‖x‖eβ
′‖x‖ ≤ Ceβ‖x‖ we infer that

∫

‖x‖>r ‖x‖ρ(dx) ≤ CEβe
−β′r which implies that

W1(ρ, ρr) ≤ CEβe
−β′r.

Now, with Mr = |w(0, 0)| + Lwr, we have for any y ∈ B(0d, r),

∣

∣

∣
||wy||

2
L2(ρr)

− ||wy||
2
L2(ρ)

∣

∣

∣
≤

∫

||x||>r
(Mr + Lw||x||)

2 ρ(dx) +
(

1− ρ(B(0d, r))
)

M2
r

≤ 2L2
w

∫

||x||>r
||x||2ρ(dx) + 3

(

1− ρ(B(0d, r))
)

M2
r .

On the one hand, for any β′ < β,
∫

||x||>r ||x||
2ρ(dx) ≤

∫

||x||>r ||x||
2eβ

′||x||ρ(dx)e−β′r and

there exists a constant C that only depends on β and β′ such that ||x||2eβ
′||x|| ≤ Ceβ||x||.

Hence
∫

||x||>r ||x||
2ρ(dx) ≤ CEβe

−β′r. On the other hand, 1− ρ(B(0d, r)) =
∫

||x||>r ρ(dx) ≤

Eβe
−βr. The same argument applies and gives the existence of a constant C such that

(

1− ρ(B(0d, r))
)

M2
r ≤ CEβe

−β′r. Finally, (4.14) follows from triangular inequality.

5. Proof of Theorem 1. In this section we give the proof of Theorem 1 using the
estimates obtained in the previous section. We work under the additional assumption that
the positions x1, . . . , xN are realizations of i.i.d. random variables X1, . . . ,XN , distributed
according to ρ.

On the one hand, to control the Wasserstein distance, Theorem 1.6 Item (i) of [3] gives
that for any fixed d′ > d there exist constants K and N0 depending only on d, β and Eβ
such that

P (W2(µ
(N), ρ) > ε) ≤ e−KNε2 ,
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for any 0 < ε ≤ 1 and N ≥ N0max{1, ε−(4+d′)}. As a consequence, for any fixed d′ > d it

follows that if εN = O(N
− 1

4+d′ ) then

∞
∑

N=1

P (W2(µ
(N), ρ) > εN ) < ∞,

so that Borel-Cantelli’s lemma implies

(5.1) W2(µ
(N), ρ) ≤ CN

− 1
4+d′

eventually almost surely.
On the other hand, define RN = Nγ where the constant γ > 0 will be specified later

and observe that by Markov’s inequality, P
(

∪N
i=1 {‖Xi‖ > RN}

)

≤ NP (‖X1‖ > RN ) ≤

Eβe
−βRN (1−o(1)). As a consequence,

∑∞
N=1 P

(

∪N
i=1 {‖Xi‖ > RN}

)

< ∞ and by Borel-
Cantelli’s lemma we deduce that for almost all realizations X1,X2, . . . there exists a N0

depending on that realization such that for all N ≥ N0, µ
(N) is supported in B(0d, RN ).

Taking d′ = d+1, 0 < γ < 1/(10 + 2d) and applying Lemma 1 gives that almost surely,

sup
||y||≤RN

∣

∣

∣
||wy||

2
L2(µ(N))

− ||wy||
2
L2(ρ)

∣

∣

∣
−−−−→
N→∞

0,

and in particular,

(5.2) lim sup
N→∞

sup
1≤j≤N

‖wxj
‖2
L2(µ(N))

≤ sup
y∈Rd

∫

Rd

(wy(x))
2ρ(dx) < ∞.

Finally, the first two assertions of Theorem 1 follow immediately from (4.2) and (4.11)
combined with (5.2) – or supj ‖wxj

‖L2(µ(N)) ≤ ||w||∞ in case w is bounded; (3.16) is a
consequence of (5.1).

6. Proof of Theorem 2. In this section we give the proof of Theorem 2 using the
estimates obtained in Section 4. The main issue here is to construct a sequence of empirical
distributions µ(N) for which the Wasserstein distance W2(µ

(N), ρ) is controlled.
We first use a truncation argument to reduce to the case where ρ is compactly supported.

Let r > 0 be a truncation level to be chosen later. Let us define the measure ρr by

ρr(dx) := ρ(dx)1B(0d ,r)(x) +
(

1− ρ(B(0d, r))
)

δ0d(dx).

