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A Lattice Formulation
of the F4 Completion Procedure

Cyrille Chenavier ∗

Abstract

We write a procedure for constructing noncommutative Gröbner bases. Reductions are
done by particular linear projectors, called reduction operators. The operators enable us
to use a lattice construction to reduce simultaneously each S-polynomial into a unique
normal form. We write an implementation as well as an example to illustrate our proce-
dure. Moreover, the lattice construction is done by Gaussian elimination, which relates our
procedure to the F4 algorithm for constructing commutative Gröbner bases.
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1 Introduction

Since they were introduced by Buchberger during his thesis [9, 10], Gröbner bases have made
possible the study of several problems in computer science [6, Chapter 6] and mathematics [8],
like algebraic geometry, computations with ideals or solving decision problems, for instance.
In order to enlarge the number of application scopes of Gröbner bases, improvements of the
Buchberger algorithm for constructing Gröbner bases were developed. For instance, several
choices during the algorithm (choose a critical pair, choose a reduction of a S-polynomial) have
∗Université Paris Diderot, Laboratoire IRIF, INRIA, équipe πr2, chenavier@pps.univ-paris-diderot.fr.
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an influence on its complexity and were investigated [?, ?, ?, ?]. Another issue is to avoid
computations of unnecessary critical pairs [11, ?, ?, ?, ?], that is, critical pairs for which the
S-polynomials reduce into zero.

In [14, 15], Faugère proposed new algorithms, namely the F4 and F5 algorithms, for con-
structing Gröbner bases. The F5 algorithm treats the case of unnecessary critical pairs. Its
efficiency is studied in [?]. For the F4 algorithm, the method consists in reducing simultaneously
several S-polynomials using linear algebra techniques. Indeed, at each step of the algorithm,
this is not one but many S-polynomials which are reduced into normal forms. Hence, we do
not choose one critical pair but we select some of them.

In this paper, we are interested in noncommutative Gröbner bases. The analogous of the
F4 procedure1 exists [?] and is written in the system MAGMA [?]. Our purpose is to provide
a lattice formulation of the (noncommutative) F4 procedure. More precisely, we write a pro-
cedure, analogous to F4, where we interpret the addition of relations as a lattice construction.
For that, we use the lattice formulation of the completion introduced in [13].

A Lattice Formulation of Completion

Noncommutative Gröbner Bases and Completion. First, we recall how are defined
noncommutative Gröbner bases and how a classical completion algorithm, such as the noncom-
mutative version of the Buchberger’s one, works.

Given a set X, let X∗ be the set of noncommutative monomials, that we identify with
words, over X. We fix a monomial order on X∗. For every noncommutative polynomial
f ∈ KX∗, we write lm (f) the greatest word, with respect to the fixed monomial order, occurring
in the decomposition of f . Given a two-sided ideal I of KX∗, a subset R of I is called a
noncommutative Gröbner basis of I if the following statement holds

∀f ∈ I, ∃g ∈ R such that lm (g) is a sub-word of lm (f) .

Equivalently, that means that the reduction system induced by the rules

lm (f) −→ r(f),

where f ∈ R and r(f) is the remainder of f for the fixed monomial order, is confluent. For
that, it is necessary and sufficient to reduce the S-polynomials of critical pairs into zero.

Let I be a two-sided ideal of KX∗ and let R be a generating set of I. The set R is
thought as a set of generating relations of the algebra KX∗/I. In order to complete R into a
noncommutative Gröbner basis, we add new relations to it. These new relations are used to
reduce S-polynomials into zero. Consider for instance the set X = {x, y, z} and the deg-lex
order on X∗ induced by x < y < z. Consider the two-sided ideal I spanned by

R =
{
yz − x, zx− xy

}
.

The associated reduction system is spanned by the following two rules

yz −→ x and zx −→ xy.

1We say "procedure" instead of "algorithm" when we deal with noncommutative algebras because the pro-
cedure has no reason to terminate in this case (see 3.1.8).
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We have one critical pair
yzx

((QQQQQQQQQQ

vvmmmmmmmmmm

xx yxy

for which the S-polynomial yxy− xx cannot be reduced. In order to reduce this S-polynomial
into zero, we need to add the rule

yxy −→ xx, (1)

that is, we add the relation yxy− xx to R. The rule (1) creates new critical pairs for which we
need to add new relations. In this case, it turns out that after a finite number of steps, all the
S-polynomials reduce into zero [16], that is, I admits a finite noncommutative Gröbner basis.

Reduction Operators. Our lattice approach to completion requires reduction operators.
The latter are linear projectors describing reductions on a vector space admitting a well-ordered
basis, that is, a basis equipped with a well-founded total strict order. Typically, the vector space
is a set of noncommutative polynomials and the well-order is a monomial order.

Let K be a commutative field. Given a well-ordered set (G,<), every non-zero vector v of
the vector space KG spanned by G admits a greatest element in its decomposition with respect
to G. This greatest element is written lg (v). A reduction operator relative to (G,<) is an
idempotent linear endomorphism T of KG such that for every g ∈ G, we have

T (g) = g or lg (T (g)) < g.

