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Unscented Kalman Filtering on Lie Groups

Martin BROSSARD*, Silvére BONNABEL* and Jean-Philippe CONDOMINES
*MINES ParisTech, PSL Research University, Centre for Robotics, 60 Boulevard Saint-Michel, 75006 Paris, France
TEcole Nationale de 1’ Aviation Civile - BP 54005, Toulouse Cedex 4, 31055, France

Abstract—In this paper, we first consider a simple Bayesian
fusion problem in a matrix Lie group, and propose to tackle it
using the unscented transform. The method is then leveraged
to derive two simple alternative unscented Kalman filters on
Lie groups, for both cases of noisy partial measurements of
the state, and full state noisy measurements of the state on the
group. The general method is applied to a robot localization
problem, and results based on experimental data combined with
extensive Monte-Carlo simulations at various noise levels show
the systematic superiority of the approach over the standard UKF.

Keywords—Lie groups, unscented Kalman filter, robot localiza-
tion.

I. INTRODUCTION

The problem of robot localization (and mapping) based
on the fusion of various sensors has long been an important
field. With the advent of probabilistic robotics methods within
the field of mobile robotics, the role of accurate statistics for
localization (and mapping) has been increasingly recognized.
The Unscented Kalman Filter (UKF) introduced by roboticists
[1,2] has become prevalent as an alternative to the Extended
Kalman Filter (EKF) that improves estimation and spares the
pratictioner the computation of Jacobians. Besides, there has
been various recent works that have evidenced the fact that the
Lie group structure of the configuration space SE(3) plays a
prominent role in probabilistic robotics, see [3]-[9]. It has also
been shown recently that a Lie group underlies the state space
in SLAM, and that using a (Lie group) Invariant EKF [6], the
consistency issues of the EKF-SLAM can be fixed [10].

In this paper we consider systems whose state is a matrix
Lie group. Using exponential coordinates to define Gaussians
on group, we derive a Lie group version of the unscented
Kalman filter. We consider two distinct problems: the problem
of noisy partial measurements of the state that live in a
vector space, and the problem of full state noisy measurement
which is to be treated slightly differently, as the measurement
then lives in the Lie group. For each type of measurement,
the proposed UKF on Lie Groups consists of two different
variants: one based on left multiplications, and the other based
on right multiplications. It turns out the variant that works best
depends on the problem at hand, and both should be tested
when one has no clear insight on which should be the best.

A. Links and Differences with Previous Literature

The UKF has been extensively adapted and used for
attitude estimation, that is, for filtering on the Lie group
SO(3). An UKF called USQUE [11] has become a reference
filter for attitude estimation. The filter does not fully use
the Lie group structure of the state space, notably the Lie
exponential map, but rather takes advantage of the quaternion

representation SO(3), which does not carry over to general
Lie groups. Recent works have also advocated the use of
particular probability densities on SO(3), the so-called Fisher
distributions, as an interesting alternative to the Lie exponential
coordinates of [3], and have brought them to bear for unscented
attitude estimation [12].

Another line of research uses the unscented transform
on Lie groups and Lie exponential coordinates to derive
uncertainty ellipsoids that are proved to contain with certainty
the state, when faced with bounded sensor errors, see [13,14].
[15,16] also introduced an Invariant UKF, as an UKF capable
of taking into account the symmetries of the system’s equa-
tions, for state spaces that are generally not Lie groups.

Regarding SE(3) and more general Lie groups, one can
essentially follow two slightly different routes to describe
Gaussians in exponential coordinates. The first consists in
directly defining a density on the group, that can be referred
to as concentrated Gaussian, as in [17,18]. Those distributions
were recently used for extended Kalman filtering on Lie groups
by [19]. The second one consists in assuming the distribution
to be normal in the Lie algebra, and then to map it to the group
through the exponential map, as advocated by [5] for robotics
applications, and at the heart of the Invariant EKF of [6,20]. In
the present paper, we follow this second method. This yields a
propagation step of the UKF that is identical to the method of
[5] to compound poses. However, [5] does not treat Bayesian
estimation on SFE(3), which is necessary to update the state
of the UKF when given a novel measurement.