By the canonical coupling, we have

W2(ρ, ρr) ≤

∫

||x||>r
||x||2ρ(dx).
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Yet, if r is large enough,

∫

||x||>r
||x||2ρ(dx) ≤

∫

||x||>r
eβ||x||ρ(dx)r2e−βr,

hence, by Assumption 3, there exists β > 0 such that

(6.1) W2(ρ, ρr) ≤ Eβr
2e−βr < +∞.

Let us now describe how we construct an empirical distribution made ofN points adapted
to any probability measure ρr supported in B(0d, r). For simplicity of our construction, we
assume that Rd is endowed with the distance induced by the ℓ∞ norm.

The construction is iterative, so we first explain how each step works. Let ν be a measure
having support in the cube B(0d, r) = [−r, r]d and denote by |ν| ≥ 1/N its mass. Let us
prove that

(6.2) there exists a cube C with ν(C) ≥ 1/N and radius less than r⌊(N |ν|)1/d⌋−1 ≤
2r(N |ν|)−1/d.

Assume that the ν-mass of any cube of radius equal to r⌊(N |ν|)1/d⌋−1 is less than 1/N .

There exists a covering of the cube [−r, r]d into ⌊(N |ν|)1/d⌋d disjoint smaller cubes, each

one of radius equal to r⌊(N |ν|)1/d⌋−1. This implies

|ν| < ⌊(N |ν|)1/d⌋dN−1 ≤ ((N |ν|)1/d)dN−1 = |ν|

yielding a contradiction. Then, treat separately the cases (N |ν|)1/d ≥ 2 and (N |ν|)1/d < 2

to prove r⌊(N |ν|)1/d⌋−1 ≤ 2r(N |ν|)−1/d.
Applying the iterative step above to the probability measure ρr gives the existence of a

cube CN such that ρr(CN ) ≥ 1/N and Diam(CN ) ≤ 4rN−1/d. Then, we define the measure

ρNr :=
N−1

ρr(CN )
ρr1CN

.

Its mass is 1/N . Applying the iterative step to ρ̃r = ρr − ρNr (its mass is (N − 1)/N) gives
a cube CN−1 such that ρ̃r(CN−1) ≥ 1/N and Diam(CN−1) ≤ 4r(N − 1)−1/d. Similarly

we define ρN−1
r := N−1

ρ̃r(CN−1)
ρ̃r1CN−1

. In brief, applying N times the iterative step gives a

sequence of cubes C1, . . . , CN and associated measures ρ1r, . . . , ρ
N
r such that for all k,

Diam(Ck) ≤ 4rk−1/d,

ρkr is a measure of mass 1/N supported in Ck, and ρr =
∑N

k=1 ρ
k
r .



25

For each k, let xk denote the center of Ck and let µ(N) = N−1
∑N

k=1 δxk
denote the

associated empirical distribution. To control W2(µ
(N), ρr), we use the canonical coupling

π(dx, dy) =
∑N

k=1

(

N−1δxk

)

⊗ ρkr . Hence,

W2(µ
(N), ρr)

2 ≤ N−1
N
∑

k=1

∫

Rd

∫

Rd

||x− y||2δxk
(dx)ρkr (dy)

≤ N−1
N
∑

k=1

Diam(Ck)
2 ≤ 16r2N−1

N
∑

k=1

k−2/d.

If d = 1, then
∑+∞

k=1 k
−2/d = π2/6 so W2(µ

(N), ρr)
2 ≤ g1(r,N) := (4π2r/6)N−1/2. If d ≥ 2,

by Hölder’s inequality3,

N
∑

k=1

k−2/d ≤

(

N
∑

k=1

k−1

)2/d

N1−2/d ≤ N

(

1 + lnN

N

)2/d

,

so that

(6.3) W2(µ
(N), ρr) ≤ gd(r,N) := 4r

(

1 + lnN

N

)1/d

.

We now chose a truncation level that depends on N , namely rN = N ε for some ε > 0.
Combining (6.1) and the results above with the triangular inequality, we have, for N large
enough,

(6.4) W2(µ
(N), ρ) ≤ CN2εe−βNε

+ gd(N
ε, N).

Hence, for any d′ > 2 ∨ d, there exist K,N0 such that for all N ≥ N0,

(6.5) W2(µ
(N), ρ) ≤ KN−1/d′ .

