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We introduce a new procedure for constructing noncommutative Gröbner bases using a lattice formulation of completion. This leads to a lattice description of the noncommutative F 4 procedure. Our procedure is based on the lattice structure of reduction operators which provides a lattice description of the conuence property. We relate reduction operators to noncommutative Gröbner bases, we show the Diamond Lemma for reduction operators and we deduce the lattice interpretation of the F 4 procedure. Finally, we illustrate our procedure with a complete example.

Introduction

The objective of the paper is to introduce a new procedure for constructing noncommutative Gröbner bases which turns out to be a lattice formulation of the noncommutative F 4 procedure. This formulation is based on a description of the completion procedure using linear algebra techniques and is motivated by the development of eective methods in homological algebra using such techniques [START_REF] Anick | On the homology of associative algebras[END_REF][START_REF] Berger | Conuence and Koszulity[END_REF][START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Kobayashi | Gröbner bases of associative algebras and the Hochschild cohomology[END_REF][START_REF] Stewart | Koszul resolutions[END_REF].

The F 4 procedure is an improvement of the Buchberger's one where several S-polynomials are reduced into normal forms simultaneously. Improvements and optimisations of Buchberger's procedure were rst introduced in the context of polynomial ideals, where selections strategies [START_REF] Bigatti | Computing inhomogeneous Gröbner bases[END_REF][START_REF] Miguel | Computing Gröbner bases by FGLM techniques in a non-commutative setting[END_REF][START_REF] Faugère | Ecient computation of zero-dimensional Gröbner bases by change of ordering[END_REF] and criteria for avoiding useless critical pairs [START_REF] Buchberger | A criterion for detecting unnecessary reductions in the construction of Gröbner-bases[END_REF][START_REF] Caboara | Eciently computing minimal sets of critical pairs[END_REF][START_REF] Faugère | A new ecient algorithm for computing Gröbner bases without reduction to zero (F 5 )[END_REF][START_REF] Kreuzer | Computational commutative algebra[END_REF][START_REF] Kreuzer | Computational commutative algebra 1[END_REF] were investigated. The F 4 completion procedure was also introduced for polynomial ideals [START_REF] Faugère | A new ecient algorithm for computing Gröbner bases (F 4 )[END_REF], it is adapted to the noncommutative case [START_REF] Xiu | Non-commutative Gröbner bases and applications[END_REF] and an implementation of this adaptation can be found in the system MAGMA.

Our lattice formulation of F 4 uses the approach due to Bergman [START_REF] Bergman | The diamond lemma for ring theory[END_REF] who described reduction systems over noncommutative algebras by reduction operators. The latter admit a lattice structure inducing lattice formulations of conuence and completion that we present now.

Lattice formulations of conuence and completion. A reduction operator relative to a well-ordered set (G, <) is an idempotent linear endomorphism T of the K-vector space KG spanned by G such that for every g / ∈ im (T ), T (g) is a linear combination of elements of G strictly smaller than g. We denote by RO (G, <) the set of reduction operators relative to (G, <).

From [8, Proposition 2.1.14], the kernel map induces a bijection between RO (G, <) and subspaces of KG, so that RO (G, <) admits a lattice structure dened in terms of kernels:

i. T 1 T 2 if ker (T 2 ) ⊆ ker (T 1 ),

ii. T 1 ∧ T 2 = ker -1 (ker (T 1 ) + ker (T 2 )),

iii. T 1 ∨ T 2 = ker -1 (ker (T 1 ) ∩ ker (T 2 )).

Given a subset F of RO (G, <), we denote by ∧F the lower-bound of F , that is the reduction operator whose kernel is the sum of kernels of elements of F . We get the following lattice formulation of conuence: F is said to be conuent if the image of ∧F is equal to the intersection of images of elements of F . Recall from [8, Corollary 2.3.9] that F is conuent if and only if the reduction relation on KG dened by v -→ T (v) for every T ∈ F and every v / ∈ im (T ) is conuent. Moreover, recall from [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF]Theorem 3.2.6] that the completion of F is done by the operator C F = (∧F ) ∨ ∨F , where F is a subset of RO (G, <) dened from F and ∨F is the upper-bound of F , that is F ∪ {C F } is a conuent subset of RO (G, <).

In Section 3, the operator C F is used to reduce simultaneously several S-polynomials into normal forms using a triangular process such as the F 4 procedure does. For that, we introduce presentations by operators which relate reduction operators to noncommutative Gröbner bases.

Reduction operators and presentations of algebras. A presentation by operator of an associative A is a triple (X, <, S), where X is a set, < is a monomial order on the set of noncommutative monomials X * and S is a reduction operator relative to (X * , <) such that A is isomorphic to the quotient of the free algebra over X by the two-sided ideal spanned by ker (S).

