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In this paper, we first consider a simple Bayesian fusion problem in a matrix Lie group, and propose to tackle it using the unscented transform. The method is then leveraged to derive two simple alternative unscented Kalman filters on Lie groups, for both cases of noisy partial measurements of the state, and full state noisy measurements of the state on the group. The general method is applied to a robot localization problem, and results based on experimental data combined with extensive Monte-Carlo simulations at various noise levels illustrate the superiority of the approach over the standard UKF.

I. INTRODUCTION

The problem of robot localization (and mapping) based on the fusion of various sensors has long been an important field. With the advent of probabilistic robotics methods within the field of mobile robotics, the role of accurate statistics for localization (and mapping) has been increasingly recognized. The Unscented Kalman Filter (UKF) introduced by roboticists [START_REF] Julier | A New Extension of the Kalman Filter to Nonlinear Systems[END_REF][START_REF] Julier | Unscented Filtering and Nonlinear Estimation[END_REF] has become prevalent as an alternative to the Extended Kalman Filter (EKF) that may improve estimation in various cases and spares the practitioner the computation of Jacobians. Besides, there has been various recent works that have evidenced the fact that the Lie group structure of the configuration space SE(3) plays a prominent role in probabilistic robotics, see [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF]- [START_REF] Hertzberg | Integrating Generic Sensor Fusion Algorithms with Sound State Representations Through Rncapsulation of Manifolds[END_REF]. It has also been shown recently that a Lie group underlies the state space in SLAM, and that using a (Lie group) Invariant EKF [START_REF] Barrau | Intrinsic Filtering on Lie Groups with Applications to Attitude Estimation[END_REF], the consistency issues of the EKF-SLAM can be fixed [START_REF] Barrau | An EKF-SLAM Algorithm with Consistency Properties[END_REF].

In this paper we consider systems whose state is an unimodular matrix Lie group. Using exponential coordinates to define Gaussians on the group, we derive a Lie group version of the unscented Kalman filter. We consider two distinct problems: the problem of noisy partial measurement of the state that live in a vector space, and the problem of full state noisy measurement which is to be treated slightly differently, as the measurement then lives in the Lie group. For each type of measurement, the proposed UKF on Lie Groups consists of two different variants: one based on left multiplications, and the other based on right multiplications. It turns out the variant that works best depends on the problem at hand, and both should be tested when one has no clear insight on which should be the best.

A. Links and Differences with Previous Literature

The original UKF and its square-root implementation [START_REF] Der Merwe | The square-root unscented kalman filter for state and parameter-estimation[END_REF] have been extensively adapted and used for attitude estimation, that is, for filtering on the Lie group SO [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF]. An UKF called USQUE [START_REF] Crassidis | Unscented Filtering for Spacecraft Attitude Estimation[END_REF] has become a standard filter for attitude estimation. The filter does not fully use the Lie group structure of the state space, notably the Lie exponential map, but rather takes advantage of the quaternion representation of SO(3), which does not carry over to general Lie groups. Recent works have also advocated the use of particular probability densities on SO(3), the so-called Fisher distributions, as an interesting alternative to the Lie exponential coordinates of [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF], and have brought them to bear for unscented attitude estimation [START_REF] Lee | Global Unscented Attitude Estimation via the Matrix Fisher Distributions on SO(3)[END_REF].

Another line of research uses the unscented transform on Lie groups and Lie exponential coordinates to derive uncertainty ellipsoids that are proved to contain with certainty the state, when faced with bounded sensor errors, see [START_REF] Bohn | Unscented State Estimation for Rigid Body Motion on SE(3)[END_REF][START_REF] Bohn | Unscented State Estimation for Rigid Body Attitude Motion with a Finite-time Stable Observer[END_REF]. [START_REF] Condomines | Nonlinear State Estimation Using an Invariant Unscented Kalman Filter[END_REF][START_REF] Condomines | Pi-Invariant Unscented Kalman Filter for Sensor Fusion[END_REF] also introduced an Invariant UKF, as an UKF capable of taking into account the symmetries of the system's equations, for state spaces that are generally not Lie groups.