Taking d′ = d+ 2, 0 < ε < 1/(d + 2) and applying Lemma 1 gives that

sup
||y||≤rN

∣

∣

∣
||wy||

2
L2(µ(N))

− ||wy||
2
L2(ρ)

∣

∣

∣
−−−−−→
N→+∞

0,

and in particular,

(6.6) lim sup
N→∞

sup
1≤j≤N

‖wxj
‖2
L2(µ(N))

≤ sup
y∈Rd

∫

Rd

w2
y(x)ρ(dx) < +∞.

Finally, the first assertion of Theorem 2 follows immediately from (4.2) and (4.11) com-
bined with (6.6); (3.18) is a consequence of (6.5).

Proof of Corollary 2. Corollary 2 follows under both scenarios from (4.2) in The-
orem 3, together with the arguments used to conclude the proofs of Theorem 1 and 2.

3This is not optimal (see [7] for a refined version of this quantization argument).
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7. Final discussion. In the previous sections, some technical assumptions have been
imposed regarding the parameters of our model. These parameters are: the spike rate
function f , the initial condition u0 and the matrix of synaptic strengths w. Here, we
discuss these assumptions with respect to standard choices appearing e.g. in [5].

There are three main choices for the function f : a sigmoid-like function, a piecewise
linear function or a Heaviside function (see page 6 of [5]). The first two choices obviously
fit our Lipschitz condition (Assumption 1). A Heaviside function does of course not satisfy
the Lipschitz condition. However, a Heaviside nonlinearity is less realistic and is mainly
studied for purely mathematical reasons (to obtain explicit computations).

A typical choice for the function u0 is a Gaussian kernel (see page 38 of [5]). It can
describe an initial bump of the neural activity at some location of the cortex.

Usually, a (homogeneity) simplification is made concerning the function w: w(y, x) is
assumed to depend on ‖x − y‖ only. Under this simplification, a common choice is the
so-called Mexican hat function (see page 41 of [5]). Nevertheless, inhomogeneous neural
fields where the previous simplification is dropped are also studied (see section 3.5 of [5]
for instance). As a consequence of the modeling used in the present article, the interaction
strength felt by neurons at position x coming from neurons in the vicinity dy of y is given
by w(y, x)ρ(dy). Hence, inhomogeneity in neural networks can be considered in two ways:

• with an inhomogeneous matrix w (whereas the limit spatial distribution ρ is homo-
geneous),

• with an homogeneous w but an inhomogeneous distribution ρ.

Let us discuss the spatial distribution ρ. Two standard choices are a uniform distribution
over a bounded set (see [18]), or a finite sum of Dirac masses (in that case, the present
paper is highly related to [11]). In these cases, ρ is compactly supported and therefore
satisfies Assumption 3. For unbounded domains, a typical choice is a Gaussian distribution
satisfying Assumption 3 as well. Finally, let us notice that uniform distributions over un-
bounded domains (such as the Lebesgue measure on R

d) are also considered for the study
of the neural field equation. Such a model (which cannot correspond to a probability dis-
tribution on the positions) does not fit our assumptions and therefore cannot be obtained
as the limit of a microscopic description following our approach.

Finally, the rate of convergence obtained in the present paper depends on the modeling
scenario: the positions of the neurons are random or they are deterministic. Notice that our

approach gives better rates of convergence in the deterministic framework (rate in N− 1
2∨d′

for any d′ > d) than in the random one (rate in N
− 1

4+d′ for any d′ > d).
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APPENDIX A: REMAINING MATHEMATICAL PROOFS

A.1. Proof of Proposition 3. Using the inequality f(u) ≤ Lf |u|+ f(0) valid for all
u ∈ R (which follows from the Lipschitz continuity of f), we have that for each 1 ≤ i ≤ N ,

(A.1) λ
(N)
i (t) ≤ f(0) + Lf



e−αt|u0(xi)|+
1

N

N
∑

j=1

|w(xj , xi)|

∫

[0,t[
e−α(t−s)dZ

(N)
j (s)



 .

Thus, using that e−α(t−s) ≤ 1 for all 0 ≤ s ≤ t, we obtain that

E
[

λ
(N)
i (t)

]

≤ f(0) + Lf



|u0(xi)|+
1

N

N
∑

j=1

|w(xj , xi)|E
[

Z
(N)
j (t)

]



 .