In order to describe all the reductions induced by S we consider the "extensions" of S, that is the operators which applied to a monomial w 1 w 2 w 3 gives w 1 S(w 2 )w 3 . The presentation (X, <, S) is said to be conuent if the set of extensions of S is a conuent subset of RO (G, <).

From [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF]Proposition 3.3.10], the presentation (X, <, S) is conuent if and only if the set of elements w -S(w) with w / ∈ im (S) is a noncommutative Gröbner basis of I (ker (S)). This link between reduction operators and noncommutative Gröbner bases enables us to show the Diamond Lemma in terms of reduction operators in Proposition 2.2.8.

Our procedure for constructing conuent presentations by operators, and thus noncommutative Gröbner bases, is given in Section 3.1. At the step number d of the procedure, we reduce the S-polynomials of the current presentation X, <, S d into normal forms using a set of reduction operators F d . The operator at the step d + 1 is S d+1 = S d ∧ C F d . Denoting by S the lower-bound of all the operators S d , the triple X, <, S is called the completed presentation of A. The main result of the paper is Theorem 3.2.5 which asserts that a completed presentation is conuent. In Section 3.3, we show how to implement our procedure with a complete example as an illustration.

Organisation of the paper Section 2.1 is a recollection of results from [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF]: we recall the denitions and properties of reduction operators, their conuence and completion used in the sequel. In Section 2.2, we dene presentations by operators, the conuence property of such presentations, we formulate and we show the Diamond Lemma for reduction operators. In Section 3.1, we write our completion procedure and dene completed presentations. In Section 3.2, we show that a completed presentation is conuent. In Section 3.3, we illustrate our completion procedure with a complete example based on the computation of lattice operations of reduction operators.

Reduction operators

2.1

Lattice structure of reduction operators Throughout the paper, K denotes a commutative eld. Given a set G, we denote by KG the vector space spanned by G. Given a well-order < on G, the leading generator of a nonzero element v ∈ KG is written lg (v). We extend the order < on G into a partial order on KG in the following way: we have u < v if u = 0 and v = 0 or if lg(u) < lg(v).

Denition 2.1.1. A reduction operator relative to (G, <) is an idempotent endomorphism T of KG such that for every g ∈ G, we have T (g) ≤ g. We denote by RO (G, <) the set of reduction operators relative to (G, <). Given T ∈ RO (G, <), a generator g ∈ G is said to be a T-normal form or T-reducible according to T (g) = g or T (g) = g, respectively. We denote by nf (T ) the set of T -normal forms and by red (T ) the set of T -reducible generators.

Lattice structure, conuence and completion. Recall from [8, Proposition 2.1.14] that the restriction of the kernel map T -→ ker (T ) to RO (G, <) is a bijection. Using the inverse ker -1 , the set RO (G, <) admits a lattice structure for the operations i. T 1

T 2 if ker (T 2 ) ⊆ ker (T 1 ), ii. T 1 ∧ T 2 = ker -1 (ker (T 1 ) + ker (T 2 )), iii. T 1 ∨ T 2 = ker -1 (ker (T 1 ) ∩ ker (T 2 )).
Recall from [8, Lemma 2.1.18] that we have the following implication

T 1 T 2 =⇒ nf (T 1 ) ⊆ nf (T 2 ) a . (1) 
a In [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF], the notation red (T ) stands for reduced generators and correspond to nf (T ) in the present paper. The notation red (T ) of the present paper corresponds to nred(T ) of [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF] which means nonreduced generators.

Given a nonempty subset F of RO (G, <), we denote by nf (F ) and ∧F the set of normal forms for each T ∈ F and the lower-bound of F , respectively. From (1), nf (∧F ) is included in nf (T ) for every T ∈ F , so that nf (∧F ) is included in nf (F ). We write

obs (F ) = nf (F ) \ nf (∧F ) . (2) 
The set F is said to be conuent if obs (F ) is the empty set. In Section 3. 

every v ∈ KG, there exist T 1 , • • • , T r ∈ F such that (∧F ) (v) = (T r • • • • • T 1 ) (v).
, • • • , T r , T 1 , • • • , T k ∈ F such that v = (T r • • • • • T 1 ) (T (v)) and v = (T k • • • • • T 1 ) (T (v))
. Finally, we recall how a set of reduction operators is completed into a conuent one.

Denition 2.1.

2. A complement of F is an element C of RO (G, <) such that i. (∧F ) ∧ C = ∧F , ii. obs (F ) ⊆ red (C).
The F-complement is the operator C F = (∧F ) ∨ ∨F , where ∨F is equal to ker -1 (Knf (F )).

Recall from [8, Proposition 3.2.2] that a reduction operator C satisfying (∧F )

∧ C = ∧F is a complement of F if and only if F ∪ {C} is conuent. Recall from [8, Theorem 3.2.6] that the F -complement is a complement of F .