Regarding SE(3) and more general Lie groups, one can essentially follow two slightly different routes to describe Gaussians in exponential coordinates. The first consists in directly defining a density on the group, that can be referred to as concentrated Gaussian, as in [START_REF] Wang | Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics[END_REF][START_REF] Long | The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates[END_REF]. Those distributions were recently used for extended Kalman filtering on Lie groups by [START_REF] Bourmaud | Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions[END_REF]. The second one consists in assuming the distribution to be normal in the Lie algebra, and then to map it to the group through the exponential map, as advocated by [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] for robotics applications, and at the heart of the Invariant EKF of [START_REF] Barrau | Intrinsic Filtering on Lie Groups with Applications to Attitude Estimation[END_REF][START_REF] Barrau | Intrinsic Filtering on SO(3) with Discretetime Observations[END_REF]. In the present paper, we follow this second method. This yields a propagation step of the UKF that is identical to the method of [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] to compound poses. However, [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] does not treat Bayesian estimation on SE(3), which is necessary to update the state of the UKF when given a novel measurement.

The very recent paper [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF] also proposes an UKF on the Lie group SE(3) for a navigation application. Beyond the fact it is only concerned with SE(3) whereas the present paper deals with general Lie groups, the method is different since it uses concentrated Gaussians on Lie groups of [START_REF] Wang | Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics[END_REF]. As a result, the method can be related to the general unscented Kalman filtering on manifolds of [START_REF] Hauberg | Unscented Kalman Filtering on Riemannian Manifolds[END_REF], where the sigma points are mapped onto the manifold, and then the logarithm map is used to map them back in some tangent space where averages and covariances can be computed, whereas the sigma points in our method below live in a vector space, and are never mapped onto the group itself (regarding partial measurements). Last but not least, the method of [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF] is based on left multiplications, notably on the left-invariant connection of SE(3), whereas, as emphasized in the present paper, right multiplications allow defining an alternative UKF. This is important, as simulations of Section V-D indicate the right multiplications based UKF precisely suits best measurements in the body frame, such as those considered in [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF].

B. Paper's Organization and Contributions

The paper is divided into six sections as follows. Section II contains mathematical preliminaries. Each of the following three sections constitutes a contribution of the present paper. In Section III, we design different Bayesian estimators on Lie groups based on the unscented transform for various kinds of measurement. The method is applied in Section IV to derive two UKF on Lie groups. Section V considers 2D robot localization problem that uses experimental data, and illustrates the superiority of the proposed UKF over the standard UKF and the Invariant EKF.

II. MATHEMATICAL PRELIMINARIES

A. Lie Groups

In this section we recall the definitions and basic properties of unimodular matrix Lie groups, Lie algebra and random variables on Lie groups. A matrix Lie group G ⊂ R N ×N is a set of square invertible matrices that is a group, i.e., the following properties

I ∈ G; ∀ χ ∈ G, χ -1 ∈ G; ∀ χ 1 , χ 2 ∈ G, χ 1 χ 2 ∈ G (1)
hold. Locally about the identity matrix I, the group G can be identified with an Euclidean space R q using the matrix exponential map exp m (.), where q = dim G. Indeed, to any ξ ∈ R q one can associate a matrix ξ ∧ of the tangent space of G at I, called the Lie algebra g. We then define the exponential map exp : R q → G for Lie groups as

exp (ξ) = exp m (ξ ∧ ) , (2) 
Locally, it is a bijection, and one can define the Lie logarithm map log : G → R q as the exponential inverse, leading to

log (exp (ξ)) = ξ. (3) 

B. Uncertainties on Lie Groups

To define random variables on Lie groups, we cannot apply the usual approach of additive noise for χ 1 , χ 2 ∈ G as G is not a vector space, i.e., generally χ 1 + χ 2 / ∈ G does not hold. In contrast, we adopt the framework of [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF], see also [START_REF] Barrau | Intrinsic Filtering on Lie Groups with Applications to Attitude Estimation[END_REF][START_REF] Barrau | Intrinsic Filtering on SO(3) with Discretetime Observations[END_REF], which is slightly different from the pioneering approach of [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF][START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF]. Indeed, we define the probability distribution χ ∼ N L ( χ, P) for the random variable χ ∈ G as