In [5], Bergman uses reduction operators as a language to formalize reductions in a free
algebra. This approach to reductions has applications in homological algebra [2, 3, 4, 12, 17].
These works are based on a lattice structure on the set of reduction operators. This structure
provides a lattice formulation of confluence from which we deduce the one of completion.

Lattice Formulations of Confluence and Completion. In [13, Proposition 2.1.14], it is
shown that the kernel map induces a bijection between the setRO (G,<) of reduction operators
and the set L (KG) of subspaces of KG:

ker : RO (G,<)
1:1−→ L (KG) . (2)

The one-to-one correspondence (2) induces a lattice structure on RO (G,<), where the order
�, the lower bound ∧ and the upper bound ∨ are defined by

• T1 � T2 if ker (T2) ⊆ ker (T1),

• T1 ∧ T2 = ker−1 (ker (T1) + ker (T2)),

• T1 ∨ T2 = ker−1 (ker (T1) ∩ ker (T2)).

Given a subset F of RO (G,<), we let

∧F = ker−1

(∑
T∈F

ker (T )

)
.
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The set F is said to be confluent if we have

im (∧F ) =
⋂
T∈F

im (T ) .

In [13, Corollary 2.3.9], it is shown that F is confluent if and only if the reduction relation on
KG defined by

v −→
F

T (v),

for every T ∈ F and every v /∈ im (T ), is confluent.
From this point of view on confluence, we deduce that some lattice constructions inRO (G,<)

are interpreted as a completion procedure. Indeed, one defines a particular operator

CF = (∧F ) ∨
(
∨F
)
,

where F is a subset of RO (G,<) defined from F and ∨F is the upper bound of this set. Recall
from [13, Theorem 3.2.6] that the set

F ∪
{
CF
}
⊂ RO (G,<) ,

is confluent.

Example. As an illustration of the constructions presented above, we consider as previously
the rules

yz −→ and zx −→ xy,

oriented with respect to the deg-lex order induced by x < y < z. We have seen that we have
the following unique critical pair

yzx

((QQQQQQQQQQ

vvmmmmmmmmmm

xx yxy

(3)

In terms of reduction operators, the reduction yzx −→ xx in (3) is done by T1 ∈ RO (X∗, <)
defined for every word w by

T1(w) =

{
xx, if w = yzx

w, otherwise.

The reduction yzx −→ yxy in (3) is done by T2 ∈ RO (X∗, <) defined for every word w by

T2(w) =

{
yxy, if w = yzx

w, otherwise.

Hence, the reduction of the S-polynomial of (3) into zero is made by completion of the following
pair

P = (T1, T2) .

Indeed, the operators ∧P and CP are defined for every word w by

(∧P ) (w) =


xx, if w = yzx

xx, if w = yxy

w, otherwise
and CP (w) =

{
xx, if w = yxy

w, otherwise.
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Principle of our Procedure. The previous example illustrates the fact that the operator
CP is the operator which enables us to reduce all S-polynomials into zero. This fact is general,
so that our completion procedure consists in computing successively an operator CF where
F is a subset of RO (G,<) which is used to compute normal forms of S-polynomials. In
order to describe formally our completion procedure, we need to relate reduction operators to
noncommutative Gröbner bases. This formal link requires presentations by operators.

Presentations by Operators

Confluent Presentations by Operators. Let A be an algebra. A presentation by operator
of A is a triple 〈(X,<) | S〉, where

• X is a set and < is a monomial order on X∗,

• S is a reduction operator relative to (X∗, <),

• we have an isomorphism of algebras

A ' KX∗

I (ker(S))
,

where I (ker(S)) is the two-sided ideal of KX∗ spanned by ker(S).

The operator S of such a presentation does not describe all the reductions that can be
applied to a given word. For that, we need to consider the "extensions" of S, that is, the
operators defined for every pair of integers (n,m) by

Sn,m = IdKX(≤n+m−1) ⊕
(
IdKX(n) ⊗ S ⊗ IdKX(m)

)
.

Explicitly, for every w ∈ X∗, Sn,m(w) is defined by the following two conditions:

• Assume that the length of w is strictly smaller than n+m. Then, Sn,m(w) = w.

• Assume that the length of w is greater than or equal to n + m. We let w = w1w2w3,
where w1 and w3 have length n and m, respectively. Then, Sn,m(w) = w1S(w2)w3.

The strict order < being monomial, that guarantees that each operator Sn,m is a reduction
operator relative to (X∗, <). The presentation 〈(X,<) | S〉 is said to be confluent if the set{

Sn,m | (n,m) ∈ N2
}
⊂ RO (X∗, <) ,

is confluent. In [13, Proposition 3.3.10] the formal link with noncommutative Gröbner bases is
given: 〈(X,<) | S〉 is confluent if and only if{

w − S(w) | w /∈ im (S)
}
,

is a noncommutative Gröbner basis of I (ker(S)) with respect to <.
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Completion Procedure. Let A be an algebra and let 〈(X,<) | S〉 be a presentation by
operator of A. Our completion procedure consists in executing instructions of a loop in which
we add new relations to the current presentation by operator. This procedure has to return a
confluent presentation by operator of A.