Presentations by operators

In this section, we relate the conuence property for reduction operators to noncommutative Gröbner bases and we prove the Diamond Lemma for reduction operators. Given a set X, we denote by X * the set of noncommutative monomials over X and we identify the free algebra over X with KX * , equipped with the multiplication induced by concatenation of monomials. A monomial order over X * is a well-founded total strict order < on X * such that the following conditions are fullled: i. 1 < w for every monomial w dierent from 1, ii. for every w 1 , w 2 , w, w ∈ X * such that w < w , we have w 1 ww 2 < w 1 w w 2 .

For any f ∈ KX * , the leading monomial of f is written lm (f ) instead of lg (f ). Denition 2.2.1. A presentation by operator of an associative algebra A is a triple (X, <, S) where i. X is a set and < is a monomial order on X * , ii. S is a reduction operator relative to (X * , <) such that A is isomorphic to KX * /I (ker(S)), where I (ker(S)) is the two-sided ideal spanned by ker (S).

We x an algebra A together with a presentation by operator (X, <, S) of A. For every integer n, we denote by X (n) and X (≤n) the set of monomials of length n and of length smaller or equal to n, respectively. For every integers n and m such that (n, m) is dierent from (0, 0), we consider the reduction operator

S n,m = Id KX (≤n+m-1) ⊕ Id KX (n) ⊗ S ⊗ Id KX (m) .
Explicitly, for every w ∈ X * , S n,m (w) is dened by: if the length of w is strictly smaller than n + m, then S n,m (w) = w, else we let w = w 1 w 2 w 3 where w 1 and w 3 have length n and m, respectively and we have S n,m (w) = w 1 S(w 2 )w 3 . We also let S 0,0 = S. Denition 2.2.2. The set of all the operators S n,m with (n, m) ∈ N 2 , is called the reduction family of (X, <, S). The presentation (X, <, S) is said to be conuent if its reduction family is a conuent subset of RO (X * , <).

Recall from [8, Proposition 3.3.10] that (X, <, S) is conuent if and only if the set of elements w -S(w) with w ∈ red (S) is a noncommutative Gröbner basis of I (ker(S)), that is red (S) spans leading monomials of I as a monomial ideal.

Example 2.2.3. Let X = {x, y, z} and let < be the deg-lex order induced by x < y < z.

Consider the algebra presented by (X, <, S) where S is dened on the basis X * by S(yz) = x, S(zx) = xy and S(w) = w for every monomial w dierent from yz and zx. We have

yxy -xx = (yxy -yzx) -(xx -yzx) = (yS(zx) -yzx) -(S(yz)x -yzx) = A + B
where A = (S 1,0 -Id KX * ) (yzx) and B = (Id KX * -S 0,1 ) (yzx). Hence, yxy -xx belongs to ker (∧F ) where F is the reduction family of the presentation, so that yxy is ∧F -reducible. Moreover, yxy belongs to nf (F ), so that yxy belongs to obs (F ) and F is not conuent. Thus, (X, <, S) is not a conuent presentation of A.

In Section 3.1 we formulate our procedure for constructing conuent presentations by operators using critical branchings that we introduce in Denition 2.2.4. These branchings are analogous to ambiguities for Gröbner bases. An ambiguity with respect to < of a subset R of KX * is a tuple b = (w 1 , w 2 , w 3 , f, g) where w 1 , w 2 , w 3 are monomials such that w 2 = 1, f, g belong to R and one of the following two conditions is fullled:

1. w 1 w 2 = lm (f ) and w 2 w 3 = lm (g). 2. w 1 w 2 w 3 = lm (f ) and w 2 = lm (g). The S-polynomial of b is written sp (b), that is sp (b) = f w 3 -w 1 g or sp (b) = f -w 1 gw 3
according to b is of the form 1 or 2, respectively. The ambiguity b is said to be solvable relative to < if there exists a decomposition

sp (b) = n i=1 λ i w i f i w i , (3) 
where, for every i ∈ {1, • • • , n}, λ i is a non-zero scalar, w i , w i are monomials and f i is an element of R such that w i lm (f i ) w i < w 1 w 2 w 3 . The Diamond Lemma [3, Theorem 1.2] asserts that R is a noncommutative Gröbner basis of I(R) if and only if every critical branching of R with respect to < is solvable relative to <.

Our purpose is to formulate and to prove the Diammond Lemma for reduction operators.

Until the end of the section, we x some notations: A is an associative algebra and (X, <, S) is a presentation by operator of A. For every pair of integers (n, m), we consider the operator S n,m dened such as the beginning of the section. We denote by R the set of elements w -S(w) with w ∈ red (S). Denition 2.2.6. Let w ∈ X * and let f ∈ KX * . We say that f admits a (S, w)-type decomposition if it admits a decomposition

f = n i=1 λ i w 1 i (w i -S(w i )) w 2 i ,
where, for every i ∈ {1, • • • , n}, λ i is a non-zero scalar, w 1 i , w 2 i and w i are monomials such that w i belongs to red (S) and w 1 i w i w 2 i < w.