χ = χ exp (ξ) , ξ ∼ N (0, P) , (4) 
where N (., .) is the classical Gaussian distribution in Euclidean space and P ∈ R q×q is a covariance matrix. In the sequel, we will refer to (4) as the left-equivariant Gaussian distribution on G, due to its compatibility with left multiplications. In (4), the noise-free quantity χ is viewed as the mean, and the dispersion arises through left multiplication with the exponential of a Gaussian random variable. Similarly, the distribution χ ∼ N R ( χ, P) can be defined through right multiplication as

χ = exp (ξ) χ, ξ ∼ N (0, P) . (5) 
We stress that we have defined these probability density functions directly in the vector space R q such that both N L (., .) and N R (., .) are not Gaussian distributions.

III. BAYESIAN ESTIMATION ON LIE GROUPS USING THE UNSCENTED TRANSFORM

Consider a random variable χ ∈ G with prior probability distribution p ( χ ). Suppose we obtain some additional information about χ through a measurement y. The goal of Bayesian estimation is to compute an estimate of the posterior distribution p( χ |y). In this section, we derive various algorithms for various types of measurements.

A. Partial Measurement with Left-equivariant Prior Uncertainty (4) Consider a generic vector measurement of the form

y = h ( χ ) + v, (6) 
where h(.) : G → R k represents the observation function and v ∼ N (v, R) is a Gaussian random noise in R k with known characteristics. The problem of Bayesian estimation we consider is as follows:

1) consider the prior distribution follows (4), i.e.,

p( χ ) ∼ N L ( χ, P), (7) 
with known parameters χ and P; 2) assume one measurement y given by ( 6) is available; 3) approximate the posterior distribution as

p( χ |y) ≈ N L ( χ+ , P + ), (8) 
and compute the estimates of both posterior parameters χ+ and P + .

To attack this problem, one can resort the unscented transform of [START_REF] Julier | A New Extension of the Kalman Filter to Nonlinear Systems[END_REF]. First, and contrarily to [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF], we use the fact that the problem is amenable to nonlinear filtering in a vector space, as we have ξ ∼ N (0, P) with nonlinear measurement [START_REF] Barrau | Intrinsic Filtering on Lie Groups with Applications to Attitude Estimation[END_REF]. The UKF thus allows us to approximate the posterior p(ξ|y) for ξ as follows: we compute a finite number of samples α T j = ξ T j v T j , j = 0, . . . , 2l, with l = q + k, and then pass each of these so-called sigma points through the measurement function

y j = h ( χ exp (ξ j )) + v j , j = 0, . . . , 2l, (9) 
and we then compute successively the measurement mean ȳ, the measurement covariance P yy and the cross-covariance P αy . We thus approximate the posterior for ξ in R q as p(ξ|y) ∼ N ξ, P + , where

ξ * = P αy P -1 yy (y -ȳ) and ( 11)

P + = P -P αy P αy P -1 yy T . ( 12 
)
The unscented approximation to the posterior p(ξ|y) is thus the distribution of a Gaussian ξ + ξ + with ξ + ∼ N (0, P + ). Back to the Lie group, this means we approximate the posterior distribution through the variable χ exp ξ + ξ + . The Baker-Campbell-Hausdorff (BCH) formula provides a simple (firstorder) approximation as exp ξ + ξ + ≈ exp ξ exp (ξ + ). This readily yields an approximate χ+ exp(ξ + ) to the posterior of the form (4), with

χ+ = χ exp ξ , ξ + ∼ N 0, P + , ( 13 
)
that concludes the Bayesian estimation, which is summarized in Algorithm 1 1 .