Let d be an integer and let
〈
(X,<) | Sd

〉
be the presentation by operator of A at the

beginning of the d-th iteration of the loop. The reduction of S-polynomials of this current
presentation into normal forms is done by a set

Fd ⊂ RO (X∗, <) .

We want to complete the presentation
〈
(X,<) | Sd

〉
by{

w − CFd(w) | w /∈ im
(
CFd

)}
. (4)

Hence, the new presentation of A is
〈
(X,<) | Sd+1

〉
, where

Sd+1 = Sd ∧ CFd ,

since a generating set of ker
(
Sd+1

)
is the union of a basis of ker(Sd) and (4). Let S′ be the

lower bound of all the operators Sd so constructed:

S′ =
∧
d∈N

Sd.

The presentation 〈(X,<) | S′〉 is called the completed presentation of 〈(X,<) | S〉. The main
result of the paper states that such a presentation is confluent:

Theorem 3.2.7. Let A be an algebra and let 〈(X,<) | S〉 be a presentation by op-
erator of A. The completed presentation of 〈(X,<) | S〉 is a confluent presentation
of A.

In 3.2.8, we illustrate with an example the behaviour of our procedure. For that, we use
the implementation of various constructions of reduction operators given in Section 4.

Relation with the F4 Procedure. We end this introduction by explaining the link with
F4. We consider the previous example:

R =
{
yz − x, zx− xy

}
,

together with the only critical pair

yzx

((QQQQQQQQQQ

vvmmmmmmmmmm

xx yxy

The two reductions are done by the relations

f1 = yzx− xx and f2 = yzx− yxy.
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Let M be the matrix of {f1, f2} with respect to yzx > yxy > xx:

M =

(
1 0 −1
1 −1 0

)
.

By Gaussian elimination, we obtain

Gauss(M) =

(
1 0 −1
0 1 −1

)
.

The rows of this matrix provide the relations

f̃1 = yzx− xx and f̃2 = yxy − xx.

Then, the F4 procedure add the relation f̃2 to R since its leading word yxy cannot be reduced
by R. In the general case, the F4 procedure works as follows:

1. let M be the matrix associated with reductions of S-polynomials into normal forms,

2. we add to R the rows of Gauss(M) admitting a normal form as leading words.

The link between this method and the one we develop comes from the fact that we also
create new relations by Gaussian elimination and we take into account the ones for which the
leading words are normal forms. Indeed, consider the two reduction operators T1 and T2 as in
the example of the previous section. These operators only act on the vector space spanned by
the totally ordered finite set

xx < yxy < yzx.

Their restrictions to this vector space are defined by the following matrices

T1 =

1 0 1
0 1 0
0 0 0

 and T2 =

1 0 0
0 1 1
0 0 0

 .

Moreover, letting P = (T1, T2), the operators ∧P and CP can also be described by the matrices
of their restrictions to the same vector space:

∧P =

1 1 1
0 0 0
0 0 0

 and CP =

1 1 0
0 0 0
0 0 1

 .

By definition of ∧P , its kernel has the union of a basis of T1 and a basis of T2 as a generating
set. The Gaussian elimination applied to this generating set provides{

yzx− xx, yxy − xx
}
,

as a basis of ker (∧P ). We write

ObsP =
{
w ∈ X∗ | w /∈ im (∧P ) and w ∈ im (T1) ∩ im (T2)

}
.

In fact, ObsP is the set of leading words of an element of the kernel of ∧P which are normal
forms for the current presentation by operator. Moreover, CP is defined for every word w by

CP (w) =

{
∧ P (w), if w ∈ ObsP

w, otherwise.

In the general case, our procedure works as follows:
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1. let F be a set of reduction operators associated with reductions of S-polynomials into
normal forms,

2. compute ∧F by Gaussian elimination and then CF using the elements of the kernel of
∧F admitting a normal form as leading words.

Organisation

Section 2.1 is a recollection of results from [13]: we recall the definitions and properties of
reduction operators, their confluence and completion used in the sequel. In Section 2.2, we
define presentations by operators and the confluence property of such presentations. We give
a criterion in terms of S-polynomials for a presentation by operator to be confluent. In Sec-
tion 3.1, we write our completion procedure and define completed presentations. In Section 3.2,
we show, using the criterion in terms of S-polynomials, that a completed presentation is con-
fluent. We also write an example to show how our procedure works. This example was treated
with an implementation of various constructions of reduction operators. This implementation
is written in Section 4.

Acknowledgement. This work was supported by the Sorbonne-Paris-Cité IDEX grant Focal
and the ANR grant ANR-13-BS02-0005-02 CATHRE.

2 Reduction Operators

2.1 Lattice Structure and Completion

2.1.1. Conventions and Notations. Throughout the paper, we fix a commutative field K.
We say vector space instead of K-vector space. Let X be a set. We denote by KX the vector
space with basis X: its non-zero elements are the finite formal linear combinations of elements
of X with coefficients in K. An element of X is called a generator of KX. By construction of
KX, for every v ∈ KX \ {0}, there exist a unique finite set supp (v) ⊆ X and a unique family
of non-zero scalars (λx)x∈supp(v) such that

v =
∑

x ∈ supp(v)

λx x.