The very recent paper [21] also proposes an UKF on the
Lie group SE(3) for a navigation application. Beyond the fact
it is only concerned with SE(3) whereas the present paper
deals with general Lie groups, the method is different since
it uses concentrated Gaussians on Lie groups of [17]. As a
result, the method can be related to the general unscented
Kalman filtering on manifolds of [22], where the sigma points
are mapped onto the manifold, and then the logarithm map is
used to map them back in some tangent space where averages
and covariances can be computed, whereas the sigma points in
our method below live in a vector space, and are never mapped
onto the group itself (regarding partial measurements). Last but
not least, the method of [21] is based on left multiplications,
notably on the left-invariant connection of SF(3), whereas, as
emphasized in the present paper, right multiplications allow
defining an alternative UKF. This is important, as simulations
of Section V-D indicate the right multiplications based UKF
precisely suits best measurements in the body frame, such as
those considered in [21].



B. Paper’s Organization and Contributions

The paper is divided into six sections as follows. Section
IT contains mathematical preliminaries. Each of the following
three sections constitutes a contribution of the present paper.
In Section III, we design different Bayesian estimators on Lie
groups based on the unscented transform for various kinds
of measurement. The method is applied in Section IV to
derive two UKF on Lie groups. Section V considers 2D robot
localization problem that uses experimental data, and illustrates
the superiority of the proposed UKF over the standard UKF
and the Invariant EKF.

II. MATHEMATICAL PRELIMINARIES
A. Lie Groups

In this section we recall the definitions and basic properties
of matrix Lie groups, Lie algebra and random variables on
Lie groups. A matrix Lie group G € RV*¥ is a set of square
invertible matrices that is a group, i.e., the following properties

IcG; VX eG, X teG; YX1,Xo € G, X1 X € G (1)

hold. Locally about the identity matrix I, the group G can
be identified with an Euclidean space R? using the matrix
exponential map exp,,(.), where ¢ = dim G. Indeed, to any
& € R? one can associate a matrix £ of the tangent space of
G at I, called the Lie algebra g. We then define the exponential
map exp : R? — G for Lie groups as

exp (§) = exp,, (£"), 2)

Locally, it is a bijection, and one can define the Lie logarithm
map log : G — R? as the exponential inverse, leading to

log (exp (§)) = €. ®)

B. Uncertainties on Lie Groups

To define random variables on Lie groups, we cannot apply
the usual approach of additive noise for X € G as G is not a
vector space. In contrast, we adopt the framework of [5], see
also [6,20], which is slightly different from the pioneering ap-
proach of [3,23]. Indeed, we define the probability distribution
X ~ NLO_(, P), for the random variable X € G, as

X =Xexp (&), E~N(0,P), 4

where A (.,.) is the classical Gaussian distribution in Eu-
clidean space and P € R?%? is a covariance matrix. In the
sequel, we will refer to (4) as the left-equivariant Gaussian
distribution on G, due to its compatibility with left multipli-
cations. In (4), the noise-free quantity X is viewed as the
mean, and the dispersion arises through left multiplication
with the exponential of a Gaussian random variable. Similarly,
the distribution X ~ ANR(X,P) can be defined through right
multiplication as

X = exp (€)X, £~ N (0,P), 5)

We stress that we have defined these probability density
functions directly in the vector space R? and that both NV (., .)
and Mg (.,.) are not Gaussian distributions.

III. BAYESIAN ESTIMATION ON LIE GROUPS USING THE
UNSCENTED TRANSFORM

Consider a random variable X € G with prior proba-
bility distribution p (X). Suppose we obtain some additional
information about X through a measurement y. The goal
of Bayesian estimation is to compute an estimate of the
posterior distribution p(X|y). In this section, we derive various
algorithms for various types of measurements.

