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Abstract

In this article, we introduce a new Polarizable Continuum Model (PCM) based on the
Solvent Excluded Surface (SES). The model incorporates an intermediate switching region for
the solute-solvent dielectric boundary to enhance a smooth electrostatic contribution to the
solvation energy. The Schwarz domain decomposition method is applied to solve this model,
the crucial part of which is the discretization of each local equation defined on a subdomain
(consisting of a ball) based on the spherical harmonics in the angular direction and the Legendre
polynomials in the radial direction. A series of numerical tests are presented to show the
performance of the proposed method for this model.

Keywords: Polarizable continuum model; Solvent excluded surface; Solvation energy; Domain
decomposition method

1 Introduction
Most of the physical and chemical phenomena of interest in chemistry and biology take place in
the liquid phase, and it is well known that solvent effects play a crucial role in these processes.
There are basically two different approaches to account for solvent effects in the computation of
the properties of a solvated molecule or ion. The first approach is to use an explicit solvent model,
in which the simulated chemical system is composed of the solute molecule and of a large number
of solvent molecules. The second approach is to use an implicit solvent model, in which the solute
molecule under study, sometimes together with a small number of solvent molecules weakly bonded
to the solute, is embedded in a cavity surrounded by a continuous medium modeling the solvent.
Implicit solvent models are widely used in practice and the Polarizable Continuum Model (PCM)
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is a popular type of implicit solvent model which represents the solvent as a polarizable continuum.
For the sake of brevity, we will not elaborate here on their capabilities and limitations, nor on their
applications in chemistry and bio-chemistry, and refer the reader to the monograph and the review
articles [2, 32, 19] and references therein.

1.1 Previous works
An integral equation formalism (IEF) [5, 20, 4] of the PCM was first proposed by E Cancès, B
Mennucci and J Tomasi, which has been the default PCM formulation in Gaussian [7]. From the
computational point of view, one big advantage of this formalism is that it transforms the original
problem defined in the 3D space equivalently to an integral equation on the dielectric boundary and
therefore the computational cost can be greatly reduced. Another popular implicit solvent model is
the conductor-like screening model (COSMO) [13] where the solvent is modeled as a conductor-like
continuum. This model can be seen as a special case of the PCM where the solvent dielectric
constant is set to +∞ and the solvent is therefore represented by a perfect conductor.

In the passed several years, a new algorithm for solving the COSMO has been developed using
the domain decomposition method, called the ddCOSMO method [3, 18, 15, 17]. This algorithm
has attracted much attention because of its very impressive efficiency, that is, it performs up to two
orders of magnitude faster than the algorithm in Gaussian [15]. Recently, a similar discretization
for the PCM within the domain decomposition paradigm was proposed, called the ddPCM method
[31], which is based on the IEF-PCM. One important fact is that both the ddCOSMO and the
ddPCM work only for the solute cavity constituted by the union of balls, such as the van der Waals
(VdW) cavity and the Solvent Accessible Surface cavity (SAS-cavity) [14, 29]. Due to the recent
progress, the resolution of the COSMO and the PCM by ddCOSMO resp. ddPCM has become
sufficiently fast (see website [16]) so that one start to raise the question of the proper definition of
the solute cavity.

Indeed, the choice of the cavity is important as pointed out in [33, Section II. C.]: The shape
and size of the cavity are critical factors in the elaboration of a method. An ideal cavity should
reproduce the shape of the solute M, with the inclusion of the whole charge distribution ρM and with
the exclusion of empty spaces which can be filled by the solvent continuous distribution.

Besides the VdW-cavity and the SAS-cavity, there is another well-known solute cavity, called
the Solvent Excluded Surface cavity (SES-cavity), associated with the Solvent Excluded Surface
(SES) which is the so-called “smooth” molecular surface. The SES-cavity has a stronger physical
meaning than the SAS-cavity in the sense that the SES-cavity takes the size of solvent molecules
better into account and represents better the region where the solvent molecules have no access in
the spirit of the quote above. This suggests that taking the SES-cavity into account might yield
more accurate results than with the SAS-cavity which is confirmed so far in [28, 23]. Moreover,
in a recent work [24, 25] of some of us, we have presented a complete characterization of the SES
including all possible SES-singularities, which were not characterized completely until then. This
allows us to further generalize the ddCOSMO and the ddPCM from the VdW-cavity or the SAS-
cavity to the SES-cavity. The topology of the SES-cavity is much more challenging with respect
to the VdW-cavity or the SAS-cavity which consists of the topological boundary of overlapping
spheres.
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1.2 Contribution
In this article, we propose a new PCM based on the SES, where an intermediate region for the
solute-solvent dielectric boundary is constructed and the dielectric permittivity varies smoothly
from the SES-cavity to the solvent region. The corresponding dielectric permittivity function is a
distance-dependent (to the SES) continuous function associated with the signed distance function
to the Solvent Accessible Surface (SAS), which is used to implicitly define the SES. To solve the
electrostatic problem of this new model, a global strategy is consequently proposed, in which we
use the domain decomposition method involving only local problems in a ball. We develop a
solver suited to the Generalized Poisson (GP) equation defined in each ball. We also present some
numerical results to illustrate the performance of this method for the proposed PCM.

To our knowledge, this is the first time that a continuous dielectric permittivity function of
the PCM is constructed based on the exact SES-cavity since the complete characterization of the
SES has just been finished [24, 25]. In addition, we provide a new domain decomposition method
that implicitly relies on integral equations but explicitly only requires to solve Partial Differential
Equations (PDEs) on bounded sub-domains.

1.3 Outline
In Section 2, we first introduce different solute cavities including the VdW-cavity, the SAS-cavity
and the SES-cavity. Then, in Section 3, we propose a new PCM based on the SES-cavity by
constructing a continuous permittivity function associated with the signed distance to the SAS,
which ensures that the SES-cavity always has the permittivity of vacuum. Next, we present the
formulation of the electrostatic problem for this new PCM and the global strategy for solving it in
Section 4. In Section 5, we introduce the domain decomposition scheme for solving iteratively the
partial differential equations in the global strategy. This domain decomposition method requires
to develop a Laplace solver and a GP-solver for the unit ball, which are presented in Section 6.
After that, in Section 7, we illustrate a series of numerical results about computing the electrostatic
contribution to the solvation energy of the new PCM based on the SES-cavity. In the last section,
we draw some conclusions.

2 Solute cavities
In an implicit solvent model, the solvent is represented as a continuous medium instead of individual
explicit solvent molecules. In this case, it is important to choose a suitable solute-solvent boundary,
the interface between the solute cavity and the solvent cavity, which is an important ingredient
of the model. One choice of the solute cavity is the VdW-cavity which is the union of solute
VdW-atoms with radii experimentally fitted given the underlying chemical element, for example
the UFF-radii [27].