The set supp (v) is called the support of v.

2.1.2. Leading Generators and Leading Coefficients. Let (G,<) be a well-ordered set,
that is, G is a set and < is a well-founded total strict order on G. The strict order < being
total, every non-empty finite subset of G admits a greatest element. In particular, for every
v ∈ KG \ {0}, the support of v admits a maximum. We write

lg (v) = max (supp (v)) and lc (v) = λlg(v).

The elements lg (v) and lc (v) are called the leading generator and the leading coefficient of v,
respectively. We extend < into a partial strict order on KG in the following way: we have
u < v if one of the following two conditions is fulfilled
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• u = 0 and v 6= 0,

• u 6= 0, v 6= 0 and lg(u) < lg(v).

Throughout Section 2.1 we fix a well-ordered set (G,<).

2.1.3. Reduction Operators. A reduction operator relative to (G,<) is an idempotent linear
endomorphism T of KG such that for every g ∈ G, we have T (g) ≤ g. We denote by RO (G,<)
the set of reduction operators relative to (G,<). Given T ∈ RO (G,<), a generator g is said
to be T-reduced if T (g) is equal to g. We denote by Red (T ) the set of T -reduced generators
and by Nred (T ) the complement of Red (T ) in G.

2.1.4. Kernels of Reduction Operators. Recall from [13, Proposition 2.1.14] that the
restriction of the kernel map to the set of reduction operators

ker : RO (G,<) −→ {subspaces of KG} ,
T 7−→ ker(T )

(5)

is a bijection. The inverse of (5) is written ker−1.

2.1.5. Lattice Structure. We consider the binary relation on RO (G,<) defined by

T1 � T2 if and only if ker (T2) ⊆ ker (T1) .

This relation is reflexive and transitive. The map (5) being a bijection, � is also anti-symmetric,
so that it is an order relation on RO (G,<). Moreover, we have the equivalence:

T1 � T2 if and only if T1 ◦ T2 = T1. (6)

Let us equip RO (G,<) with a lattice structure. The lower bound T1∧T2 and the upper bound
T1 ∨ T2 of two elements T1 and T2 of RO (G,<) are defined in the following manner:

T1 ∧ T2 = ker−1
(
ker(T1) + ker(T2)

)
and T1 ∨ T2 = ker−1

(
ker(T1) ∩ ker(T2)

)
.

Recall from [13, Lemma 2.1.18] that we have the following implication

T1 � T2 =⇒ Red (T1) ⊆ Red (T2) . (7)

2.1.6. Notations. From now on and until the end of Section 2.1, we fix a non-empty set

F ⊆ RO (G,<) .

Moreover, we let

Red (F ) =
⋂
T∈F

Red (T ) and ∧ F = ker−1

(∑
T∈F

ker (T )

)
.
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2.1.7. Obstructions. For every T ∈ F , we have ∧F � T . Thus, from (7), Red (∧F ) is
included in Red (T ) for every T ∈ F , so that Red (∧F ) is included in Red (F ). We write

ObsF = Red (F ) \ Red (∧F ) . (8)

2.1.8. Confluence. The set F is said to be confluent if ObsF is the empty set. The link
between this algebraic notion of confluence and the classical one coming from rewriting theory
appears in [13, Corollary 2.3.9].

In Section 3.2, we use two characterisations of the confluence property in terms of reduction
operators, namely the Church-Rosser property and the Newman’s Lemma.

2.1.9. Church-Rosser Property. Recall from [13, Theorem 2.2.5] that F is confluent if and
only if it has the Church-Rosser property : for every v ∈ KG, there exist T1, · · · , Tr ∈ F such
that

(∧F ) (v) = (Tr ◦ · · · ◦ T1) (v).

The link between this algebraic notion of Church-Rosser property and the classical one coming
from rewriting theory appears in [13, Proposition 2.3.8].

2.1.10. Newman’s Lemma. The set F is said to be locally confluent if for every v ∈ KG
and for every pair (T, T ′) of elements of F , there exist v′ ∈ KG and T1, · · ·Tr, T ′1, · · · , T ′k ∈ F
such that

v′ = (Tr ◦ · · · ◦ T1) (T (v))
=
(
T ′k ◦ · · · ◦ T ′1

) (
T ′(v)

)
.

Recall from [13, Proposition 2.2.12] that F is confluent if and only if it is locally confluent.

2.1.11. Complement. A complement of F is an element C of RO (G,<) such that

• (∧F ) ∧ C = ∧F ,

• ObsF ⊆ Nred (C).

Recall from [13, Proposition 3.2.2] that a reduction operator C satisfying (∧F ) ∧ C = ∧F is a
complement of F if and only if F ∪ {C} is a confluent subset of RO (G,<).