Lemma 2.2.7. There is a one-to-one correspondence b -→ b between critical branchings of (X, <, S) and ambiguities of R with respect to <. Moreover, a critical branching b of source w admits a (S, w)-type decomposition if and only if b is solvable relative to <.

Proof. Let us show the rst part of the lemma. Let b = (w, (n, m), (n , m )) be a critical branching of (X, <, S). In order to dene b, we distinguish four cases depending on the values of n and m:

Case 1: (n, m) = (0, 0). We write w = w 1 w 2 w 3 , where the lengths of w 1 and w 3 are equal to n and m , respectively. By denition of a critical branching, w and w 2 belong to red (S) and we let b = w 1 , w 2 , w 3 , w -S(w), w 1 (w 2 -S(w 2 )) w 3 . By denition of a critical branching, n + n + m + m = n + m is strictly smaller than the length of w. In particular, w 2 is not the empty word, so that the tuple b is an ambiguity of R with respect to < of the form 2.

Case 2: n = 0 and m = 0. By denition of a critical branching, m = 0. If n is also equal to 0, we have (n , m ) = (0, 0), so that we exchange the roles of (n, m) and (n , m ) and we recover the rst case. If n = 0, we write w = w 1 w 2 w 3 , where the lengths of w 1 and w 3 are equal to n and m, respectively. In particular, b being a critical branching, the monomials w 1 w 2 and w 2 w 3 belong to red (S) and w 2 is dierent from 1. Hence, b = w 1 , w 2 , w 3 , w 1 w 2 -S(w 1 w 2 ), w 2 w 3 -S(w 2 w 3 ) , is an ambiguity of R with respect to <.

Case 3: n = 0 and m = 0. By denition of a critical branching, n is equal to 0. Exchanging the roles of (n, m) and (n , m ), we recover the second case.

Case 4: n = 0 and m = 0. By denition of a critical branching, the pair (n , m ) is equal to (0, 0). Exchanging the roles of (n, m) and (n , m ), we recover the rst case.

We have a well-dened map b -→ b between critical branchings of (X, <, S) and ambiguities of R with respect to <. Now, we dene the inverse map b -→ b. Let b = (w 1 , w 2 , w 3 , f, g) be an ambiguity of R with respect to < and let w = w 1 w 2 w 3 .

• If b is an ambiguity of the form 1, let n and m be the lengths of w 1 and w 3 , respectively.

The word w 2 being non-empty, n + m is strictly smaller than the length of w, so that b = (w, (n, 0), (0, m )) is a critical branching of (X, <, S).

• If b is of the form 2, let n and m be the lengths of n and m, respectively. Then, b = (w, (n, m), (0, 0)) is a critical branching of (X, <, S). From the Diamond Lemma, the presentation (X, <, S) is conuent if and only if every ambiguity of R with respect to < is solvable relative to <. Thus, from Lemma 2.2.7, (X, <, S) is conuent if and only if for every critical branching b of source w the S-polynomial sp (b) admits a (S, w)-type decomposition.

Example 2.2.9. Considering the presentation of Example 2.2.3, we have one critical branching b 1 = (yzx, (1, 0), (0, 1)) and we have sp (b 1 ) = yxy -xx. This S-polynomial does not admit a (S, yzx)-type decomposition so that we recover that the presentation is not conuent.

Completion procedure

In Section 3.1, we formulate our procedure for constructing conuent presentations by operators and we show the correctness of this procedure in Section 3.2. Throughout Section 3, we x the following notations: i. A is an algebra and (X, <, S) is a presentation by operator of A.

ii. Given a reduction operator T ∈ RO (X * , <) and a pair of integers (n, m), the operator T n,m is dened such as the beginning of Section 2.2.

iii. For every f ∈ KX * , we write T (f ) = ker -1 (Kf ). Explicitly, (T (f )) (lm (f )) is equal to lm (f ) -1/lc (f ) f and all other monomial is a normal form for T (f ). Moreover, we write supp (f ) the support of f , that is the set monomials occurring in the decomposition of f with a nonzero coecient.

iv. Given a subset E ⊆ KX * , we write lm (E) the set of leading monomials of elements of E.

Formulation

Our procedure requires a function called normalisation with inputs a nite set E ⊂ KX * and a reduction operator U ∈ RO (X * , <) and with output a nite set of reduction operators.

Then, normalisation(E, U ) is dened as follows:

1. Let M = f ∈E supp (f ) \ lm (E) and F = {T (f ) | f ∈ E}.
2. while ∃ w 1 ww 2 ∈ M such that w ∈ red (U ), i. we add T (w 1 (w -U (w))w 2 ) to F , ii. we remove w 1 ww 2 from M , iii. we add supp (w 1 U (w)w 2 ) to M .

normalisation(E, U

) is the set F obtained when the loop while is over.