A. Partial Measurement with Left-equivariant Prior Uncer-

tainty (4)
Consider a generic vector measurement of the form
y=hX)+v, (©)

where h(.) : G — RF represents the observation function
and v ~ N(v,R) is a Gaussian random noise in R¥ with
known characteristics. The problem of Bayesian estimation we
consider is as follows:

1)  consider the prior distribution follows (4), i.e.,

with known parameters X and P;
2)  assume one measurement y given by (6) is available;
3) approximate the posterior distribution as

p(Xly) = ML(XT, PT), ®)
and compute the estimates of both posterior parame-
ters X and P.

To attack this problem, one can resort the unscented transform
of [1]. First, and contrarily to [21], we use the fact that the
problem is amenable to nonlinear filtering in a vector space, as
we have & ~ N (0, P) with nonlinear measurement (6). The
UKEF thus allows us to approximate the posterior p(&|y) for

€ as follows: we compute a finite number of samples a; =
[é'jT Vﬂ ,7=0,...,2], with | = g+Fk, and then pass each of

these so-called sigma points through the measurement function

and we then compute successively the measurement mean
¥, the measurement covariance Py, and the cross-covariance
P.y. We thus approximate the posterior for £ in R? as

p(€ly) ~ N (€, P*), where (10)
E] = PayPyy (y —y) and an
PY =P~ Poy (PayPyy) (12)

The unscented approximation to the posterior p(£|y) is thus
the distribution of a Gaussian &€ + €T with £ ~ A/ (0, PT).
Back to the Lie group, this means we approximate the posterior
distribution through the variable X exp (£ + £T). The Baker-
Campbell-Hausdorff (BCH) formula provides a simple (first-
order) approximation as exp (£ + &) =~ exp (£) exp (£7).
This readily yields an approximate X' exp(£7) to the poste-
rior of the form (4), with

X" =Xexp (€), € ~ N (0,PH), (13)



that concludes the Bayesian estimation, which is summarized
in Algorithm 1'.

Algorithm 1: Bayesian estimation on Lie groups
Input: X,P,y,v,R, a;
1A= (a — 1)l // scale parameter
A
2 W)= A+l’ We =sm+ (3—0a?),

Wi = Wg—% j=1,...,20; // weights
3 P28 = diag (P,R); // augmented covariance

matrix

.
o = G+ co 1(«/(Z+A)Paug> =1,

J
o = & — col (\/{T+ ) PE) L=l 2

i—

D= e

10 Extract € from (11);
1n Xt =Xexp (€);
12 Pt =P —P,y

Output: X, P+;

B. Partial Measurement with Right-equivariant Prior Uncer-
tainty (5)

In the latter subsection, we considered that both the prior
and posterior follow distribution of the form (4). If we assume
the prior has the form (5), then it is natural to assume that the
posterior is also of the form (5). In this case, we substitute the

computed measurements y;, j = 0,...,2[ in (9) as

y; = h(exp (§;) )+VJ (14)
and the posterior mean (13) as

X" =exp (€) X. (15)

The difference between both methods may prove non-
negligible as will be illustrated in Section V-D.

C. Full State Measurement: Bayesian Pose Fusion

Assume we have a prior of the form p(X) ~ N_(X,P)
and a measurement of the type
Y =XV, (16)
where X is the true state and V a noise of the form
V=exp(v), v~N(0,R). (17)

This kind of measurement happens for instance in SE(3),
when an algorithm is used to compute a pose directly from
perception sensors such as, stereo images, or scan matching
algorithms with point clouds, and when a covariance can be
associated to the computed pose, see e.g., [25].

lAccording to [1,24], we set unscented transform parameters to x = 0
and 8 = 2. « keeps a free-parameter chosen by the practitioner, which must
be small (& = 10~3 in our applications). The square-root matrix in step 4
is obtained from Cholewski decomposition and col(P); represents the j-th
column of P.