2.1.12. The F -Complement. The F-complement is the operator

CF = (∧F ) ∨
(
∨F
)
,

where ∨F is equal to ker−1 (KRed (F )). Recall from [13, Theorem 3.2.6] that the F -complement
is a complement of F .
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2.2 Presentations by Operators

2.2.1. Algebras. An unitary associative K-algebra is a K-vector space A equipped with a
K-linear map, called multiplication, µ : A⊗A −→ A which is associative and for which there
exists a unit 1A. We say algebra instead of unitary associative K-algebra. Given a set X, let
X∗ be the set of words over X. This set admits a monoid structure, where the multiplication
is given by concatenation of words and the unit is the empty word, written 1. The free algebra
over X is the vector space KX∗ spanned by X∗ equipped with the multiplication induced by
the one of the monoid X∗.

From now on, we fix an algebra A.

2.2.2. Monomial Orders. Let X be a set. A monomial order on X∗ is a well-founded total
strict order < on X∗ such that the following conditions are fulfilled:

• 1 < w for every word w different from 1,

• for every w1, w2, w, w
′ ∈ X∗ such that w < w′, we have w1ww2 < w1w

′w2.

In particular, (X∗, <) is a well-ordered set. In the sequel, given an element f ∈ KX∗, we write
lm (f) (for leading monomial) instead of lg (f).

2.2.3. The Deg-lex Order. Let X be a set and let < be total well-founded strict order on
X. The deg-lex order on X∗ induced by <, still written <, is defined by x1 · · ·xn < y1 · · · ym if
one of the following two conditions is fulfilled

• n < m,

• n = m and there exists k ∈ {2, · · · , n} such that xi = yi for every i ∈ {1, · · · , k − 1} and
xk < yk.

Recall from [1, Lemme 2.4.3] that < being total and well-founded, (X∗, <deg-lex) is a well-
ordered set. Moreover, the deg-lex order < is monomial by definition.

2.2.4. Exemple. Let X = {x, y, z} such ordered: x < y < z. Then, we have x < yz and
xy < zx.

2.2.5. Definition. A presentation by operator of A is a triple 〈(X,<) | S〉, where

• X is a set and < is a monomial order on X∗,

• S is a reduction operator relative to (X∗, <),

• we have an isomorphism of algebras

A ' KX∗

I (ker (S))
,

where I (ker (S)) is the two-sided ideal of KX∗ spanned by ker (S).
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2.2.6. Confluent Presentations. Let X be a set and let n be an integer. We denote by
X(n) and X(≤n) the set of words of length n and of length smaller or equal to n, respectively.
Let 〈(X,<) | S〉 be a presentation by operator of A. For every integers n and m such that
(n,m) is different from (0, 0), we let

Sn,m = IdKX(≤n+m−1) ⊕
(
IdKX(n) ⊗ S ⊗ IdKX(m)

)
.

Explicitly, for every w ∈ X∗, Sn,m(w) is defined by the following two conditions:

• Assume that the length of w is strictly smaller than n+m. Then, Sn,m(w) = w.

• Assume that the length of w is greater or equal to n+m. We let w = w1w2w3, where w1

and w3 have length n and m, respectively. Then, Sn,m(w) = w1S(w2)w3.

We also let S0,0 = S. The set {
Sn,m | (n,m) ∈ N2

}
,

is called the reduction family of 〈(X,<) | S〉. Recall from [13, Lemma 3.3.6] that each Sn,m
is a reduction operator relative to (X∗, <), so that the reduction family of a presentation is a
subset of RO (X∗, <).

A confluent presentation by operator of A is a presentation by operator of A such that its
reduction family is confluent.

2.2.7. Example. Let X = {x, y, z} and let < be the deg-lex order induced by x < y < z.
Consider the algebra presented by 〈(X,<) | S〉, where S is defined on the basis X∗ by

S(w) =


x, if w = yz

xy, if w = zx

w, otherwise.

Let F be the reduction family of this presentation. Every sub-word of yxy is S-reduced, so
that yxy belongs belongs to Red (F ). Moreover, we have

yxy − xx = (yxy − yzx) − (xx− yzx)
= (yS(zx)− yzx) − (S(yz)x− yzx)
= A + B

where
A = (S1,0 − IdKX∗) (yzx) and B = (IdKX∗ − S0,1) (yzx).

The operators S1,0 and S0,1 being idempotent, A and B belong to ker (S1,0) and ker (S0,1),
respectively. Hence, yxy − xx is included in ker (S1,0) + ker (S0,1). The latter being included
in ker (∧F ), we have

(∧F ) (yxy) = (∧F ) (xx).

In particular, xx being smaller than yxy for <, yxy is not ∧F -reduced, so that yxy belongs to
ObsF . Thus, the latter is non empty, that is, 〈(X,<) | S〉 is not confluent.
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2.2.8. Noncommutative Gröbner Bases. In [13], confluent presentations by operators are
related to noncommutative Gröbner bases. The latter offer a formalism to define terminating
and confluent rewriting systems presenting an algebra. We recall how are defined noncommu-
tative Gröbner bases.

Let X be a set and let < be a monomial order on X∗. Given a subset E of KX∗, we let

lm (E) = {lm (f) | f ∈ E} .