Another choice is to model the solute surface taking the solvent molecules into account and
consequently model the solute cavity as the region enclosed by this surface. The solvent accessible
surface is such a solute surface defined by rolling the center of an idealized spherical probe (repre-
senting a solvent molecule) over a solute molecule. The surface enclosing the region in which the
center of this spherical probe can not enter builds the SAS. In consequence, the region enclosed by
the SAS is called the SAS-cavity, denoted by Ωsas. Besides, another model for the solute surface
has been established, the solvent excluded surface. The SES is defined by the same spherical probe
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Figure 1: The SAS (left, Γsas) and the SES (right, Γses) of caffeine with solvent probe radius
rp = 1.5Å. On the right, the SES is composed of convex spherical patches (red), toroidal patches
(yellow) and concave spherical patches (blue).

rolling over the solute molecule, but considering now the surface enclosing the region in which the
spherical probe itself (not its center) can not access. Similarly, this region enclosed by the SES is
called the SES-cavity, denoted by Ωses. In other words, the SES is the boundary of the union of all
spherical probes that do not intersect the VdW-balls (with scale factor 1) of the solute molecule.

Figure 1 gives a graphical illustration of the SAS and the SES of caffeine derived from our recent
work [24]. From the geometrical point of view, the SES is smoother than the VdW-surface or the
SAS and furthermore, the SES-cavity has a strong physical meaning that it is the cavity where
the (idealized) solvent molecules can not touch because of the presence of the solute. It is actually
implicitly assumed that the solvent molecule can not overlap any VdW-atom of the solute.

To set the notation, we suppose that the solute molecule is composed of M atoms and the jth
atom has a center cj and a radius rj . The probe radius is denoted by rp. For each 1 ≤ j ≤ M ,
we define an “enlarged” ball Ωj with center cj and radius Rj = rj + rp + r0 where r0 is some
nonnegative constant. In the following content, we assume that the solvent dielectric constant (also
called permittivity) outside the union of these “enlarged” balls is a constant εs. This assumption is
reasonable in the sense that the solvent density at positions far from the solute molecule (bulk) is
approximately the same. Therefore, the dielectric permittivity determined by the solvent density
is assumed to be constant [8, 1].

Thus, the solute molecule should be completely contained in the union of these enlarged balls.
We denote the union of these balls Ωj by

Ω0 =
M⋃
j=1

Ωj , with Ωj = BRj (cj).

In addition, we denote the boundary surfaces associated with the above-mentioned cavities as
Γsas = ∂Ωsas, Γses = ∂Ωses, Γ0 = ∂Ω0.

Denoting by fsas the signed distance function to the SAS (negative inside the SAS and positive
outside the SAS), we have consequently a mathematical characterization of the three cavities:
Ωsas = {p ∈ R3 : fsas(p) ≤ 0}, Ωses = {p ∈ R3 : fsas(p) ≤ −rp} and Ω0 = {p ∈ R3 : fsas(p) ≤ r0}
and also a characterization of the three boundary surfaces: Γsas = f−1

sas (0), Γses = f−1
sas (−rp) and

Γ0 = f−1
sas (r0). In our recent work [24], we have presented a direct and efficient way to compute
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analytically the function value of fsas based on finding the closest point on the SAS to an arbitrary
point and consequently a complete characterization of the SES including all singularities. This
allows us to propose in the next section a new PCM based on the SES-cavity with its permittivity
function associated through fsas.

3 Continuous Permittivity function
In the classical PCM based on some solute cavity Ω [21], the permittivity ε is defined as

ε =

®
1 in Ω,

εs in R3\Ω,
(3.1)

which implies that there is a jump of the permittivity on the cavity boundary ∂Ω. This solute
cavity is usually taken to be formed by overlapping spheres, for example, the VdW-cavity and the
SAS-cavity. However, both the VdW-cavity and the SAS-cavity can have topological issues. For
instance, they can present holes that allow the solvent to penetrate in nonphysical regions. As a first
remedy, the scaled VdW-cavity is usually used, in the model of which each atom has a radius equal
to its corresponding VdW-radii multiplied by an empirical factor 1.1 ∼ 1.2, see the discussion in [33,
Section II. C.]. However, this might increase the volume of the solute too much so that solvent can
not access in regions it should. From [33] we quote: If the cavity is too large the solvation effects
are damped; if it is too small serious errors may arise in the evaluation of the interaction energy
for the portions of ρM (atoms or bonds) near the boundaries. The problem is that the VdW- and
SAS-cavities are topologically not the correct answer to the problem and scaling the radius is only
partially satisfying. The SES-cavity, which is topologically more involved than the VdW-cavity
or the SAS-cavity, provides a remedy since it is topologically more accurate as motivated in the
introduction.

In this article, we propose another PCM taking into account the SES-cavity to compute the
electrostatic contribution to the solvation energy. We treat the SES as the solute-solvent dielectric
boundary (or the solute cavity boundary) meaning that the dielectric permittivity in the SES-cavity
is always one, i.e., the permittivity of vacuum. Furthermore, we assume that the permittivity varies
smoothly in an intermediate switching region between Γses and Γ0, called the dielectric boundary
layer, see the left of Figure 2 for a 2D schematic diagram. Outside the cavity Ω0, the permittivity
is taken to be the solvent dielectric constant εs as assumed in Section 2.

The crucial part is to determine the way the permittivity changes from 1 to εs. To our knowledge,
the dielectric permittivity is greatly affected by the solvent density which has a fluctuation behavior
(see [6] and Chapter 1 of [11]) near the solute due to solvent ordering. This implies that it is not
sufficient to take a constant value for modeling the solvent environment. Many attempts have been
done to introduce a continuous change of dielectric permittivity occurring near the solute cavity
[12, 8, 1]. However, in these models, the permittivity function are usually based on the VdW-cavity
(or VdW-atoms) and the permittivity value can only be ensured to be one in the VdW-cavity but not
in the SES-cavity. To construct a intuitively more physical permittivity model which ensures that
the SES-cavity (i.e. the region where the solvent can not access) completely has the permittivity
of vacuum, we propose a continuous permittivity function which depends on the signed distance
function fsas to the SAS. Precisely speaking, we give a definition of the permittivity function ε in
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Figure 2: 2D schematic diagrams of the permittivity function ε (left) and the electrostatic problem
(right) for a two atomic system. The permittivity ε in the dielectric boundary layer (dark blue
region) between two interfaces Γses (red curve) and Γ0 (dashed blue curve) varies smoothly from 1
inside Γses to εs outside Γ0.

the form of

ε(p) =


1 p ∈ Ωses,

H

Å
fsas(p) + rp

rp + r0

ã
p ∈ Ω0\Ωses,

εs p ∈ Ωc
0,

(3.2)

where Ωc
0 = R3\Ω0 and H is a continuous function defined on [0, 1] satisfying H(0) = 1, H(1) = εs.

Note that ε is ensured to be continuous in the whole 3D space, especially on the boundary Γses

and Γ0. Moreover, ε can be seen as a distance-dependent function where the “distance” represents
the signed distance to the SAS. See Figure 3 for a schematic diagram of the dielectric permittivity
function.

To guarantee the smoothness of permittivity on two interfaces Γses and Γ0, we can impose more
conditions to the function H, for example,

H ′(0) = 0, H ′(1) = 0, H ′′(0) = 0, H ′′(1) = 0.