1) Proposed Method: in this case, we need to approximate
the posterior p(X|Y) ~ N_(X*,P*), which appears to be
nontrivial. Indeed, in (16), Y is a matrix measurement, and
this matrix belongs to G which is not a vector space, so both
the definition and the computation of the covariance of Y is
not straightforward. For such measurement, we propose using
the logarithm map to obtain

— log (X_lY) — log (X‘lxv) , (18)
— log (exp (€) V). (19)

Thanks to this transformation, the computed transformed out-
put y belongs to vector space R?, and we can then apply the
proposed Bayesian estimation of Section III-A, with

y; = log (exp (§;) exp (v;)), j=0,...,2l,  (20)
~ M (X, PH).

2) Fusion with Right-equivariant Prior Uncertainty (5):
assume that we have a prior of the form (5), or by symmetry
(inverting all quantities), that we have a left prior of the form
(4) but with an output of the form Y = VX. We then
propose to write Y = VXexp(§) = XXAVX exp(€) =
Xx_lexp( )X exp(€) = Xexp(Ady -1 v) exp(€) where Ad
is the adjoint operator of the group. We can thus compute the
modified output

= log ()_Cle) = log (exp (Adx—l v) exp (E)) @D
Thanks to this transformation, we recover a measurement
similar to (19), but with noise having covariance matrix

L
Adx—l R (Aqu) . The method above can then be readily
applied.

to obtain the posterior p(X|Y)

3) Rationale for the Transformation of the Output: con-
sider output (16). One could argue that y = log (Y) is already
a vector, and a function of £ so that an UKF estimate can
readily be built along the lines of Section III-A. However,
when X is far from the identity, a large distortion is induced
by the logarithm map. But £ and v being moderate zero-
centered noises in applications, we have using BCH formula
log (exp (§) V) = &€+v+o(||€]l, ||v]]). Thus up to first order
terms the transformed output y of (19) is a true Gaussian, and
the posterior output by the UKF will be very close to the true
one, no matter X, whereas log (Y) can be dramatically non-
Gaussian, preventing the UKF estimate from being accurate.

4) Links with the Pose Fusion Method of [5]: [5] pro-
poses an algorithm to fuse various measurements of the
form (16). With two measurements only, it boils down to
estimating an unknown group element X from measurements
Y: = Xexp(vy) and Yo = Xexp(va), where v; and
vy are centered Gaussians in R? with known covariance
matrices. In the Euclidean case, the corresponding problem
is to estimate some quantity g from two noisy measurements

= p+mn; and yo = p + ny where n; and n, are centered
Gaussian noises with known covariance matrices. This is a
classical estimation problem, that is optimally handled through
least squares, and does not imply the Kalman update equa-
tion (Gaussian conditioning). The problem considered in the
present section is quite different, since it deals with Bayesian
fusion of poses, which implies conditional probabilities. In our



case X is known, and we want to refine our statistics on the
random quantity X exp (&), given that we have measured, e.g.,

Y = Xexp (€) exp (V).

IV. APPLICATION TO UNSCENTED KALMAN FILTERING
ON LIE GROUPS

A. System Model

In the rest of this paper we consider a discrete dynamic
system of the form

Xn - Xn—l exp (wn + Wn) 3 (22)

where the state X, lives in GG, w,, is a known input variable
and w,, ~ N (0,Q,,) is a white Gaussian noise. We design
two different filters for generic discrete measurements of the
form

where v, ~ N(v,,R,;,) is a white Gaussian noise with known
characteristics, and also for measurements of the form

Yn = Xn exp (Vn) ) (24)
where v,, ~ N (v, R,,).

B. Unscented Kalman Filter on Lie Groups with Left-
equivariant Uncertainties (4)

For the model (22) with measurements given by (23), we
can model the state as X,, ~ N (X,,P,), that is, using the
left-equivariant formulatlon (4) of the uncertainties. The goal
is to compute both estimates of X,, and P,, at each time. The
proposed Left-Unscented Kalman Filter on Lie Groups (Left-
UKF-LGQG) acts in two steps: propagation and update. We now
develop these two steps.