B. Partial Measurement with Right-equivariant Prior Uncertainty (5)

In the latter subsection, we considered that both the prior and posterior follow the distribution of the form (4). If we assume the prior has the form (5), then it is natural to assume that the posterior is also of the form [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF]. In this case, we substitute the computed measurements y j , j = 0, . . . , 2l in [START_REF] Hertzberg | Integrating Generic Sensor Fusion Algorithms with Sound State Representations Through Rncapsulation of Manifolds[END_REF] as

y j = h (exp (ξ j ) χ) + v j ( 14 
)
and the posterior mean [START_REF] Lee | Global Unscented Attitude Estimation via the Matrix Fisher Distributions on SO(3)[END_REF] as

χ+ = exp ξ χ. ( 15 
)
The difference between both methods may prove nonnegligible as will be illustrated in Section V-D.

C. Full State Measurement: Bayesian Pose Fusion

Assume we have a prior of the form p( χ ) ∼ N L ( χ, P) and a measurement of the type

Y = χ V, ( 16 
)
where χ is the true state and V a noise of the form

V = exp (v) , v ∼ N (0, R) . (17) 
This kind of measurement happens for instance in SE(3), when an algorithm is used to compute a pose directly from perception sensors such as, stereo images, or scan matching algorithms with point clouds, and when a covariance can be associated to the computed pose, see e.g., [START_REF] Hervier | Accurate 3D maps from depth images and motion sensors via nonlinear Kalman filtering[END_REF].

1) Proposed Method: in this case, we need to approximate the posterior p( χ |Y) ∼ N L ( χ+ , P + ), which appears to be nontrivial. Indeed, in [START_REF] Condomines | Nonlinear State Estimation Using an Invariant Unscented Kalman Filter[END_REF], Y is a matrix measurement, and this matrix belongs to G which is not a vector space, so both the definition and the computation of the covariance of Y is not straightforward. For such measurement, we propose using the logarithm map to obtain

y = log χ-1 Y = log χ-1 χ V , (18) 
= log (exp (ξ) V) .

Thanks to this transformation, the computed transformed output y belongs to vector space R q , and we can then apply the proposed Bayesian estimation of Section III-A, with

y j = log (exp (ξ j ) exp (v j )) , j = 0, . . . , 2l, (20) 
to obtain the posterior p( χ |Y) ∼ N L ( χ+ , P + ).

2) Fusion with Right-equivariant Prior Uncertainty (5): assume that we have a prior of the form (5), or by symmetry (inverting all quantities), that we have a left prior of the form (4) but with an output of the form Y = V χ . We then 1 According to [START_REF] Julier | A New Extension of the Kalman Filter to Nonlinear Systems[END_REF][START_REF] Dunik | Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter[END_REF], we set unscented transform parameters to κ = 0 and β = 2. α keeps a free-parameter chosen by the practitioner, which must be small (α = 10 -3 in our applications). The operator diag(.) put in a block diagonal matrix its arguments in Step 3, the square-root matrix in step 4 is obtained from Cholewski decomposition and col(P) j represents the j-th column of P.

Algorithm 1: Bayesian estimation on Lie groups Input: χ, P, y, v, R, α;

1 λ = α 2 -1 l ; // scale parameter 2 W 0 s = λ λ+l , W 0 c = λ λ+l + 3 -α 2 , W j s = W j c = 1/2
λ+l , j = 1, . . . , 2l ; // weights 3 P aug = diag (P, R); // augmented covariance matrix 4 ᾱ = 0 T vT T , α j = ᾱ + col (l + λ) P aug j , j = 1, . . . , l,

α j = ᾱ -col (l + λ) P aug j-l
, j = l + 1, . . . , 2l;

5 ξ T j v T j = α T j , j = 0, . . . , 2l; 6 y j = h ( χ exp (ξ j )) + v j , j = 0, . . . , 2l; 7 ȳ = 2l j=0 W j s y j ; 8 P yy = 2l j=0 W j c (y j -ȳ) (y j -ȳ) T ; 9 P αy = 2l j=0 W j c (α j -ᾱ) (y j -ȳ) T ;
10 Extract ξ from (11);

11 χ+ = χ exp ξ ;