In this case, ε is twice continuously differentiable almost everywhere on Γses and Γ0 since fsas is
twice continuously differentiable almost everywhere. In the following content, we simply choose a
S-shaped polynomial function as H for numerically computing the electrostatic contribution to the
solvation energy:

H(t) = 1 + (εs − 1)t3(10 + 3t(−5 + 2t)), 0 ≤ t ≤ 1. (3.3)

With the above function H, the jump of the normal derivative of the permittivity function is zero
on the boundary Γses and Γ0.

Remark 3.1. We emphasize that the function H can be chosen in many different manners satisfying
various conditions. This characterizes the way the permittivity varies in the intermediate switching
region. The definition (3.3) of H is the version that we considered in the numerical tests of the
proposed algorithm.
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Figure 3: 2D schematic diagram of the dielectric permittivity function with respect to fsas. The
switching region (dielectric boundary layer) is bounded by two dashed lines (red), i.e., the region
where −rp ≤ fsas ≤ r0.

We mention that the above-proposed model can also be used to approach classical polarizable
continuum models with sharp interfaces. If one chooses a sequence of H approaching the following
discontinuous function

χ1(t) =

®
1 t < −rp,

εs t ≥ −rp,
(3.4)

then the governing equations of the above-proposed PCM approaches the equations of a PCM where
the SES-cavity is in vacuum and is surrounded by the continuum medium, i.e. with a sharp interface
between solvent and solute. Similarly, if H approaches the following discontinuous function

χ2(t) =

®
1 t < 0,

εs t ≥ 0,
(3.5)

then the governing equations of the above-proposed PCM approaches the equations of the PCM
based on the SAS-cavity where the SAS-cavity is in vacuum and is surrounded by the continuum
medium.

4 Problem formulation and global strategy

4.1 Problem formulation
With the above PCM based on the SES-cavity, we aim to compute the electrostatic contribution
to the solvation energy, denoted by Es. This contribution Es can be written as

Es =
1

2

∫
R3

ρ(r)W (r) dr, (4.6)
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where W denotes the (solvent) reaction potential generated by the solute’s charge density ρ in
presence of the dielectric continuum. The governing equations for the potentialW will be explained
in this section.

We postpone the definition of W and assume that the electrostatic potential Φ generated by the
solute’s charge density ρ in vacuum is already known and ρ is supported in Ωses, i.e. supp(ρ) ⊂ Ωses,
which is a standard assumption in the content of the PCM. Notice that Φ satisfies the following
partial differential equation (PDE)

−∆Φ = 4πρ, in R3. (4.7)

As presented in [3], we consider for simplicity a neutral solute molecule with a classical charge
distribution

ρ(r) =
M∑
j=1

qjδcj (r), ∀r ∈ R3, (4.8)

where qj represents the charge of the jth atom and δcj is the Dirac function at the atomic center
cj . In consequence, the electrostatic potential Φ generated by ρ is derived as

Φ(r) =
M∑
j=1

qj
|r− cj |

. (4.9)

In the PCM, the electrostatic potential V generated by the solute’s charge density ρ satisfies the
following PDE

−∇ · ε∇V = 4πρ, in R3 (4.10)

and V (r) ∼ 1
|r| as |r| → ∞.

The reaction potential W , defined by W = V − Φ, is the difference between the electrostatic
potentials with and without the presence of the implicit solvent which satisfies

∆W = 0 in Ωses,

−∇ · ε∇W = ∇ · ε∇Φ in Ω0\Ωses,

∆W = 0 in Ωc
0,

(4.11)

where Ωc
0 = R3\Ω0. Further, at the interfaces Γses and Γ0, we require the following classical

jump-conditions ®
[W ] = 0 on Γses and Γ0,

[∂n0W ] = 0 on Γses and Γ0,
(4.12)

since the permittivity ε is continuous across the interfaces. Here, n0 is the unit normal vector on Γ0

pointing outwards with respect to Ω0, ∂n0W denotes the normal derivative ∇W · n0, [W ] denotes
the jump (inside minus outside) of the reaction potential W on the boundary surfaces Γses and Γ0,
[∂n0

W ] denotes the jump of the normal derivative of the reaction potential. Since supp(ρ) ⊂ Ωses

and ε = 1 in Ωses, we have ∆Φ = 0 in Ω0\Ωses and consequently the above Eqs (4.11)–(4.12) can
be recast as ®

−∇ · ε∇W = ∇ · (ε− 1)∇Φ in Ω0,

∆W = 0 in Ωc
0,

(4.13)
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in combination with ®
[W ] = 0 on Γ0,

[∂n0W ] = 0 on Γ0.
(4.14)

See the right of Figure 2 for a 2D schematic diagram.
In the second equation of (4.13), a single layer potential S̃Γ0

: H−
1
2 (Γ0)→ H1(Ωc

0) can be used
to represent the electrostatic potential W restricted in Ωc

0 as followsÄ
S̃Γ0

σ
ä

(r) =

∫
Γ0

σ(s′)

|r− s′|
ds′ = W |Ωc

0
(r), ∀r ∈ Ωc

0, (4.15)

where σ is some function in H−
1
2 (Γ0). From the continuity of the single-layer potential across the

interface, see for example [30, 9], we take the limit to Γ0, so as to obtain the integral equation

(SΓ0σ) (s) =

∫
Γ0

σ(s′)

|s− s′|
ds′ = W |Γ0(s), ∀s ∈ Γ0, (4.16)

where SΓ0
: H−

1
2 (Γ0) → H

1
2 (Γ0) is the single-layer operator which is invertible (see also [30, 9])

and thus defines σ ∈ H− 1
2 (Γ0). Further, we can artificially extend the potential defined by (4.15)

to Ω0 as follows

W̃ (r) :=

∫
Γ0

σ(s′)

|r− s′|
ds′, ∀r ∈ Ω0 (4.17)

satisfying
∆W̃ = 0, in Ω0 (4.18)

and
W̃ = W |Ωc

0
, on Γ0. (4.19)

Recalling the relationship between the charge density σ and the jump of the normal derivative of
the potential on Γ0 generated by σ [31], we actually have

σ =
1

4π

Ä
∂n0

W̃ − ∂n0
W |Ωc

0

ä
, on Γ0. (4.20)

Combining with [∂n0
W ] = 0 on Γ0 in (4.14), i.e., ∂n0

W |Ω0
= ∂n0

W |Ωc
0
, we therefore obtain

σ =
1

4π

Ä
∂n0

W̃ − ∂n0
W |Ω0

ä
, on Γ0. (4.21)

Also, since [W ] = 0 in (4.14) and W̃ = W |Ωc
0
on Ω0, we have W̃ = W on Γ0.