The loop while is terminating beacause E is nite and < is a monomial order. We formulate our completion procedure. We assume that the presentation (X, <, S) is nite, that is X is nite and ker(S) is nite-dimensional. In particular, the set of critical branchings of (X, <, S) is nite.

Algorithm 1 Completion procedure Initialisation:

• d := 0,

• S d := S,
• Q d := ∅ and P d := critical branchings of X, <, S d , 

• E d := w -S d n,m ( 
ker C F d ⊂ KM d . ( 4 
)
The kernel of S d being nite-dimensional by induction hypothesis, the set of critical branchings of X, <, S d is nite. Hence, E d and M d are nite sets, so that ker C F d is nite-dimensional from (4). Moreover, by denition of ∧, ker S d+1 is equal to ker (w,(n,m),(n ,m )) be such a critical branching, so that we have

S d + ker C F d , so that ker S d+1 is nite-dimensional. Let us show Point 2. By construction, Q d is equal to P d-1 , that is Q d is the set of critical branchings of X, <, S d-1 . Let
w ∈ red S d-1 n,m ∩ red S d-1 n ,m . (5) 
Moreover, by construction, we have S d S d-1 . Hence, from implication (1) (see page 3), we have red

S d-1 ⊂ red S d . (6) 
From ( 5) and ( 6), w belongs to red S d n,m ∩ red S d n ,m , so that (w, (n, m), (n , m )) is a critical branching of X, <, S d+1 , that is it belongs to P d . Thus, Q d is included in P d . Remark 3.1.2. Our procedure requires to compute lower-bound of reduction operators relative to (X * , <). In Section 3.3, we give the implementation of ker -1 for totally ordered nite sets, so that it cannot be used for a set of monomials. However, from Lemma 3.1.1, the kernels of S d and C F d are nite-dimensional, so that these two operators can be computed by restrictions over nite-dimensional subspaces of KX * . We illustrate how works such computations in Section 3.3.

Our procedure has no reason to terminate since there exist nitely presented algebras with no nite Gröbner basis [START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases. Theoret[END_REF]Section 1.3]. If the procedure terminates after d iterations of the loop while, we let S n = S d for every integer n ≥ d, so that the sequence S d d∈N is well-dened if the procedure terminates or not. We let

S = d∈N S d .
Denition 3.1.3. The triple X, <, S is called the completed presentation of (X, <, S).

The purpose of the next section is to show that the completed presentation of (X, <, S) is a conuent presentation of A, that is our procedure computes a noncommutative Gröbner basis.

Soundness

In this section, we say reduction operator instead of reduction operator relative to (X * , <).

Lemma 3.2.1. Let w ∈ X * and let T and T be two reduction operators such that T T .

1. Let (n, m) be a pair of integers such that w is T n,m -reducible. Then, T n,m -T n,m (w) admits a (T , w)-type decomposition.

2. Let f ∈ KX * admitting a (T, w)-type decomposition. Then, f admits a (T , w)-type decomposition.

Proof. Let us show Point 1. We let w = w (n) w w (m) , where w (n) and w (m) have length n and m, respectively. Let

T (w ) = k i=1 λ i w i , (7) 
be the decomposition of T (w ) with respect to the basis X * . By hypotheses, T is smaller than T , that is ker (T ) ⊆ ker (T ), so that T • T is equal to T . Hence, we have

T n,m -T n,m (w) = w (n) T (w ) -T (w ) w (m) = w (n) T (w ) -T T (w ) w (m) .
From [START_REF] Caboara | Eciently computing minimal sets of critical pairs[END_REF], we obtain

T n,m -T n,m (w) = k i=1 λ i w (n) w i -T (w i ) w (m) . (8) 
By hypotheses, w is T n,m -reducible, so that w is T -reducible and each w i is strictly smaller than w for <. The strict order < being monomial, each w (n) w i w (m) is strictly smaller than w (n) w w (m) = w, so that ( 8) is a (T , w)-type decomposition of T n,m -T n,m (w).

Let us show Point 2. Let

f = n i=1 λ i w 1 i (w i -T (w i )) w 2 i , (9) 
be a (T, w)-type decomposition of f . Letting

A = n i=1 λ i w 1 i w i -T (w i ) w 2 i and B = n i=1 λ i w 1 i T (w i ) -T (w i ) w 2 i , f is equal to A -B.
The decomposition ( 9) being (T, w)-type, each w i = w 1 i w i w 2 i is strictly smaller than w, so that A is (T , w)-type. For every i ∈ {1, • • • , n}, let n i and m i be the lengths of w 1 i and w 2 i , respectively, so that we have

B = n i=1 λ i T n i ,m i -T n i ,m i (w i ). Each w i being T -reducible, each w i is T n i ,m i -reducible. Hence, from Point 1 of the lemma, each T n i ,m i -T n i ,m i (w i
) admits a (T , w i )-type decomposition, so that it admits a (T , w)-type decomposition since w i is strictly smaller than w. Hence, B admits a (T , w)-type decomposition, so that f also admits such a decomposition. Notation. For every integer d, let F d be the reduction family of X, <, S d , that is

F d is equal to S d n,m | (n, m) ∈ N 2 .
Lemma 3.2.2. Let d be an integer, let (w, (n, m), (n , m )) ∈ P d \ Q d and let f be the S-polynomial of (w, (n, m), (n , m )).