1) Propagation: starting from the prior distribution
P (Xn-1) ~ N (X1, Pr), (25)
with X,,_; and P,,_; known, we seek to approximate the
propagated state distribution
P (X Xn—1) ~ NL (X0, P), (26)

i.e., we search to compute both X,, and P,,.

This step can be viewed as a straightforward application
of the method of [5] to compound poses using the unscented
transform. The state mean estimate is propagated using the
unnoisy state model, leading to

)_(n = anlﬂna (27)

with €,, = exp (w,), According to [5] this approximation of
the mean is valid up to the second order, so there is no need
to compute it through the unscented transform. We then resort
to the unscented transform to determine the covariance P,, by
first approximating the joint Gaussian variable using a finite
number of samples §;,w;, j = 1,...,4q. To propagate theses
samples, we inject (4) in (22) as

X exp (gn) = n 1 €Xp (én 1) exp (wn + Wn) 3 (28)
which simplifies as follows

exp (€n) = X, X1 exp (1) exp (W + W), (29)

exp (€n) = @, exp (§n-1) exp (wn + Wn), (30)
by use of (27). Algorithm 2 summarizes this propagation step.

2) Update: this step consists in incorporating the informa-
tion coming from the measurement. As concerns measurements
yn of the form (23), it boils down to a Bayesian estimation
problem, where we search to approximate the posterior prob-
ability distribution as

p(Xn‘yn7yn—1a"'ay1)NNL (iz,PI), (31)
with available prior
p(xn|yn7177yl)NNL (X'ruPn) (32)

We apply for the update estimates directly Bayesian estimation
as developed in Section III-A, yielding both X.\ and P;.

Algorithm 2: Unscented Kalman Filter on Lie Groups

Input: Xn—la Pn717 Q'ru Q'ru Yn, ‘_’"’ Rn’ a;
Propagation
12 " ;
2 | Wl=xf5 =1 4q:
3 P2 = diag (P,—1, Qn);

covariance matrix

aj:col( (2q+)\)Pa“g>‘,j:1,...,2q,
J
a; = —col( (2¢+ ) Pa“g) ,

// scale parameter
// weights
// augmented

J—2q
J=2q+1,...,4q;
[_E;r _T] JT,j=1,...,4q;
Xn = Xpn-18 ; // mean update

Ej= ﬂn exp (&) exp (wn, +w;j), j=1,...,4¢;
| Pa=X5L
Update

| Compute X}, P} from Algorithm 1 with X,,, P..;

Output: xt P

N A

W2 log (25) log (5;) "

n’

To update the filter with a measurement of the type (24),
it suffices to apply in a similar manner the method of Section
I-C.

C. Unscented Kalman Filter on Lie Groups with Right-
equivariant Uncertainties (5)

For the model (22) with measurements given by (23),
we can model the state as X,, ~ Nr(X,,P}), that is, using
the right-equivariant formulatlon (5) of the uncertainties. The
filter is defined in an analogous way to the previous Section
IV-B. The resulting filter is yet different, and we call it Right-
Unscented Kalman Filter on Lie Groups (Right-UKF-LG).
Section V-D evidences that large discrepancies in performance
between the Left and Right UKF-LGs can occur, so that
both variants should generally be tested when facing a novel
estimation problem on Lie groups.

V. RESULTS FOR EXPERIMENTAL DATA

To demonstrate the performances of the proposed method,
we first apply the proposed Left-UKF-LG to the following non-
linear standard model of the two-dimensional differential drive
car [26], and compare it to various algorithms of the literature.
The velocity u,, € R is given by an odometer and we measure



Fig. 1. Testing arena with Wifibot robot in the foreground of the picture.
We can also see two of the seven Optitrack cameras in the background.

the angular velocity w,, € R, e.g., by a differential odometer
or a gyrometer. Taking into account the possible noise in the
measurements, we get the discrete model

On =0p_1+wy + wﬁ,
xh =y _y +cos (0) (un + wL) —sin (6,)w,  (33)