12 P + = P -P αy P αy P -1 yy T ;

Output:

χ+ , P + ; propose to write Y = V χ exp(ξ) = χ χ-1 V χ exp(ξ) = χ χ-1 exp(v) χ exp(ξ) = χ exp(Ad χ-1 v) exp(ξ)
where Ad is the adjoint operator of the group. We can thus compute the modified output

y = log χ-1 Y = log exp Ad χ-1 v exp (ξ) . ( 21 
)
Thanks to this transformation, we recover a measurement similar to [START_REF] Long | The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates[END_REF], but with noise having covariance matrix

Ad χ-1 R Ad χ-1
T . The method above can then be readily applied.

3) Rationale for the Transformation of the Output: consider output [START_REF] Condomines | Nonlinear State Estimation Using an Invariant Unscented Kalman Filter[END_REF]. One could argue that y = log (Y) is already a vector, and a function of ξ so that an UKF estimate can readily be built along the lines of Section III-A. However, when χ is far from the identity, a large distortion is induced by the logarithm map. But ξ and v being moderate zerocentered noises in applications, we have using BCH formula log (exp (ξ) V) = ξ + v + o ( ξ , v ). Thus up to first order terms the transformed output y of ( 19) is a true Gaussian, and the posterior output by the UKF will be very close to the true one, no matter χ, whereas log (Y) can be dramatically non-Gaussian, preventing the UKF estimate from being accurate. 4) Links with the Pose Fusion Method of [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF]: [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] proposes an algorithm to fuse various measurements of the form [START_REF] Condomines | Nonlinear State Estimation Using an Invariant Unscented Kalman Filter[END_REF]. With two measurements only, it boils down to estimating an unknown group element χ from measurements Y 1 = χ exp (v 1 ) and Y 2 = χ exp (v 2 ), where v 1 and v 2 are centered Gaussians in R q with known covariance matrices. In the Euclidean case, the corresponding problem is to estimate some quantity µ from two noisy measurements y 1 = µ + n 1 and y 2 = µ + n 2 where n 1 and n 2 are centered Gaussian noises with known covariance matrices. This is a classical estimation problem, that is optimally handled through least squares, and does not imply the Kalman update equation (Gaussian conditioning). The problem considered in the present section is quite different, since it deals with Bayesian fusion of poses, which implies conditional probabilities. In our case χ is known, and we want to refine our statistics on the random quantity χ exp (ξ), given that we have measured, e.g., Y = χ exp (ξ) exp (v).

IV. APPLICATION TO UNSCENTED KALMAN FILTERING ON LIE GROUPS

A. System Model

In the rest of this paper we consider a discrete dynamic system of the form

χ n = χ n-1 exp (ω n + w n ) , (22) 
where the state χ n lives in G, ω n is a known input variable and w n ∼ N (0, Q n ) is a white Gaussian noise. We design two different filters for generic discrete measurements of the form

y n = h ( χ n ) + v n , (23) 
where v n ∼ N (v n , R n ) is a white Gaussian noise with known characteristics, and also for measurements of the form

Y n = χ n exp (v n ) , (24) 
where

v n ∼ N (v n , R n ).

B. Unscented Kalman Filter on Lie Groups with Leftequivariant Uncertainties (4)

For the model [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF] with measurements given by ( 23), we can model the state as χ n ∼ N L ( χn , P n ), that is, using the left-equivariant formulation (4) of the uncertainties. The goal is to compute both estimates of χn and P n at each time. The proposed Left-Unscented Kalman Filter on Lie Groups (Left-UKF-LG) acts in two steps: propagation and update. We now develop these two steps.

1) Propagation: starting from the prior distribution

p ( χ n-1 ) ∼ N L ( χn-1 , P n-1 ) , (25) 
with χn-1 and P n-1 known, we seek to approximate the propagated state distribution

p ( χ n | χ n-1 ) ∼ N L ( χn , P n ) , (26) 
i.e., we search to compute both χn and P n .