1.

(∧F d ) (f ) is equal to 0.
2. f admits a S d+1 , w -type decomposition.

Proof. Let us show Point 1. The two elements w -S d n,m (w) and w -S d n ,m (w) belong to E d by construction of the latter. Hence, by denition of the function normalisation, the operators

T 1 = T w -S d n,m (w) and T 2 = T w -S d n ,m (w) belong to F d , so that f = (w -S d n,m (w)) -(w -S d n ,m (w)) belongs to the kernel of T 1 ∧ T 2 .
The latter is included in the kernel of ∧F d , which shows Point 1.

Let us show Point 2. The operator C F d being a complement of F d , we have

∧ F d ∪ C F d = ∧F d , (10) 
and

F d ∪ C F d is conuent (see the paragraph after Denition 2.1.
2), that is it has the Church-Rosser property (see the paragraph before Denition 2.1.2). Hence, from Point 1 of the lemma and Relation [START_REF] Faugère | A new ecient algorithm for computing Gröbner bases (F 4 )[END_REF], there exist

T 1 , • • • , T r ∈ F d ∪ C F d such that (T r • • • • • T 1 ) (f ) = 0. (11) 
We let f 1 = (Id KX * -T 1 ) (f ) and for every k

∈ {2, • • • , r}, f k = (Id KX * -T k ) (T k-1 • • • • • T 1 (f )).
From [START_REF] Faugère | A new ecient algorithm for computing Gröbner bases without reduction to zero (F 5 )[END_REF], we have

f = r k=1 f k . (12) 
The tuple (w, (n, m), (n , m )) being a critical branching of X, <, S d , w belongs to red S d n,m ∩ red S d n ,m , so that the leading monomial of f is strictly smaller than w. Moreover, each T i is either of the form T w 1 (w 2 -S d (w 2 ))w 3 , or is equal to C F d . Hence, each f i admits a S d , w -type decomposition or a C F d , w -type decomposition. The reduction operators S d and C F d being smaller than S d+1 , each f i admits a S d+1 , w -type decomposition from Point 2 of Lemma 3.2.1, so that f admits a S d+1 , w -type decomposition from [START_REF] Faugère | Ecient computation of zero-dimensional Gröbner bases by change of ordering[END_REF]. 

Example

In this section, we compute the completed presentation of Example 3.2.6. Before that, we show how to use Gaussian elimination to compute lattice operations and completion for reduction operators relative to totally ordered nite sets. We use the SageMath software, written in Python.

Lattice operations and completion. Let (G, <) be a totally ordered nite set. The set G being nite, the Gaussian elimination provides a unique basis B of any suspace V ⊆ KG such that for every e ∈ B, lc (e) is equal to 1 and, given two dierent elements e and e of B, lg (e ) does not belong to the decomposition of e. The operator T = ker -1 (V ) satises T (lg (e)) = lg (e) -e for every e ∈ B and T (g) = g if g is not a leading generator of B. Moreover, we represent the subspaces of KG by lists of generating vectors and for any list of vectors L, let reducedBasis(L) be the basis of KL obtained by Gaussian elimination. First, we dene the function operator which takes as input a list of vectors L and returns ker -1 (KL). We deduce the functions which compute the lattice operations of RO (G, <). The operator S 1 = S ∧ C F 0 can be computed by restriction to the subspace spanned by x < xx < xy < yz < zx < yxy and the matrices of the restrictions of S 0 and C F 0 to this subspace are

1 def operator ( G ): L = reducedBasis ( G ) 3 n = len ( L [0]) V = VectorSpace ( QQ , n ) 5 v = V . zero () G =( lg ( L [0]) -1)*[ v ]+[ L [0]] 7 k = len ( L ) for i in [1.. k -1]: 9 G = G +( lg ( L [ i ]) -lg ( L [i -1]) -1)*[ v ]+[ L [ i ]] G = G +( n -lg ( L [k -1]))*[ v ]
S 0 =        
1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

        and C F 0 =        
1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

       
.

We obtain that S 1 is the operator dened by S 1 (yz) = x, S 1 (zx) = xy, S 1 (yxy) = xx and S 1 (w) = w for every monomial w dierent from yz, zx and yxy.