Let I be a two-sided ideal of KX∗. A subset R of I is called a noncommutative Gröbner
basis of I if the semi-group ideal spanned by lm (R) is equal to lm (I). In other words, R is a
Gröbner basis of I if and only if for every w ∈ lm (I), there exist w′ ∈ lm (R) and w1, w2 ∈ X∗
such that w is equal to w1w

′w2. The link between confluent presentations by operators and
noncommutative Gröbner bases is as follows: let 〈(X,<) | S〉 be a presentation by operator
and let

R =
{
w − S(w) | w ∈ Nred (S)

}
.

Then, 〈(X,<) | S〉 is confluent if and only ifR is a noncommutative Gröbner basis of I (ker(S)) [13,
Proposition 3.3.10].

2.2.9. Ambiguities. In Section 3.1 we formulate a procedure to construct confluent presen-
tations by operators. The proof of the soundness of this procedure (Section 3.2) requires critical
branchings, introduced in 2.2.11. The latter are the analogous notion of ambiguities for Gröb-
ner bases. We recall how ambiguities are defined and how they characterise noncommutative
Gröbner bases.

Fix a set X, a subset R of KX∗ and a monomial order <. An ambiguity of R with respect
to < is a tuple b = (w1, w2, w3, f, g) where

• w1, w2, w3 are words such that w2 6= 1,

• f, g belong to R,

such that b satisfies one of the following two conditions:

1. w1w2 = lm (f) and w2w3 = lm (g),

2. w1w2w3 = lm (f) and w2 = lm (g).

We write

1. SP (b) = fw3 − w1g if b is of the form 1,

2. SP (b) = f − w1gw3 if b is of the form 2.

The ambiguity b is said to be solvable relative to < if there exists a decomposition

SP (b) =
n∑

i=1

λiwifiw
′
i, (9)

where, for every i ∈ {1, · · · , n}
• λi is a non-zero scalar,

• wi, w
′
i ∈ X∗ and fi ∈ R are such that wilm (fi)w

′
i is strictly smaller than w1w2w3 for

<.

Recall from the Diamond Lemma [5, Theorem 1.2] that R is a noncommutative Gröbner basis
of I(R) if and only if every critical branching of R with respect to < is solvable relative to <.
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2.2.10. Convention. From now on and until the end of Section 2.2, we fix a presentation by
operator 〈(X,<) | S〉 of A. We consider the notations of 2.2.6: S0,0 = S and for every pair of
integers (n,m) such that n+m is different from 0, we let

Sn,m = IdKX(≤n+m−1) ⊕
(
IdKX(n) ⊗ S ⊗ IdKX(m)

)
.

Finally, we let
R =

{
w − S(w) | w ∈ Nred (S)

}
,

as in 2.2.8.

2.2.11. Critical Branchings. A critical branching of 〈(X,<) | S〉 is a triple

b =
(
w, (n,m), (n′,m′)

)
∈ X∗ × N2 × N2,

such that

• w ∈ Nred (Sn,m) ∩Nred
(
Sn′,m′

)
,

• n = 0 or n′ = 0,

• m = 0 or m′ = 0,

• n+ n′ +m+m′ is strictly smaller than the length of w.

The word w is called the source of b.

2.2.12. Remark. The roles of (n,m) and (n′,m′) being symmetric, we do not distinguish
(w, (n,m), (n′,m′)) and (w, (n′,m′), (n,m)).

2.2.13. S-polynomials. Let b = (w, (n,m), (n′,m′)) be a critical branching of 〈(X,<) | S〉.
The S-polynomial of b is the following element of KX∗:

SP(b) = Sn,m(w)− Sn′,m′(w).

2.2.14. Example. Consider the algebra of Example 2.2.7. We have one critical branching:

b1 = (yzx, (1, 0), (0, 1)) .

Moreover, we have
SP (b1) = yxy − xx.

2.2.15. Definition. Let w ∈ X∗ and let f ∈ KX∗. We say that f admits a (S,w)-type
decomposition if it admits a decomposition

f =
n∑

i=1

λiw
1
i (wi − S(wi))w

2
i ,

where, for every i ∈ {1, · · · , n}

• λi is a non-zero scalar,

• w1
i , w

2
i and wi are words such that wi ∈ Nred (S) and w1

iwiw
2
i is strictly smaller than w.
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2.2.16. Lemma. There is a one-to-one correspondence b 7−→ b̃ between critical branchings of
〈(X,<) | S〉 and ambiguities of R with respect to <. Moreover, a critical branching b of source
w admits a (S,w)-type decomposition if and only if b̃ is solvable relative to <.

Proof. Let us show the first part of the lemma. Let b = (w, (n,m), (n′,m′)) be a critical
branching of 〈(X,<) | S〉. In order to define b̃, we distinguish four cases according to the values
of n and m:

Case 1: (n,m) is equal to (0, 0). We write

w = w1w2w3,

where the lengths of w1 and w3 are equal to n′ and m′, respectively. By definition of a critical
branching, w and w2 belong to Nred (S) and we let

b̃ = (w1, w2, w3, w − S(w), w1 (w2 − S(w2))w3) .