Finally, let’s summary what we have in hand now. We have obtained two PDEs of W and W̃
both defined on Ω0 ®

−∇ · ε∇W = ∇ · (ε− 1)∇Φ in Ω0,

∆W̃ = 0 in Ω0,
(4.22)

and two boundary conditions coupling themW = W̃ on Γ0,

σ =
1

4π

Ä
∂n0

W̃ − ∂n0
W
ä

on Γ0,
(4.23)
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where σ is the density generating W̃ by (4.17). To compute the electrostatic contribution to the
solvation energy, we need to compute W which involves solving Eqs (4.22)–(4.23). Although we
solve for a problem in an unbounded domain, we need to solve equations only on the bounded
domain Ω0 which is a remarkable property.

4.2 Global strategy
From the above formulation, we propose the following iterative procedure for solving Eqs (4.22)–
(4.23): Let g0 be an initial guess for the Dirichlet condition W |Γ0

= W̃ |Γ0
on Γ0 and set k = 1.

[1] Solve the following Dirichlet boundary problem for W k:®
−∇ · ε∇W k = ∇ · (ε− 1)∇Φ in Ω0,

W k = gk−1 on Γ0,
(4.24)

and derive its Neumann boundary trace ∂n0
W k on Γ0.

[2] Solve the following Dirichlet boundary problem for W̃ k:{
−∆W̃ k = 0 in Ω0,

W̃ k = gk−1 on Γ0,
(4.25)

and derive similarly its Neumann boundary trace ∂n0
W̃ k on Γ0.

[3] Build the charge density σk =
1

4π
(∂n0

W̃ k − ∂n0
W k) and compute a new Dirichlet condition

gk = SΓ0σ
k.

[4] Compute the electrostatic contribution Es
k to the solvation energy following (4.6) based on

W k at the k-th iteration, set k ← k + 1, go back to Step [1] and repeat until the increment
of electrostatic interaction |Es

k − Es
k−1| becomes smaller than a given tolerance Tol� 1.

Remark 4.1. In order to provide a suitable initial guess of g0, we consider the (unrealistic) scenario
where the whole space R3 is covered by the solvent medium with the permittivity εs. In consequence,
the electrostatic potential V is given by V = 1

εs
Φ and the reaction potential is provided by W =

V − Φ =
Ä

1
εs
− 1
ä

Φ. We therefore propose the following initial Dirichlet boundary function g0 for
the first iteration:

g0 =

Å
1

εs
− 1

ã
Φ. (4.26)

Remark 4.2. This iterative procedure has the remarkable property that we solve a problem on an
unbounded domain by a sequence of problems on bounded domains only. It can be seen as a domain
decomposition method on the two non-overlapping domains Ω0 and Ωc

0 where only problems on the
bounded domain Ω0 are solved.

In the next section, we propose to use the classical Schwarz domain decomposition method to
solve the PDE (4.24) in Step [1] and the PDE (4.25) in Step [2] by introducing sub-iterations.
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5 Domain decomposition strategy
The Schwarz’s domain decomposition method [26] aims at solving partial differential equations
defined on complex domains which can be decomposed as a union of overlapping and possibly simple
subdomains. For each subdomain, the same equation is solved but with boundary conditions that
depend on the global boundary condition on one hand and on the neighboring solutions on the
other hand.

Recalling that we have a natural domain decomposition of Ω0 as follows

Ω0 =
M⋃
j=1

Ωj , Ωj = BRj (cj),

the Schwarz’s domain decomposition method can be applied to solve the PDE (4.24). We replace
the global equation (4.24) by the following coupled equations, each restricted to Ωj :®

−∇ · ε∇Wj = ∇ · (ε− 1)∇Φ in Ωj ,

Wj = hj on Γj ,
(5.27)

where Wj = W |Ωj , Γj = ∂Ωj and

hj =

®
WNj on Γi

j ,

g on Γe
j .

(5.28)

Here, we omit the superscript due to the (outer) iteration index k. Γe
j is the external part of Γj

not contained in any other ball Ωi (i 6= j), i.e., Γe
j = Γ0 ∩ Γj , Γi

j is the internal part of Γj , i.e.,
Γi
j = Ω0 ∩ Γj (see Figure 4 for an illustration), and

WNj (s) =
1

|N (j, s)|
∑

i∈N (j,s)

Wi(s), ∀s ∈ Γi
j , (5.29)

where N (j, s) represents the index set of all balls that overlap Ωj at s. In fact, for a fixed point
s ∈ Γi

j , we enforce Wj = WNj (s).
In the next section, we will develop a GP-solver for solving the local problems (5.27). For each

local problem defined on Ωj , this solver provides an approximate weak solution. Based on this
solver, an iterative procedure can be applied to solve the coupled equations (5.27)–(5.28), such as
the Jacobi or Gauss-Seidel algorithms as presented in [3]. The idea of the Jacobi algorithm is to
solve each local problem based on the boundary condition of the neighboring solutions derived from
the previous iteration. During this iterative procedure, the computed value ofW |Γi

j
is updated step

by step and converges to the exact value.
The Jacobi or Gauss-Seidel algorithms are not the most efficient way to solve this set of equa-

tions, but is well-suited to illustrate the idea of domain decomposition. In practice, a global problem
(linear system after introducing a discretization) might be solved with GMRes for example.

Remark 5.1. Notice that the global strategy for computing the electrostatic contribution to the
solvation energy in Section 4.2 is also an iterative process (it was indexed by k). To distinguish
these two iterations, the global iteration in Section 4.2 is called the outer iteration and the iteration
of solving the GP-equation Eq. (4.24) by iteratively solving the set of local problems (5.27) is called
the inner iteration. Of course, for the sake of efficiency, these two iterations (inner and outer)
should be intertwined.
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Figure 4: 2D schematic diagram of Γi
j (red) and Γe

j (blue) associated with Ωj .

As to solve the Laplace equation (4.25), we still use the domain decomposition method which
is called the ddCOSMO method in this context and has been developed in [3]. In fact, Eq. (4.25)
can been seen as a special case of Eq. (4.24) when ε = 1. In consequence, the same domain
decomposition method as presented in (5.27)–(5.28) can be used where each local problem (5.27)
simplifies to a Laplace problem.

6 Single-domain solvers

6.1 Laplace equation in a ball
As seen above, it is required to solve a set of coupled Laplace equations, each of which is restricted
to a ball as in the ddCOSMO. For the sake of completeness, we now introduce briefly the ideas.
Without loss of generality, we consider the following Laplace equation with the Dirichlet boundary
condition φ0 and defined in the unit ball with center 0:®

∆u0 = 0 in B1(0),

u0 = φ0 on ∂B1(0).
(6.30)

where B1(0) represents the unit ball centered at the origine 0. In consequence, the unique solution
to (6.30) in H1(B1(0)) can be written as

u0(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

[φ0]m` r
` Y m` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (6.31)

where Y m` is the (orthonormal) spherical harmonic of degree ` and order m defined on S2 and

[φ0]m` =

∫
S2
φ0(s)Y m` (s)ds

is the real coefficient of u0 corresponding to the mode Y m` .
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To compute (6.31) numerically, we first approximate [φ0]m` using the Lebedev quadrature rule
[10] defined by the integration points sn ∈ S2 and their weights wleb

n as follows

[φ̃0]m` =

Nleb∑
n=1

wleb
n φ0(sn),

where Nleb represents the number of Lebedev points. Then, u0 can be approximated by ũ0 in the
discretization space spanned by a truncated basis of spherical harmonics {Y m` }0≤`≤`max, −`≤m≤`,
defined as

ũ0(r, θ, ϕ) =

`max∑
`=0

∑̀
m=−`

[φ̃0]m` r
` Y m` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π (6.32)

where `max denotes the maximum degree of spherical harmonics. This approximate solution ũ0

converges to the exact solution u0 to Eq. (6.30) when `max →∞ and Nleb →∞. One should note
however that there is no systematic manner to derive Lebedev points of arbitrary accuracy.