Then, denoting β(t) = N−1
∑N

i=1E
[

Z
(N)
i (t)

]

for each t ≥ 0, it follows that

(A.2) β(T ) =
1

N

N
∑

i=1

∫ T

0
E
[

λ
(N)
i (t)

]

dt

≤ T

(

f(0) + Lf

∫

Rd

|u0(x)|µ
(N)(dx)

)

+ Lf sup
j

‖wxj
‖L1(µ(N))

∫ T

0
β(t)dt.

Proposition 2 implies that t 7→ β(t) is locally bounded so that the first inequality stated
in Proposition 3 follows from Gronwall’s inequality. We now turn to the control of the

second moment of Z
(N)
i (t). We first work with the stopped processes Z

(N)
i (· ∧ τK), where

τK = inf{t ≥ 0 :
∑N

i=1 Z
(N)
i (t) ≥ K}, for some fixed truncation level K > 0. By Itô’s

formula,

E
[

(Z
(N)
i (t ∧ τK))2

]

= E
[

Z
(N)
i (t ∧ τK)

]

+ 2E

[∫ t∧τK

0
Z

(N)
i (s)λ

(N)
i (s)ds

]

≤ E
[

Z
(N)
i (t)

]

+

∫ t

0
E
[

(Z
(N)
i (s ∧ τK))2

]

ds+

∫ t

0
E
[

(λ
(N)
i (s))2

]

ds.

(A.1) implies that

[λ
(N)
i (t)]2 ≤ 2f(0)2 + 4L2

f



|u0(xi)|
2 +

1

N

N
∑

j=1

|w(xj , xi)|
2[Z

(N)
j (t)]2



 .
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Denoting γK(t) = N−1
∑N

i=1 E
[

(Z
(N)
i (t ∧ τK))2

]

for each t ≥ 0, it follows that

(A.3) γK(T ) ≤ β(T ) +

∫ T

0
γK(s)ds+ 2Tf(0)2+

4L2
fT

∫

Rd

|u0(x)|
2µ(N)(dx) + 4L2

f

(

sup
j

‖wxj
‖L2(µ(N))

)2
∫ T

0
γK(s)ds.

This implies, applying once more Gronwall’s inequality, that

1

N

N
∑

i=1

E
[

(Z
(N)
i (T ∧ τK))2

]

≤ exp







T



1 + 4L2
f

(

sup
j

‖wxj
‖L2(µ(N))

)2










×

×

[

T (f(0) + Lf‖u0‖∞) exp

{

TLf sup
j

‖wxj
‖L1(µ(N))

}

+ 2Tf(0)2 + 4L2
fT‖u0‖

2
∞

]

.

We now obtain the result by letting K → ∞.

A.2. Proof of Proposition 4. Taking the test function g(η, x) := ηT which belongs
to Lip1, we obtain first for any N,

∫

Rd

∫

D(R+,N)
g(η)P[0,T ](dη, dx) ≤ dKR(P

(N,N)
[0,T ] , P[0,T ])

+ E

(

∫

Rd

∫

D(R+,N)
g(η)P

(N,N)
[0,T ] (dη, dx)

)

,

and then, letting N → ∞ and using (3.9),

∫

Rd

∫

D(R+,N)
g(η)P[0,T ](dη, dx) ≤ lim sup

N→∞
E

(

∫

Rd

∫

D(R+,N)
g(η)P

(N,N)
[0,T ]

(dη, dx)

)

.

Yet

lim sup
N→∞

E

(

∫

Rd

∫

D(R+,N)
g(η)P

(N,N)
[0,T ] (dη, dx)

)

= lim sup
N→∞

1

N

N
∑

i=1

E[(Z
(N)
i (T )] < ∞

by Proposition 3 together with (5.2) or (6.6) (depending on the chosen scenario).
To prove the second assertion, fix a truncation level K > 0 and let ΦK : R+ → R+ be a

smooth bounded function such that ΦK(x) = x2 for all x ≤ K, ΦK(x) ≤ x2 for all x ≥ 0
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and such that ‖ΦK‖Lip := supx 6=y
|ΦK(x)−ΦK(y)|

|x−y| ≤ 4K. Put then g(η) := 1
4KΦK(ηT ), by

construction, this function belongs to Lip1. As before, we obtain that

∫

Rd

∫

D(R+,N)
g(η)P[0,T ](dη, dx) ≤ lim sup

N→∞
E

(

∫

Rd

∫

D(R+,N)
g(η)P

(N,N)
[0,T ] (dη, dx)