By definition of a critical branching, n + n′ + m + m′ = n′ + m′ is strictly smaller than the
length of w. In particular, w2 is not the empty word, so that the tuple b̃ is an ambiguity of R
with respect to < of the form 2.

Case 2: n is equal to 0 and m is different from 0. By definition of a critical branching, m′ is
equal to 0. If n′ is also equal to 0, the pair (n′,m′) is equal to (0, 0), so that we exchange the
roles of (n,m) and (n′,m′) and we recover the first case. If n′ is different from 0, we write

w = w1w2w3,

where the lengths of w1 and w3 are equal to n′ and m, respectively. In particular, b being a
critical branching, w1w2 and w2w3 belong to Nred (S) and w2 is different from the empty word.
Hence,

b̃ = (w1, w2, w3, w1w2 − S(w1w2), w2w3 − S(w2w3)) ,

is an ambiguity of R with respect to <.

Case 3: n is different from 0 and m is equal to 0. By definition of a critical branching, n′ is
equal to 0. Exchanging the roles of (n,m) and (n′,m′), we recover the second case.

Case 4: n and m are different from 0. By definition of a critical branching, the pair (n′,m′)
is equal to (0, 0). Exchanging the roles of (n,m) and (n′,m′), we recover the first case.

We have a well-defined map b 7−→ b̃ between critical branchings of 〈(X,<) | S〉 and ambi-
guities of R with respect to <. Now, we define an inverse b̃ 7−→ b. Let b̃ = (w1, w2, w3, f, g)
be an ambiguity of R with respect to < and let w = w1w2w3.

• If b̃ is an ambiguity of the form 1, let n and m′ be the lengths of w1 and w3, respectively.
The word w2 being non-empty, n+m′ is strictly smaller than the length of w, so that

b =
(
w, (n, 0), (0,m′)

)
,

is a critical branching of 〈(X,<) | S〉.
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• If b̃ is of the form 2, let n and m be the lengths of n and m, respectively. Then,

b = (w, (n,m), (0, 0)) ,

is a critical branching of 〈(X,<) | S〉.

The proofs that the two composites of b 7−→ b̃ and b̃ 7−→ b are identities are left to the reader.
Let us show the second part of the lemma. Given a critical branching b, SP (b) and SP

(
b̃
)

are equal. Letting w the source of w, a (S,w)-type decomposition of SP (b) is precisely a
decomposition of the from (9) in 2.2.9. That shows the second part of the lemma.

2.2.17. Proposition. The presentation 〈(X,<) | S〉 is confluent if and only if for every crit-
ical branching b of source w, SP(b) admits a (S,w)-type decomposition.

Proof. The two-sided ideal I(R) spanned by R is equal to I (ker(S)). Hence, from [13, Propo-
sition 3.3.10] (see 2.2.8), 〈(X,<) | S〉 is confluent if and only if R is a noncommutative Gröbner
basis of I(R). From the Diamond Lemma [5, Theorem 1.2], (see 2.2.9), 〈(X,<) | S〉 is confluent
if and only if every ambiguity of R with respect to < is solvable relative to <. Thus, from
Lemma 2.2.16, 〈(X,<) | S〉 is confluent if and only if for every critical branching b of source w,
SP (b) admits a (S,w)-type decomposition.

3 Completion Procedure

In Section 3.1, we formulate a procedure to construct confluent presentations by operators. In
Section 3.2 we prove the soundness of this procedure.

Let us fix the conventions and notations used throughout Section 3:

• A is an algebra and 〈(X,<) | S〉 is a presentation by operator of A,

• we simply say reduction operator instead of reduction operator relative to (X∗, <),

• we consider the notations of 2.2.6: given a reduction operator T , we let T0,0 = T and for
every pair of integers (n,m) different from (0, 0), we let

Tn,m = IdKX(≤n+m−1) ⊕
(
IdKX(n) ⊗ T ⊗ IdKX(m)

)
.

• Let f ∈ KX∗. We write:
T (f) = ker−1 (Kf) .

Explicitly, letting

f =
1

lc (f)
f,

T (f) is defined on the basis X∗ of KX∗ in the following way

(T (f)) (w) =

{
lm
(
f
)
− f, if w = lm

(
f
)

w, otherwise.
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3.1 Formulation

3.1.1. Reduction Method. Our procedure requires a method called Reduction with inputs
a finite subset E of KX∗ and a reduction operator U and with output a finite set of reduction
operators. Reduction(E,U) is defined as follows:

1. Let

M =

⋃
f∈E

supp (f)

 \ lm (E) and F = {T (f) | f ∈ E} .

2. while ∃w1ww2 ∈M such that w ∈ Nred (U),

(a) we add T (w1(w − U(w))w2) to F ,

(b) we remove w1ww2 from M ,

(c) we add supp (w1U(w)w2) to M .

3. Reduction(E,U) returns the set F obtained when the loop while is over.

3.1.2. Remark. We consider the notations of 3.1.1. Let w1ww2 ∈M such that w ∈ Nred (U).
The strict order < being monomial, the elements of supp (w1U(w)w2) are strictly smaller than
w1ww2 for <. Hence, < being well-founded and E being finite, the loop while is executed a
finite number of times, so that Reduction returns a result.