6.2 Generalized Poisson equation in a ball
To solve the local equations (5.27), we need to develop a solver for the GP-equation defined on Ωj
with the Dirichlet boundary condition (5.28). Without loss of generality, we discuss how to solve
the following GP-equation in the unit ball with center 0 in the general form of®

−∇ · ε1(x)∇u1(x) = f1(x) in B1(0),

u1(x) = φ1(x) on ∂B1(0).
(6.33)

In fact, for any j = 1, . . . ,M , we take ε1(x) = ε(cj + Rjx), u1(x) = Wj(cj + Rjx), f1(x) =
∇ · (ε1(x)− 1)∇Φ(cj +Rjx) and φ1(x) = hj(cj +Rjx) where ε, Wj , Φ, hj are as in Eqs (5.27)–
(5.28).

From the discussion in Section 6.1, we know that there exists a unique harmonic function
û ∈ H1(B1(0)), s.t. ®

∆û1 = 0 in B1(0),

û1 = φ1 on ∂B1(0),
(6.34)

and û1 can be efficiently approximated by Eq. (6.32). Let v = u1 − û1 ∈ H1
0 (B1(0)) and in

consequence, v satisfies the following PDE®
−∇ · ε1∇v = f in B1(0),

v = 0 on ∂B1(0),
(6.35)

where f(x) = ∇ · (ε1(x)− 1)∇Φ(cj +Rjx) +∇ · ε1(x)∇û1(x).
Since the VdW-ball Brj (cj) ⊂ Ωj and ε ≡ 1 holds in Brj (cj), we know that Wj defined in (5.27)

is harmonic when restricted to the smaller ball Brj (cj). In consequence, u1 of Eq. (6.33) and v of
Eq. (6.35) are both harmonic in Bδ(0), where δ is defined by

δ =
rj

rj + r0 + rp
∈ (0, 1).
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Let D = B1(0)\Bδ(0) represent the region between ∂B1(0) and ∂Bδ(0) and define the subspace
H1

0,δ(D) of the Sobolev space H1(D) as follows

H1
0,δ (D) =

{
w ∈ H1 (D) : w|∂B1(0) = 0

}
.

In order to find the weak solution restricted to H1
0,δ(D), we can write a variational formulation as:

find v ∈ H1
0,δ(D), s.t. ∀w ∈ H1

0,δ(D),∫
D
ε1∇v · ∇w +

∫
∂Bδ(0)

(T v)w =

∫
D
fw, (6.36)

where we use the fact that ε1|∂Bδ(0) = 1. The operator T is the Dirichlet-to-Neumann operator of
the harmonic extension in Bδ(0), that in terms of spherical harmonics is given below. Assume that
we have an expansion of the Dirichlet boundary condition v|∂Bδ(0) as follows

v|∂Bδ(0)(δ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

α`m Y
m
` (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (6.37)

Then, we can extend v|∂Bδ(0) harmonically from ∂Bδ(0) to the ball Bδ(0), i.e.,

v|Bδ(0)(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

α`m

(r
δ

)`
Y m` (θ, ϕ), 0 ≤ r ≤ δ, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (6.38)

Denote by nδ the unit normal vector on the sphere ∂Bδ(0) pointing outwards with respect to the
ball Bδ(0). In consequence, we can compute ∂nδv = ∇v · nδ consisting of the normal derivative of
v on ∂Bδ(0):

T v(δ, θ, ϕ) := ∂nδv(δ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

α`m

Å
`

δ

ã
Y m` (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (6.39)

It is also easy to see that the bilinear form on the left side of the variational formulation (6.36)
is symmetric and coercive due to properties of the Dirichlet-to-Neumann operator T .

6.2.1 Galerkin Discretization

In order to find basis functions belonging to H1
0,δ (D), we first introduce the radial functions

ϕi(r) = (1− r)L′i
Å

2(r − δ)
1− δ

− 1

ã
,

implying that ϕi(1) = 0. Here, Li denotes the Legendre polynomial of i-th degree. We then
discretize both, the radial part and the angular part of the unknown v, meaning that we represent
v by linear combination of the basis functions {ϕi(r)Y m` (θ, ϕ)} with 1 ≤ i ≤ N , 0 ≤ ` ≤ `max and
−` ≤ m ≤ `, where N denotes the maximum degree of Legendre polynomials and `max denotes the
maximum degree of spherical harmonics as in Section 6.1. The spanned space of these functions is
denoted by VN,`max

(D) which is defined as follows

VN,`max(D) = span {ϕi(r)Y m` (θ, ϕ) | 1 ≤ i ≤ N, 0 ≤ ` ≤ `max,−` ≤ m ≤ `} ⊂ H1
0,δ(D).
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Then, we consider a Galerkin discretization of the variational formulation (6.36) that reads: find
ṽ ∈ VN,`max(D), such that

∀w̃ ∈ VN,`max(D) :

∫
D
ε1∇ ṽ · ∇ w̃ +

∫
∂Bδ(0)

(T ṽ) w̃ =

∫
D
f w̃. (6.40)

Since ṽ ∈ VN,`max
(D), we can write ṽ in the form of

ṽ(r, θ, ϕ) =
N∑
i=0

`max∑
`=0

∑̀
m=−`

vi`m ϕi(r)Y
m
` (θ, ϕ), ∀δ ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (6.41)

and we consequently have

T ṽ|Bδ(0)(δ, θ, ϕ) =
N∑
i=0

`max∑
`=0

∑̀
m=−`

vi`m

Å
`

δ

ã
ϕi(δ)Y

m
` (θ, ϕ). (6.42)

By substituting (6.41)–(6.42) into (6.40) and taking the test function w̃ ∈ VN,`max
(D) as w̃ =

ϕi′(r)Y
m′

`′ (θ, ϕ), we then obtain the a system of linear equations: ∀1 ≤ i′ ≤ N, 0 ≤ `′ ≤ `max,−`′ ≤
m′ ≤ `′,

N∑
i=0

`max∑
`=0

∑̀
m=−`

vi`m

Ç∫
D
ε1∇ (ϕi Y

m
` ) · ∇

Ä
ϕi′ Y

m′

`′

ä
+
`

δ

∫
∂Bδ(0)

ϕi Y
m
` ϕi′ Y

m′

`′

å
=

∫
D
f ϕi′ Y

m′

`′ .