The presentation X, <, S 1 has two new critical branchings b 2 and b 3 equal to (yxyz, (2, 0), (0, 1)) and (yxyxy, (2, 0), (0, 2)), respectively. We have P where T (f ) = ker -1 (Kf ). The restriction of C F 1 to K{xxz, yxx, xxxy, yxxx, yxyz, yxyxy} is

C F 1 =        
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

       
, and we obtain that S 2 = S 1 ∧ C F 1 is dened by S 2 (yz) = x, S 2 (zx) = xy, S 2 (yxy) = xx, S 2 (yxx) = xxz, S 2 (yxxx) = xxxy and all other monomial is a normal form for S 2 . The computation of the operator C F 2 gives the identity operator of size 11, which corresponds to the monomials x 4 < x 3 y < x 2 zx < yx 3 < x 5 < x 3 yz < yx 3 z < yxyx 2 < x 3 yxyx < yx 4 y < yxyx 3 . Hence, no new critical branching is created at this step and the procedure stops.

Denition 2 .

 2 2.4. A critical branching of (X, <, S) is a triple b = (w, (n, m), (n , m )) where w is a monomial and (n, m) and (n , m ) are couples of integers such that i. w belongs to red (S n,m ) ∩ red S n ,m , ii. n = 0 or n = 0, iii. m = 0 or m = 0, iv. n + n + m + m is strictly smaller than the length of w. The S-polynomial of b is SP(b) = S n,m (w) -S n ,m (w) and the source of b is the monomial w.Remark 2.2.5. The roles of (n, m) and (n , m ) being symmetric, we do not distinguish (w, (n, m), (n , m )) and (w, (n , m ), (n, m)).

  Such dened, the two composites of b -→ b and b -→ b are identities. Let us show the second part of the lemma. Given a critical branching b, sp (b) and sp b are equal. Letting w the source of w, a (S, w)-type decomposition of sp (b) is precisely a decomposition of the from (3). That shows the second part of the lemma.The Diamond Lemma for reduction operators is formulated as follows: Proposition 2.2.8. The presentation (X, <, S) is conuent if and only if for every critical branching b of source w, SP(b) admits a (S, w)-type decomposition.Proof. The two-sided ideal I(R) spanned by R is equal to I (ker(S)). Hence, from [8, Proposition 3.3.10], (X, <, S) is conuent if and only if R is a noncommutative Gröbner basis of I(R).

6 : 7 :Lemma 3 . 1 . 1 .

 67311 w) | (w, (n, m), (n , m )) ∈ P d . 1: while Q d = P d do 2:F d := normalisation(E d , S d ); 3: S d+1 := S d ∧ C F d ; 4: Q d+1 := P d ; 5: d = d + 1; P d := critical branchings of X, <, S d ; E d := w -S d n,m (w) | (w, (n, m), (n , m )) ∈ P d \ Q d ;8: end while This rst and the last instruction of the loop while make sense because we have the following: Let d be an integer. 1. The kernels of S d and C F d are nite-dimensional. 2. The set Q d is included in P d . Proof. We show Point 1 by induction on d. The kernel of S 0 = S is nite-dimensional by hypotheses. Let d ∈ N and assume that the kernel of S d is nite-dimensional. Let M d = f ∈E d supp (f ) be the union of words appearing in E d . The elements of F d are only acting on M d , so that we have the inclusion

Proposition 3 . 2 . 3 .

 323 Let d be an integer. For every (w, (n, m), (n , m )) ∈ Q d , the Spolynomial S d n,m (w) -S d n ,m (w) admits a S d , w -type decomposition. Proof. We show the proposition by induction on d. The set Q 0 being empty, Proposition 3.2.3 holds for d = 0. Assume that for every (w, (n, m), (n , m )) ∈ Q d , S d n,m (w) -S d n ,m (w) admits a (S d , w)-type decomposition. We let A = A -B + C. By construction, S d+1 is smaller than S d . Moreover, (w, (n, m), (n , m )) being a critical branching, w belongs to red S d n,m ∩ red S d n ,m . Hence, from Point 1 of Lemma 3.2.1, A and B admit a S d+1 , w -type decomposition. It remains to show that C admits a S d+1 , wtype decomposition. By construction, Q d+1 is equal to P d , so that it contains Q d from Point 2 of Lemma 3.1.1. If (w, (n, m), (n , m )) does not belong to Q d , C admits a S d+1 , w -type decomposition from Point 2 of Lemma 3.2.2. If (w , (n, m), (n , m )) belongs to Q d , C admits a S d , w -type decomposition by induction hypothesis. Hence, from Point 2 of Lemma 3.2.1, C admits a S d+1 , w -type decomposition. Recall that the lower-bound of the operators S d is written S. The last lemma we need to prove Theorem 3.2.5 is Lemma 3.2.4. 1. The sequence (I d ) d∈N of ideals spanned by ker S d is constant. 2. Red S is equal to d∈N Red S d . Example 3.2.6. In Section 3.3, we compute the completed presentation of Example 2.2.3. It is given by the operator dened by S(yz) = x, S(zx) = xy, S(yxy) = xx, S(yxx) = xxz, S(yxxx) = xxxy and S(w) = w for all other monomial w.