This step can be viewed as a straightforward application of the method of [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] to compound poses using the unscented transform. The state mean estimate is propagated using the unnoisy state model, leading to

χn = χn-1 Ω n , (27) 
with Ω n = exp (ω n ), According to [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] this approximation of the mean is valid up to the second order, so there is no need to compute it through the unscented transform (the calculations of [START_REF] Barfoot | Associating Uncertainty with Three-Dimensional Poses for Use in Estimation Problems[END_REF] deal with SE( 3), but we have checked they carry over to the general Lie group case). We then resort to the unscented transform to determine the covariance P n by first approximating the joint Gaussian variable using a finite number of samples ξ j , w j , j = 1, . . . , 4q. To propagate theses samples, we inject ( 4) in [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF] as

χn exp (ξ n ) = χn-1 exp (ξ n-1 ) exp (ω n + w n ) , (28) 
which simplifies as follows

exp (ξ n ) = χ-1 n χn-1 exp (ξ n-1 ) exp (ω n + w n ) , (29) exp 
(ξ n ) = Ω -1 n exp (ξ n-1 ) exp (ω n + w n ) , (30) 
by use of [START_REF] De Luca | Feedback Control of a Nonholonomic Car-like Robot[END_REF]. Algorithm 2 summarizes this propagation step.

2) Update: this step consists in incorporating the information coming from the measurement. As concerns measurements y n of the form [START_REF] Hauberg | Unscented Kalman Filtering on Riemannian Manifolds[END_REF], it boils down to a Bayesian estimation problem, where we search to approximate the posterior probability distribution as

p ( χ n |y n , y n-1 , . . . , y 1 ) ∼ N L χ+ n , P + n , (31) 
with available prior

p ( χ n |y n-1 , . . . , y 1 ) ∼ N L ( χn , P n ) . ( 32 
)
We apply for the update estimates directly Bayesian estimation as developed in Section III-A, yielding both χ+ n and P + n . To update the filter with a measurement of the type [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF], it suffices to apply in a similar manner the method of Section III-C.

C. Unscented Kalman Filter on Lie Groups with Rightequivariant Uncertainties (5)

For the model [START_REF] Loianno | Visual Inertial Odometry for Quadrotors on SE(3)[END_REF] with measurements given by ( 23), we can model the state as χ n ∼ N R ( χn , P n ), that is, using the right-equivariant formulation (5) of the uncertainties. The filter is defined in an analogous way to the previous Section IV-B. The resulting filter is yet different, and we call it Right-Unscented Kalman Filter on Lie Groups (Right-UKF-LG). Section V-D evidences that large discrepancies in performance between the Left and Right UKF-LGs can occur, so that both variants should generally be tested when facing a novel estimation problem on Lie groups.

V. RESULTS FOR EXPERIMENTAL DATA

To demonstrate the performances of the proposed method, we first apply the proposed Left-UKF-LG to the following nonlinear standard model of the two-dimensional differential drive car [START_REF] De Luca | Feedback Control of a Nonholonomic Car-like Robot[END_REF], and compare it to various algorithms of the literature. The velocity u n ∈ R is given by an odometer and we measure the angular velocity ω n ∈ R, e.g., by a differential odometer or a gyrometer. Taking into account the possible noise in the measurements, we get the discrete model

θ n = θ n-1 + ω n + w θ n , x 1 n = x 1 n-1 + cos (θ n ) u n + w l n -sin (θ n ) w tr n , x 2 n = x 2 n-1 + sin (θ n ) u n + w l n + cos (θ n ) w tr n , (33) 
where w θ n , w l n and w tr t represent, respectively, the differential odometry error, the longitudinal odometry error and the transversal shift, whose introduction is thus physically motivated. We assume the vehicle obtains some noisy measurements of its position of the form

ỹn = x n + ṽn , ṽn ∼ N 0, σ 2 0 0 σ 2 , (34) 
which typically models a GPS position in an outdoor application. The system can be embedded in the matrix Lie group = SE(2) as explained in Appendix A, using χ n as the state, and

ω n = ω n u n 0 and w n =   w θ n w l n w tr n   . ( 35 
)
The equation governing the noisy system evolution then becomes and the observations have the equivalent form