(6.43)
In order to write the corresponding system of linear equations, we define an index

k = N(`2 +m+ `) + i ∈
{

1, 2, . . . , N(`max + 1)2
}

which corresponds to the triple (i, `,m) through a one-to-one mapping between k and (i, `,m).
Assume that k corresponds to (i, `,m) and k′ corresponds to (i′, `′,m′). Then, we can recast the
set of equations (6.43) as a linear system of the form

AX = F. (6.44)

Here A is a symmetric matrix of dimension N(`max + 1)2×N(`max + 1)2 with elements (A)kk′ , for
all 1 ≤ k, k′ ≤ N(`max + 1)2, defined by

(A)k′k =

∫
D
ε1∇ (ϕi Y

m
` ) · ∇

Ä
ϕi′ Y

m′

`′

ä
+
`

δ

∫
∂Bδ(0)

ϕi Y
m
` ϕi′ Y

m′

`′ , (6.45)

X is the column vector of N(`max + 1)2 unknowns vi`m, i.e.,

(X)k = vi`m, ∀1 ≤ k ≤ N(`max + 1)2 (6.46)

and F is also a column vector with N(`max + 1)2 entities defined by

(F )k′ =

∫
D
f ϕi′ Y

m′

`′ , ∀1 ≤ k′ ≤ N(`max + 1)2. (6.47)
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In summary, to solve Eq. (6.36), we finally need to solve the linear system (6.44) to obtain all
coefficients vi`m and then obtain an approximate solution ṽ(r, θ, ϕ) ∈ VN,`max(D) according to Eq.
(6.41). Considering that v is harmonic in Bδ(0), ṽ can then be extended harmonically in the ball
Bδ(0) following (6.38). Therefore, we obtain an approximate solution defined on B1(0) to Eq.
(6.35).

Remark 6.1. In the global iterative procedure of Section 4.2, we compute the matrix A of Eq.
(6.44) for each subdomain Ωj a priori, since each A associated with Ωj can be reused within the
iterative GP-solver for solving Eq. (4.24) and for the outer iterations [1]–[4]. This helps to reduce
considerably the cost of the global procedure at the cost of more memory requirements.

6.2.2 Numerical integration

In order to implement the method, the integrals in Eq. (6.45) and Eq. (6.47) need to be further
computed. We start by observing that the second term in Eq. (6.45) can be simplified

`

δ

∫
∂Bδ(0)

ϕi Y
m
` ϕi′ Y

m′

`′ = ` δ ϕi(δ)ϕi′(δ)

∫
S2
Y m` Y m

′

`′ = ` δ ϕi(δ)ϕi′(δ) δ``′ δmm′ , (6.48)

where δ``′ and δmm′ are both the Kronecker deltas. In consequence, the solution matrix (A) is
symmetric. Next, we present the numerical integration over D that is used to approximate the
integral in the first term in Eq. (6.45) and the integral in Eq. (6.47).

The integral over D can be divided into two parts: the radial part and spherical part, that is to
say, for any given function h ∈ L1(B1(0)), we can compute its integral over D separately as below∫

D
h(x)dx =

∫ 1

δ

r2

∫
S2
h(r, s)ds dr, (6.49)

where s ∈ S2 and x = rs. To compute the spherical part of this integral, we use again the Lebedev
quadrature rule for the unit sphere as in Section 6.1. To integrate the radial part numerically,
we use the Legendre-Gauss-Lobatto (LGL) quadrature rule [22] defined by the integration points
xm ∈ [−1, 1] and their weights wlgl

m , 1 ≤ m ≤ Nlgl, where Nlgl represents the number of LGL points.
Using the change of variable r = 1−δ

2 (x + 1) + δ, x ∈ [−1, 1], we approximate the integral by the
following quadrature rule∫

D
h(x)dx =

∫ 1

δ

r2

∫
S2
h(r, s)ds dr

=

∫ 1

−1

1− δ
2

Å
1− δ

2
(x+ 1) + δ

ã2 ∫
S2
h

Å
1− δ

2
(x+ 1) + δ, s

ã
ds dx

≈ 1− δ
2

Nlgl∑
m=1

Nleb∑
n=1

wlgl
m wleb

n

Å
1− δ

2
(xm + 1) + δ

ã2

h

Å
1− δ

2
(xm + 1) + δ, sn

ã
.

(6.50)

The first integral of Eq. (6.45) and the integral of Eq. (6.47) can then be numerically computed
using this quadrature.
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7 Numerical results
In this section, we present some numerical results of the proposed method for solving the PDEs
(4.13)–(4.14). Before investigating a realistic solute molecule, we will start to test the GP-solver
for the unit sphere. We then consider small molecules and compute the electrostatic contribution
to the solvation energy to study its dependency with respect to numerous parameters.

7.1 GP-solver for the unit sphere
We first test the GP-solver for solving Eq. (6.33) with a single sphere, as presented in Section
6.2. For the sake of simplicity, we assume here that the permittivity ε only depends on the radial
variable r, i.e., the permittivity is symmetric. Let r1 = 0.4, rp = 0.3, r0 = 0.3 and define the
permittivity function ε(r) by

ε(r) =


1 if 0 ≤ r ≤ r1,

H

Å
r − r1

rp + r0

ã
if r1 ≤ r ≤ 1,

εs if r ≥ 1,

(7.51)

where H has been defined by Eq. (3.3) and εs = 10. Assuming that the sphere carries a point
charge 1 at its center, i.e., q1 = 1, we take Φ = 1

r , f1 = − ε
′(r)
r2 and φ1 = −1 in Eq. (6.33). Since

both, the permittivity function and the solution, only depend on the radius, the discretization of the
angular part can be neglected, i.e., `max = 0. To have a good approximation in the radial direction,
we set a high maximum degree of Legendre polynomials N = 20 and a large number of LGL points
Nlgl = 200. By running the GP-solver, we then obtain Figure 5 illustrating the permittivity ε(r)
and the (approximate) solution u1(r) to Eq. (6.33). It is observed that u1(r) is constant in [0, 0.4]
because of the harmonicity.

7.2 Electrostatic contribution to the solvation energy
With the domain decomposition method using the GP-solver for solving Eq. (4.24) and the dd-
COSMO method for solving (4.25), we can then solve numerically Eqs (4.22)–(4.23) following the
iterative procedure presented in Section 4.2.