1
a2 =22 _y +sin(6,) (un + w,ll) + cos (0,) wir,

where w?, w! and w!" represent, respectively, the differen-

tial odometry error, the longitudinal odometry error and the
transversal shift. We assume the vehicle obtains some noisy
measurements of its position of the form

- - o2 0
Yn=Xn+Vn, Vo ~N [0, 0 ol | (34)

o
which typically models a GPS position in an outdoor appli-

cation. The system can be embedded in the matrix Lie group
G = SE(2) as explained in Appendix A, using X,, as the

state, and
Wn, wa
wy, = Uy | and w, = |w), (35)
0 'u):lr

The equation governing the noisy system evolution then be-
comes

Xn = Xp—1 €xp (wy, + Wy,) (36)
and the observations have the equivalent form
- [Xn Jlf"n] — X, m + h)”] . 37)
———
h(X,) Vn

A. Experimental Setting

We then compare the various filters for the model described
in Section V on real data obtained in an experiment conducted
at the Centre for Robotics, MINES ParisTech. We used a so-
called Wifibot, which is a small wheeled robot equipped with
independent odometers on the left and right wheels, see Fig. 1.
A set of seven highly precise cameras, the OptiTrack motion

T T
Left-UFK-LG
24+ IEKF —
—  UKF
—  EKF
d truth
150 groun N
g 1t 1
=
g
8
0.5 a
= N
=05 | \ \ \ \ \ Bl

y, (m)

Fig. 2. Ground truth trajectory starting from the position (0, 0) and estimated
trajectories with wrong initial positions. The noise is moderate to high (62 =
10~2m?2). The standard UKF and EKF encounter serious difficulties at the
beginning due to initial dispersion encoded in Pyg.

capture system, provide the reference trajectory (ground truth)
0,, and x,, with sub-millimeter precision at a rate of 120 Hz.
We display the experimental trajectory in Fig. 2, corresponding
to a random motion of 45 seconds. From this trajectory, we can
determine the odometer noise characteristics to parametrize
correctly the covariance matrix Q,,.

The four filters to be compared are:

1)  the standard EKF using the model original equations
(33) with state variables x,, and 6,,;

2)  the standard UKF using equations (33) with state
variables x,, and 0,,;

3) the recent Invariant-EKF (IEKF), an EKF variant on
Lie groups that comes with guaranteed convergence
properties, see [27] for its application to system (33)-
(34), and with consistency properties [10];

4)  the proposed Left-UKF-LG of Section IV using the
Lie group embedding (36) and state variable X,,.

B. Results

To compare the proposed Left-UKF-LG? with other meth-
ods for different levels of noise, we provide each filter with the
raw odometer measurements, and we artificially add Gaussian
noise to the ground truth position measurements to simulate
noisy position measurements, delivered to the filter at a rate
of 1 Hz. Initially, we set for the filters both incorrect heading
g ~ N(O, (77/2)2> and position z§ ~ N(0,1/8), 23 ~
N (0,1/8). We then run 500 Monte-Carlo simulations for
different levels of measurement noise ¢ = [107°,107!| m?
and compare the (average) Root Mean Square Errors w.r.t. the
ground truth over the whole trajectory. Results are displayed
in figures Fig. 3 and Fig. 4.

2We similarly implemented the Right-UKF-LG but we show only Left-
UKF-LG which is the most efficient for the measurement (34).
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Fig. 3. Monte-Carlo average of the Root Mean Square Error on (0n)1<n<N
over the whole trajectory, as a function of the noise measurement variance o2.
Standard UKF and EKF achieve identical RMSE.
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Fig. 4. Monte-Carlo average of the Root Mean Square Error on (Xn)1<n<nN
over the whole trajectory, as a function of the noise measurement variance o=.
Standard EKF and UKF achieve identical RMSE.