χ n = χ n-1 exp (ω n + w n ) (36) 
y n = x n + ṽn 1 = χ n 0 1 h( χ n ) + ṽn 0 vn . (37) 

A. Experimental Setting

We then compare the various filters for the model described in Section V on real data obtained in an experiment conducted at the Centre for Robotics, MINES ParisTech. We used a socalled Wifibot, which is a small wheeled robot equipped with independent odometers on the left and right wheels, see Fig. 1. A set of seven highly precise cameras, the OptiTrack motion capture system, provide the reference trajectory (ground truth) θ n and x n with sub-millimeter precision at a rate of 120 Hz. We display the experimental trajectory in Fig. 2, corresponding to a random motion of 45 seconds. From this trajectory, we can determine the odometer noise characteristics to parametrize correctly the covariance matrix Q n .

The four filters to be compared are:

1) the standard EKF using the model original equations (33) with state variables x n and θ n ; 2) the standard UKF using equations (33) with state variables x n and θ n ; 3) the recent Invariant-EKF (IEKF), an EKF variant on Lie groups that comes with guaranteed convergence properties, see [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF] for its application to system (33)-(34), and with consistency properties [START_REF] Barrau | An EKF-SLAM Algorithm with Consistency Properties[END_REF]; 4) the proposed Left-UKF-LG of Section IV using the Lie group embedding (36) and state variable χ n . 

B. Results

To compare the proposed Left-UKF-LG 2 with other methods for different levels of noise, we provide each filter with the raw odometer inputs ω n , and we artificially add Gaussian noise to the ground truth position measurements to simulate noisy position measurements, delivered to the filter at a rate of 1 Hz. Initially, we set for the filters both incorrect heading θ0 ∼ N 0, (π/2) 2 and position x1 0 ∼ N (0, 1/8), x2 0 ∼ N (0, 1/8). We then run 500 Monte-Carlo simulations for different levels of measurement noise σ 2 = 10 -5 , 10 -1 m 2 and compare the (average) Root Mean Square Errors w.r.t. the ground truth over the whole trajectory. Results are displayed in figures Fig. 3 and Fig. 4.

C. Discussion

For this trajectory, Left-UKF-LG and IEKF provide best position estimates at low noise. Regarding the heading, IEKF is slightly better than Left-UKF-LG at low noise but Left-UKF-LG becomes the most efficient filter when noise is moderate. We thus see that the Left-UKF-LG takes advantage of both the geometry-based structure of the IEKF, and the robustness of the unscented method. The following points seem important to us:

• The problem at hand (33) can be treated without the Lie group machinery, using x n and θ n as vector state 2 We similarly implemented the Right-UKF-LG but we show only Left-UKF-LG which is the most efficient for the measurement (34). variables. However, we see that embedding it into a Lie group framework yields more powerful variants of the Kalman filter (the IEKF and the Left-UKF-LG). • One could think the standard UKF systematically performs better than the standard EKF, especially when the measurement noise is high, due to its second order properties. This is generally true, but not always, as evidenced by the considered experiment. • On the other hand, it seems the Lie group counterpart of the UKF improves the Lie group counterpart of the EKF, that is, the IEKF.

D. Differences Between Left-UKF-LG and Right-UKF-LF

In the latter section, we focused on the comparison between Left-UKF-LG and some existing filters. We illustrate in this section that there may be discrepancies between the performances of Left-UKF-LG and Right-UKF-LF. To do so we still consider the system model (36) but with alternative measurements Y j n = R (θ n ) x n -p j + v j n , j = 1, . . . , J, where (38)

R (θ n ) = cos (θ n ) -sin (θ n ) sin (θ n ) cos (θ n ) , (39) 
which represent a range-and-bearing observation of a sequence of known features located at p j ∈ R 2 for j = 1, . . . , J, and where we let R (θ) be the planar rotation of angle θ.