To study the convergence of the proposed method with respect to the number of outer iterations,
we first take the example of formaldehyde. The following discretization parameters are used: the
maximum degree of spherical harmonics `max = 11, the number of Lebedev points Nleb = 1202, the
maximum degree of Legendre polynomials N = 15, the number of LGL nodes Nlgl = 50. These
parameters are given based on a further study in Section 7.6. Furthermore, we take the solvent
permittivity εs = 78.4 (water, at room temperature 25◦C), the solvent probe radius rp = 1.5Å and
r0 = 1Å. Since the reaction potential usually has an order of magnitude of 10−3, we use the
convention that in the following content the stopping criterion is set to Tol = 10−7 by default,
which is the tolerance for the increment of Es between iterations. In addition, we use another
convention that at each outer iteration of the global strategy, the number of inner iterations for
solving the GP-equation (4.24) is fixed to be 8. This number is determined empirically and it allows
to obtain an accurate enough numerical solution to Eq. (4.24) at each outer iteration. The error
of the electrostatic contribution is computed as

Error(Nit) =
∣∣Es

Nit
− Es

∞
∣∣ , (7.52)
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Figure 5: The left figure illustrates the dielectric permittivity ε(r); the right plots the solution u1(r)
to Eq. (6.33). Only the blue part is subject to the computational domain, the red part of the curve
depicts the harmonic extension.

where Es
Nit

is the electrostatic contribution computed at the Nit-th outer iteration in Section 4.2
and the “exact” electrostatic contribution Es

∞ is obtained after 15 outer iterations (this number
is large enough, see the left side of Figure 6) with the same discretization parameters as above-
mentioned. In Figure 6, which illustrates the numerical electrostatic contribution to the solvation
energy of formaldehyde with respect to the number of outer iterations Nit, it is observed that the
error of electrostatic contribution converges geometrically with respect to Nit and the procedure
stops at Nit = 5 when the stopping criterion is reached, i.e.,

∣∣Es
Nit
− Es

Nit−1

∣∣ < Tol.
Then, we present the example of a larger molecule, the caffeine consisting of 24 atoms, with

the parameters `max = 9, Nleb = 350, N = 15, Nlgl = 30, εs = 78.4, rp = 1.5Å, r0 = 1Å. The
discretization parameters are taken smaller than those for formaldehyde because of the running
time. This does not matter since we only want to study the convergence of the method with
respect to the number of outer iterations. As above, the “exact” electrostatic contribution Es

∞ is
obtained after 15 outer iterations and the error is computed from (7.52). As can be seen in Figure
7, the error of electrostatic contribution converges also geometrically with respect to Nit.

7.3 Graphical illustration of the reaction potential
We give here some graphical illustration of the reaction potential in the extended cavity Ω0 and on
the SES. In Figure 8, we illustrate the reaction potentialW of hydrogen-fluoride and the magnitude
of the corresponding reaction field (i.e., ∇W ). In Figure 9 and 10, we illustrate the reaction potential
of hydrogen-fluoride, formaldehyde and caffeine in water. The rotational symmetry of hydrogen-
fluoride and the mirror symmetry of formaldehyde are observed as expected.

7.4 Thickness of the dielectric boundary layer
We then draw the attention to the influence of the thickness of dielectric boundary layer, which is
given by rp + r0. For the sake of simplicity, we fix the parameter r0 = 0Å, implying that Γ0 and
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Figure 6: On the left, the curve illustrates the computed electrostatic contribution to the solvation
energy of formaldehyde with respect to Nit; on the right, the curve illustrates the error of the
electrostatic contribution with respect toNit. The following parameters are used: `max = 11, Nleb =
1202, N = 15, Nlgl = 50, εs = 78.4, rp = 1.5Å, r0 = 1Å.

Figure 7: On the left, the curve illustrates the numerical electrostatic contribution to the solvation
energy of caffeine with respect to Nit; on the right, the curve illustrates the error of the electrostatic
contribution with respect to Nit. The following parameters are used: `max = 9, Nleb = 350, N =
15, Nlgl = 30, εs = 78.4, rp = 1.5Å, r0 = 1Å.
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Figure 8: The reaction potential (left) and the magnitude of the corresponding reaction field (right)
in the YZ-plane for the hydrogen-fluoride molecule with two atoms, with the parameters `max =
11, Nleb = 1202, N = 15, Nlgl = 50, εs = 2, rp = 1.5Å, r0 = 1Å. The colorbars represent
respectively the reaction potential value and the magnitude of the reaction field.

Figure 9: Reaction potential of hydrogen-fluoride and formaldehyde on the SES, both computed
with the parameters `max = 11, Nleb = 1202, N = 15, Nlgl = 50, εs = 78.4, rp = 1.5Å, r0 = 1Å.
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Figure 10: Reaction potential of caffeine on the SES, computed with the parameters `max =
9, Nleb = 350, N = 15, Nlgl = 30, εs = 78.4, rp = 1.5Å, r0 = 1Å.

Γsas coincide. In the ddPCM algorithm presented in [31], the permittivity is discontinuous across
the dielectric boundary and jumps from 1 to εs. In the following test, we take Γ0 as the dielectric
boundary in the ddPCM algorithm and expect that the numerical electrostatic contribution to the
solvation energy computed from our method tends to the one computed from the ddPCM algorithm
as the thickness of dielectric boundary layer tends to zero, i.e., rp → 0. This implies that both, Γses

and Γ0, tend to the VdW-surface.
To verify this, we take again the example of hydrogen-fluoride. Figure 11 illustrates the nu-

merical electrostatic contribution to the solvation energy with respect to n where the thickness of
dielectric boundary layer is parametrized by rp = 2−nÅ. We observe that the electrostatic contri-
butions from both algorithms almost tend to coincide when the layer vanishes. This means that
the proposed method is consistent with the ddPCM in this case.

7.5 Solvent dielectric constant
We illustrate in Figure 12 how the electrostatic contribution to the solvation energy and the to-
tal number of outer iterations varies with respect to different solvent permittivities εs = 2k, k =
1, 2, . . . , 15. We observe that the numerical electrostatic contribution to the solvation energy varies
smoothly and converges to some quantity for increasing solvent permittivities εs. Another inter-
esting observation is that when εs becomes large, the total number of outer iterations tends to
decrease. This can be explained by the fact that the solvent is conductor-like and consequently, the
initial guess of potential g0 is very accurate for high permittivities εs.

7.6 Discretization parameters
We consider the dichloromethane solvent (εs = 8.93) at room temperature 25◦C. First of all, we
compute numerically the “exact” electrostatic contribution to the solvation energy of hydrogen-
fluoride, denoted by Es

exact, with large discretization parameters `max = 20, Nleb = 4334, N =
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Figure 11: The blue curve plots the electrostatic contribution of hydrogen-fluoride with respect to
n (the layer thickness 2−nÅ), computed from the proposed algorithm with the parameters `max =
11, Nleb = 1202, N = 15, Nlgl = 50, εs = 2; the red curve plots the results computed from the
ddPCM algorithm with the same parameters of spherical harmonics `max = 11, Nleb = 1202 and
the same solvent permittivity εs = 2.

Figure 12: The left figure shows the electrostatic contribution to the solvation energy of hydrogen-
fluoride when the solvent dielectric permittivity εs increases; the right figure plots the total number
of outer iterations to reach the stopping criterion Tol with respect to εs. The following parameters
are used: `max = 11, Nleb = 1202, N = 20, Nlgl = 50, rp = 1.5Å, r0 = 1Å.
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Figure 13: The left figure plots the electrostatic contribution to the solvation energy of hydrogen-
fluoride with respect to `max when Nleb is set to 1454. The right figure plots the electrostatic
contribution with respect to Nleb when `max is set to 15. In both figures, the blue line represents
the “exact” electrostatic contribution Es

exact. In addition, the following parameters are used: N =
20, Nlgl = 50, εs = 8.93, rp = 1.5Å, r0 = 1Å.