17 G

 17 11return identity_matrix ( QQ , n ) -matrix ( G ). transpose ()[START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] def lowerBound ( T_1 , T_2 ):V_1 , V_2 = kernel ( T_1 . transpose ()) , kernel ( T_2 . transpose ())15G_1 , G_2 = basis ( V_1 ) , basis ( V_2 ) L_1 , L_2 = reducedBasis ( G_1 ) , reducedBasis ( G_2 ) denition of the F -complement, we need an intermediate function with input a reduction operator T and output ker -1 (Knf (T )). We dene this function before dening the one of theF -complement. def tilde ( T ): 2 n , L = T . nrows () ,[] for i in [0.. n -1]: 4 j , k =i ,n -i -1 if T [i , i ]==1: L = L +[ vector ( j *[0]+[1]+ k *[0])] 6 return operator ( L ) 8 def complement ( L ): n ,C , T = len ( L ) , L [0] , tilde ( L [0]) 10 for i in [1.. n -1]: C = lowerBound (C , L [ i ]) for j in [1.. n -1]: T = upperBound (T , tilde ( L [ j ])) 12 return lowerBound (C , T )Example. Now, we use our implementation to compute the completed presentation of Example 2.2.3: we consider the algebra A presented by (X, <, S) where X = {x, y, z}, < is the deg-lex order induced by x < y < z and S(yz) = x, S(zx) = xy and S(w) = w for every monomial w dierent from yz and zx.Recall that S d denotes the operator of the presentation at the beginning of step d of the procedure, P d is the set of critical branchings of X, <, S d ,Q d = P d-1 , E d = w -S d n,m (w) | (w, (n, m), (n , m )) ∈ P d \ Q d and F d = normalisation(E d , S d). Moreover, we represent reduction operators by matrices. For that, we use that the operators appearing in the procedure act nontrivially on nite-dimensional subspaces of KX * spanned by an ordered set of monomialsw 1 < w 2 < • • • < w n .At the rst step, we have d = 0. The presentation X, <, S 0 has one critical branching b 1 = (yzx, (1, 0), (0, 1)) and we have P 0 = {b 1 } and E 0 = yzx -xx, yzx -yxy .We have F 0 = T 1 , T 2 where the matrices of the restrictions of T 1 and T 2 to the subspace spanned by xx < yxy < yzx are is T 1 (yzx) = xx and T 2 (yzx) = yxy. The matrice of C F 0 = complement ([T 1 , T 2 ]) restricted to K{xx, yxy, yzx} is 

1 =

 1 {b 1 , b 2 , b 3 }, P 1 \ Q 1 = {b 2 , b 3 } and E 1 = yxyz -xxz, yxyz -yxx, yxyxy -xxxy, yxyxy -yxxx . Moreover, F 1 = normalisation E 1 , S 1 is equal to T 3 = T (yxyz -xxz) , T 4 = T (yxyz -yxx) T 5 = T (yxyxy -xxxy) , T 6 = T (yxyxy -yxxx) ,

  KG and for every (T, T ) ∈ F ×F , there exist v ∈ KG and T 1

	Moreover,
	from [8, Proposition 2.2.12], F is conuent if and only if it is locally conuent, that is for every
	v ∈

Proof. Let Theorem 3.2.5. Let A be an algebra and let (X, <, S) be a presentation by operator of A. The completed presentation of (X, <, S) is a conuent presentation of A.

Proof. Let S be the lower-bound of the operators S d . First, we show that X, <, S is a presentation of A. From Point 1 of Lemma 3.2.4, the ideal spanned by the kernels of the operators S d is equal to the ideal I spanned by the kernel of S 0 = S. In particular, the ideal spanned by ker S = d∈N ker S d is equal to I. Hence, (X, <, S) being a presentation of A, X, <, S is also a presentation of A.

Let us show that this presentation is conuent. From the Diamond Lemma, it is sucient to show that for each critical branching b = (w, (n, m), (n , m )) of X, <, S , the Spolynomial sp (b) admits a S, w -type decomposition. From Point 2 of Lemma 3. . Without lost of generalities, we may assume that d is greater or equal to d , so that b is a critical branching of X, <, S d , that is it belongs to P d = Q d+1 . We let

-S n ,m (w),

.

We have sp

From Proposition 3.2.3, b being an element of Q d+1 , C d admits a S d+1 , w -type decomposition, so that it admits a S, w -type decomposition from Point 2 of Lemma 3.2.1. Moreover, S d+1 being smaller than S d , w belongs to red S d+1 n,m ∩ red S d+1 n ,m . The operator S being smaller than S d+1 , A d and B d also admit a S, w -type decomposition from Point 1 of Lemma 3.2.1. Hence, from [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], sp (b) admits a S, w -type decomposition.