In our setting, we define J = 3 features p 1 = [1 2] T , p 2 = [-0.5 0] T and p 3 = [0 1] T . We then run 200 Monte-Carlo simulations for different levels of measurement noise σ 2 = 10 -5 , 10 -1 m 2 and compared the Root Mean Square Error w.r.t. the ground truth. Results are displayed in figures Fig. 5 and Fig. 6. They clearly reveal that the Right-UKF-LG outperforms both Left-UKF-LG and UKF in this particular case. In the absence of further insight, we thus recommend to the practitioner to design, implement and compare both UKF-LG variants, and then select the most efficient of them.

VI. CONCLUSION

We presented in this paper different solutions to Bayesian estimation problems on matrix Lie groups based on the UKF methodology, when the measurements consist of noisy partial measurements of the state, or full state noisy measurements of the state. We then applied these estimators to derive an UKF on Lie groups that comes in two variants. Experimental data combined with extensive Monte-Carlo simulations at various measurement noise levels illustrated the systematic superiority of the approach over the standard UKF on a robot localization example. Future work involves applications to drone navigation and to SLAM.
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APPENDIX A SPECIAL EUCLIDEAN 2D GROUP

The Special Euclidean 2D SE(2) group represents rigid transformations in 2D space and has q = 3 parameters: heading θ and position x = x 1 x 2 T . The elements χ ∈ SE(2), ξ ∧ ∈ g, are given, respectively, as The exponential and logarithm maps are obtained as

exp (ξ) =   R ξ 1 V ξ ξ 2 ξ 3 0 1   , log ( χ ) = V -1 χ x θ , (41) 
where R ξ 1 is defined in (39),

V ξ = 1 ξ 1 sin ξ 1 -1 + cos ξ 1 1 -cos ξ 1
sin ξ 1 and (42)

Vχ = 1 θ sin (θ) -1 + cos (θ) 1 -cos (θ) sin (θ) , (43) 
and see [START_REF] Eade | Lie Groups for 2D and 3D Transformations[END_REF] for adjoint.

Fig. 1 :

 1 Fig. 1: Testing arena with Wifibot robot in the foreground of the picture. We can also see two of the seven Optitrack cameras in the background.

Fig. 2 :

 2 Fig. 2: Ground truth trajectory starting from the position (0, 0) and estimated trajectories with wrong initial positions. The noise is moderate to high (σ 2 = 10 -2 m 2 ). The standard UKF and EKF encounter serious difficulties at the beginning due to initial dispersion encoded in P0.
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 34 Fig. 3: Monte-Carlo average of the Root Mean Square Error on (θn) 1≤n≤N over the whole trajectory, as a function of the noise measurement variance σ 2 . Standard UKF and EKF achieve identical RMSE.

Fig. 5 :Fig. 6 :

 56 Fig.5: Root Mean Square Error on (θn) 1≤n≤N as a function of the noise measurement variance σ 2 . We clearly remark the superiority of the Right-UFK-LG compared to both Left-UFK-LG and UKF.

  ) -sin (θ) x 1 sin (θ) cos (θ)

  Algorithm 2: Unscented Kalman Filter on Lie Groups Input: χn-1 , P n-1 , Ω n , Q n , y n , vn , R n , α;

		Propagation	
	1	λ = α 2 -1 2q ;	// scale parameter
	2 3	W j c = 1/2 λ+2q , j = 1, . . . , 4q ; P aug = diag (P n-1 , Q n );	// weights // augmented
		covariance matrix
		α j = col	(2q + λ) P aug	j	, j = 1, . . . , 2q,
		α j = -col	(2q + λ) P aug	j-2q	,
		j = 2q + 1, . . . , 4q;
	4 5	ξ T j χn = χn-1 Ω n ; w T j = α T j , j = 1, . . . , 4q; // mean update
	6 7	Ξ j = Ω -1 n exp (ξ j ) exp (ω n + w j ) , j = 1, . . . , 4q; P n = 4q j=1 W j c log (Ξ j ) log (Ξ j ) T ;
		Update		
		Compute	χ+ n , P + n from Algorithm 1 with χn , P n ;
		Output:	χ+ n , P + n ;