25, Nlgl = 50 and the parameters of the dielectric boundary layer set to rp = 1.5Å, r0 = 1Å. We
treat Es

exact as the benchmark of the electrostatic contribution to the solvation energy.
We then illustrate how the electrostatic contribution to the solvation energy of hydrogen-fluoride

varies respectively with respect to the maximum degree `max of spherical harmonics and to the
number Nleb of Lebedev points in the dichloromethane solvent. On the left of Figure 13, we report
the electrostatic contribution with respect to `max which varies from 3 to 15. Further, on the
right of Figure 13, we report the electrostatic contribution with respect to Nleb which varies from
350 to 4334. From the left figure, we observe that the proposed algorithm provides systematically
improvable approximations when the parameters of spherical harmonics increases.

Similarly as above, we now illustrate how the electrostatic contribution to the solvation energy
of hydrogen-fluoride varies with respect to the maximum degree N of Legendre polynomials and
to the number Nlgl of LGL points in the dichloromethane solvent. On the left of Figure 14, we
report the electrostatic contribution with respect to N varying from 6 to 20. Further, on the right
of Figure 14, we report the electrostatic contribution with respect to Nlgl varying from 20 to 80.
Again, it is observed that the proposed algorithm provides asymptotically systematically improvable
approximations when the discretization of Legendre polynomials increases. These results help us
to get a know-how in order to select, for a given molecule, the proper choice of discretization
parameters `max, Nleb, N, Nlgl for an acceptable accuracy.

7.7 Robustness with respect to geometrical parameters
We now study in Figure 15 the variation of the electrostatic contribution to the solvation energy of
hydrogen-fluoride while rotating the fluoride atom around the hydrogen atom. We observe that the
variation in the electrostatic contribution, which should be invariant with respect to the rotation
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Figure 14: The left figure plots the electrostatic contribution to the solvation energy of hydrogen-
fluoride with respect to N when Nlgl is set to 50. The right figure plots the electrostatic contribution
with respect to Nlgl when N is set to 20. In both figures, the blue line represents the “exact”
electrostatic contribution Es

exact. In addition, the following parameters are used: `max = 15, Nleb =
1454, εs = 8.93, rp = 1.5Å, r0 = 1Å.

angle, is systematically controlled. For the two sets of parameters, see the caption of Figure 15, the
variation is around 1.5% and 0.25% respectively.

Further, we study the electrostatic contribution to the solvation energy under a dissociation of
hydrogen-fluoride. We vary the separation distance between the hydrogen atom and the fluoride
atom from 8.96Å to 9.36Å where the topology of the SES changes in the sense that the SES becomes
two disconnected subsurfaces, see Figure 16 for a geometrical illustration. The left plot of Figure
17 illustrates that the energy profile is completely smooth when the topology of the SES changes.
The right figure of Figure 17 provides the electrostatic contribution to the solvation energy when
the separation distance varies in a wider range from 1.77Å to 9.37Å.

We next study the smoothness of the numerical electrostatic contribution to the solvation energy
of formaldehyde with respect to a topological change in the sense that the nature of the patches
of the SES changes. We choose the coordinate system so that all nuclei lie in the yz-plane and
that carbon and oxygen atoms have y = 0 coordinate. We then move the z-coordinate of the two
hydrogen atoms further away from the carbon and oxygen atoms, see Figure 18 for an illustration.
Figure 19 plots the numerical electrostatic contribution to the solvation energy with respect to the
downwards displacement of the two hydrogen atoms. On the left, we plot the numerical electrostatic
contribution with respect to displacement of the two hydrogen atoms in a large range from 0Å to 1Å.
On the right, we plot the numerical electrostatic contribution in the neighborhood of the threshold
when the concave SES patches, marked in blue in Figure 18, first appear and we observe that the
energy-profile is approximately smooth.
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Figure 15: The variation of the electrostatic contribution to the solvation energy of hydrogen-
fluoride with respect to the angle of rotating the flouride atom around the hydrogen atom. The
blue curve corresponds to the parameters `max = 7, Nleb = 86, N = 10, Nlgl = 20, the red curve
corresponds to the parameters `max = 11, Nleb = 1202, N = 20, Nlgl = 40. Furthermore, the
following parameters are used: εs = 8.93, rp = 1.5Å, r0 = 1Å.

Figure 16: Topological change of the SES of hydrogen-fluoride when the distance between the two
atomic centers increases. The most left figure illustrates the SES of hydrogen-fluoride in equilibrium
and the three figures from the left to right corresponds to the distances between the centers increased
respectively to 8.96Å, 9.16Å and 9.36Å.
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Figure 17: Electrostatic contribution of hydrogen-fluoride with respect to the separation distance
between the atomic centers with parameters `max = 11, Nleb = 1202, N = 20, Nlgl = 40, εs =
8.93, rp = 1.5Å, r0 = 0Å. On the left, the separation distance varies between 8.96Å and 9.36Å where
the topology of the SES changes as showed in Figure 16. On the right, the separation distance varies
in a larger range.

Figure 18: Different SESs of formaldehyde when the two hydrogen atoms displace downwards. The
left figure illustrates the SES of formaldehyde in equilibrium; the middle figure illustrates the SES
when concave patches are about to appear; the right figure illustrates the SES when the concave
patches (in blue) have appeared.
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Figure 19: Electrostatic contribution to the solvation energy of formaldehyde with respect to the
displacement of the two hydrogen atoms with parameters `max = 11, Nleb = 1454, N = 15, Nlgl =
50, εs = 8.93, rp = 1.5Å, r0 = 1Å. On the left, the displacement varies near the threshold when
the concave SES patches first appear as showed in the middle of Figure 18. On the right, the
displacement varies from 0Å to 1Å.

8 Conclusion
We have proposed a new Polarizable Continuum Model (PCM) based on the Solvent Excluded
Surface cavity (SES-cavity). We introduced a switching region for the solute-solvent dielectric
boundary based on the signed distance function to the SAS where the dielectric constant smoothly
varies between one (vacuum) and εs (the solvent). This layer potentially also allows to describe
local effects such as layers close to the solute-solvent interface. Further, to compute the electrostatic
contribution to the solvation energy numerically, we lay out a mathematical framework to compute
the solution on an unbounded domain that only involves to compute problems in a bounded domain
(extended cavity). For each problem in the extended cavity, we propose to use Schwarz’s domain
decomposition method where the global problem defined in the solute cavity is divided into simple
sub-problems each defined in a ball. We provided numerical tests to illustrate the resulting energy
profile is smooth with respect to geometrical parameters and that the energy is systematically
improvable.

We focused here on the modeling part and the resulting discretization method. This work is
meant to study the feasibility to propose a SES-based solvation model using a domain decomposition
method and analyzing its properties. An upcoming paper will focus on an efficient implementation
which is work in progress.
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