)

,

which implies, multiplying g(η) by 4K, that

∫

Rd

∫

D(R+,N)
ΦK(ηT )P[0,T ](dη, dx) ≤ lim sup

N→∞
E

(

∫

Rd

∫

D(R+,N)
η2TP

(N,N)
[0,T ] (dη, dx)

)

,

where we have used that ΦK(x) ≤ x2 to obtain the rhs which does not depend on K any
more. As in the first step of the proof, the rhs of the above inequality is finite, thanks to
Proposition 3 together with (5.2) or (6.6) (depending on the chosen scenario). Therefore,
letting now K → ∞ in the lhs of the above equation, the assertion follows.

A.3. Proof of Proposition 5. Using the inequality f(u) ≤ Lf |u|+ f(0) valid for all
u ∈ R, one gets for each 0 ≤ t ≤ T ,

λ(t, x) ≤ f(0) + Lf

[

e−αt|u0(x)|+

∫

Rd

|w(y, x)|

∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

]

.

We use that e−α(t−s) ≤ 1 for all 0 ≤ s ≤ t, that u0 is bounded and apply Hölder’s inequality
to the last term (with respect to ρ(dy)) to obtain the upper bound

λ(t, x) ≤ f(0) + Lf‖u0‖∞ + Lf‖w
x‖L2(ρ)

∫

Rd

(
∫ t

0
λ(s, y)ds

)2

ρ(dy).

Since t →
∫

Rd(
∫ t
0 λ(s, y)ds)

2ρ(dy) is locally bounded by assumption and since by Assump-
tion 4 together with Remark 2, x 7→ ‖wx‖L2(ρ) is bounded, one obtains from the inequality

above that λ(t, x) is bounded on [0, T ]× R
d, for any fixed T > 0.

We now prove the continuity of the function λ(t, x). To that end, take t, t′ ∈ [0, T ] with
t ≤ t′ ≤ T and x, y in R

d. On the one hand, by using successively the Lipschitz continuity
of f , the triangle inequality and the boundedness of u0, we deduce that

|λ(t, x)− λ(t′, x)| ≤ Lf‖u0‖∞|e−αt − e−αt′ |

+ Lf

∫

Rd

|w(y, x)|

∫ t′

0
|e−α(t−s) − e−α(t′−s)|λ(s, y)dsρ(dy)

+ Lf

∫

Rd

|w(y, x)|

∫ t′

t
e−α(t−s)λ(s, y)dsρ(dy).
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Write ‖λ‖[0,T ]×Rd,∞ := supx∈Rd,t≤T λ(t, x) which is bounded thanks to the first step of the
proof. It follows from the inequality above that

(A.4) |λ(t, x)− λ(t′, x)| ≤ αLf‖u‖∞h+ Lf‖w
x‖L1(ρ)‖λ‖[0,T ]×Rd,∞

(

(eαh − 1)(1 − e−αh) +
(eαh − 1)

α

)

.

On the other hand, the Lipschitz continuity of f implies that

|λ(t′, x)− λ(t′, y)| ≤ Lfe
−αt′ |u0(x)− u0(y)|

+ Lf

∫ t′

0
e−α(t′−s)

∫

Rd

λ(s, z)|w(z, x) −w(z, y)|dsρ(dz).

Thus, using the Lipschitz-continuity of u0, the Lipschitz-continuity of w and the bounded-
ness of λ, we deduce from the inequality above that

(A.5) |λ(t′, x)− λ(t′, y)| ≤ Lf

(

e−αt′Lu0 + ‖λ‖[0,T ]×Rd,∞(1− e−αt′)α−1Lw

)

‖x− y‖.

Inequality (A.5) proves (3.13) and, together with (A.4), proves the continuity of λ.
Therefore it remains to establish (3.14). For that sake, observe that the Lipschitz conti-

nuity of f implies that

|F (λ)(t, x) − F (λ̃)(t, x)| ≤ Lf

∫

Rd

|w(y, x)|

∫ t

0
e−α(t−s)

∣

∣

∣
λ(s, y)− λ̃(s, y)

∣

∣

∣
dsρ(dy),

whence

|F (λ)(t, x) − F (λ̃)(t, x)| ≤ Lf‖w
x‖L1(ρ)‖λ− λ̃‖[0,T ]×Rd,∞

∫ t

0
e−α(t−s)ds,

which implies the result.
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