C. Discussion

For this trajectory, Left-UKF-LG and IEKF provide best
position estimates at low noise. Regarding the heading, IEKF
is slightly better than Left-UKF-LG at low noise but Left-UKF-
LG becomes the most efficient filter when noise is moderate.
We thus see that the Left-UKF-LG takes advantage of both the
geometry-based structure of the IEKF, and the robustness of
the unscented method. The following points seem important
to us:

e The problem at hand (33) can be treated without the
Lie group machinery, using x,, and 6,, as vector state
variables. However, we see that embedding it into a
Lie group framework yields more powerful variants of
the Kalman filter (the IEKF and the Left-UKF-LG).

e One could think the standard UKF systematically
performs better than the standard EKF, especially
when the measurement noise is high, due to its second
order properties. This is generally true, but not always,
as evidenced by the considered experiment.

e  On the other hand, it seems the Lie group counterpart
of the UKF improves the Lie group counterpart of the
EKEF, that is, the IEKF.

D. Differences Between Left-UKF-LG and Right-UKF-LF

In the latter section, we focused on the comparison be-
tween Left-UKF-LG and some existing filters. We illustrate

10*07% T =TT TTTTT F—T—TTTTTT T TTTTH
—+— Left-UFK-LG r
Right-UFK-LG

UKF

[ i LIl [ i L1l
10* 1073 1072

2
g

Fig. 5. Root Mean Square Error on (6,)1<p<nN as a function of the noise
measurement variance o2. We clearly remark the superiority of the Right-
UFK-LG compared to both Left-UFK-LG and UKF.
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Fig. 6. Root Mean Square Error on (X )1<n<n as a function of the noise
measurement variance o2. We clearly remark the superiority of the Right-
UFK-LG compared to both Left-UFK-LG and UKF.

in this section that there may be discrepancies between the
performances of Left-UKF-LG and Right-UKF-LF. To do so
we still consider the system model (36) but with alternative
measurements

Y, =R(0,) (xo —P’) + V), j=1,...,J, where (38)

_ |cos(0,) —sin(6,)

R (0.) = sin (0,) cos(6,) |’ (39)
which represent a range-and-bearing observation of a sequence
of known features located at p/ € R? for j = 1,...,J,
and where we let R (0) be the planar rotation of angle 6.
In our setting, we define J = 3 features p' = [1 Q]T,

p2=[-05 0] andp3=1[0 1.

We then run 200 Monte-Carlo simulations for different
levels of measurement noise o? = [107°,107'] m? and
compared the Root Mean Square Error w.r.t. the ground truth.
Results are displayed in figures Fig. 5 and Fig. 6. They clearly
reveal that the Right-UKF-LG outperforms both Left-UKF-LG
and UKF in this particular case. In the absence of further
insight, we thus recommend to the practitioner to design,
implement and compare both UKF-LG variants, and then select
the most efficient of them.

VI. CONCLUSION

We presented in this paper different solutions to Bayesian
estimation problems on matrix Lie groups based on the UKF



methodology, when the measurements consist of noisy partial
measurements of the state, or full state noisy measurements of
the state. We then applied these estimators to derive an UKF
on Lie groups that comes in two variants. Experimental data
combined with extensive Monte-Carlo simulations at various
measurement noise levels illustrated the systematic superiority
of the approach over the standard UKF on a robot localization
example. Future work involves applications to drone navigation
and to SLAM.
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APPENDIX A
SPECIAL EUCLIDEAN 2D GROUP

The Special Euclidean 2D SFE(2) group represents rigid
transformations in 2D space and has ¢ = 3 parameters: heading
6 and position x = [z xzf. The elements X € SE(2),
&" € g, are given, respectively, as

cos(f) —sin(f) 2t 0 &b &2
X = |sin(d) cos(f) 2%| andg&"= | 0 &
0 0 1 0 0 0

(40)

The exponential and logarithm maps are, respectively, obtained
as

cos (51) —sin ({1) Ve Ei}

exp (&) = sin (51) cos (fl) and (41)

0 0 1
log (X) = [V;élx] , 42)

where

1 [ sin(¢t —1 + cos (¢!

Ve=a [1 - co(s (21) sin (glg )] and  (43)
_1{ sin(@) —1+cos(h)
ve=3 [ iy i ()
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