3.1.3. Completion Procedure. In the procedure, we assume that the presentation 〈(X,<) | S〉
is finite, that is, X is a finite set and the kernel of S is finite-dimensional. In particular, the
set of critical branchings of 〈(X,<) | S〉 is finite.
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Algorithm 1 Completion procedure

Initialisation:

• d := 0,

• Sd := S,

• Qd := ∅ and Pd :=
{
critical branchings of

〈
(X,<) | Sd

〉}
,

• Ed :=
{
w − Sd

n,m(w) | (w, (n,m), (n′,m′)) ∈ Pd

}
.

1: while Qd 6= Pd do

2: Fd := Reduction(Ed, S
d);

3: Sd+1 := Sd ∧ CFd ;

4: Qd+1 := Pd;

5: d = d+ 1;

6: Pd :=
{
critical branchings of

〈
(X,<) | Sd

〉}
;

7: Ed :=
{
w − Sd

n,m(w) | (w, (n,m), (n′,m′)) ∈ Pd \Qd

}
;

8: end while

3.1.4. Remark. The first instruction of the loop while makes sense if and only if the set Ed

is finite. For that, it is sufficient that the kernel of Sd is finite-dimensional since, if it is so, Pd

is a finite set. Moreover, the last instruction of the loop while makes sense if and only if Qd

is included in Pd. We show that ker
(
Sd
)
is finite-dimensional and that Qd is included in Pd in

Lemma 3.1.5.

3.1.5. Lemma. Let d be an integer.

1. The kernels of Sd and CFd are finite-dimensional.

2. The set Qd is included in Pd.

Proof. We show Point 1 by induction on d. The kernel of S0 = S is finite-dimensional by
hypotheses in 3.1.3. Let d ∈ N, and assume that the kernel of Sd is finite-dimensional. We let

Md =
⋃

f∈Ed

supp (f) ,

the union of words appearing in Ed. The elements of Fd are only acting on Md, so that we
have the inclusion

ker
(
CFd

)
⊂ KMd. (10)
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The kernel of Sd being finite-dimensional by induction hypothesis, the set of critical branch-
ings of

〈
(X,<) | Sd

〉
is finite. Hence, Ed and Md are finite sets, so that ker

(
CFd

)
is finite-

dimensional from (10). Moreover, by definition of ∧, we have

ker
(
Sd+1

)
= ker

(
Sd
)
+ ker

(
CFd

)
,

so that ker
(
Sd+1

)
is finite-dimensional.

Let us show Point 2. By construction, Qd is equal to Pd−1, that is, Qd is the set of
critical branchings of

〈
(X,<) | Sd−1〉. Let (w, (n,m), n′,m′)) be such a critical branching. In

particular, we have

w ∈ Nred
((

Sd−1
)
n,m

)
∩Nred

((
Sd−1

)
n′,m′

)
. (11)

Moreover, by construction, Sd is smaller than Sd−1 for �. Thus, from implication (7) of 2.1.5,
we have

Nred
(
Sd−1

)
⊂ Nred

(
Sd
)
. (12)

From (11) and (12), w belongs to Nred
(
Sd

n,m

)
∩Nred

(
Sd

n′,m′
)
. In particular, (w, (n,m), (n′,m′))

is a critical branching of
〈
(X,<) | Sd+1

〉
, that is, it belongs to Pd. Thus, Qd is included in Pd.

3.1.6. Effectiveness. In order to execute the procedure 3.1.3, we have to compute a lower
bound of reduction operators relative to the infinite set X∗. Hence, the implementation of ker−1

for totally ordered finite sets in Section 4 cannot be used in this context,a priori. However,
from Lemma 3.1.5, the kernels of Sd and CFd are finite-dimensional, so that these two operators
can be computed by restrictions over finite-dimensional subspaces of KX∗. We illustrate how
works such a computation in Example 3.2.8.

3.1.7. Completed Presentations. If the procedure 3.1.3 terminates after d iterations of the
loop while, we let Sn = Sd for every integer n ≥ d. Hence, the sequence

(
Sd
)
d∈N is well-defined

if 3.1.3 terminates or not (in 3.1.8 we explain why it has no reason to terminate, a priori). We
let

S =
∧
d∈N

Sd.

The triple
〈
(X,<) | S

〉
is called the completed presentation of 〈(X,<) | S〉. The main result

of the paper is Theorem 3.2.7 which states that
〈
(X,<) | S

〉
is a confluent presentation by

operator of A. The proof of this result is done in Section 3.2.

3.1.8. Non-termination. As said in 3.1.7,
〈
(X,<) | S

〉
is a confluent presentation of A, so

that
R =

{
w − S(w) | w ∈ Nred

(
S
)}
,

is a noncommutative Gröbner basis of I (ker (S)). Moreover, if 3.1.3 terminates, then S = Sd

for some integer d, so that the kernel of S is finite-dimensional in this case. Hence, if 3.1.3
terminates, I (ker (S)) admits a finite noncommutative Gröbner basis. However, it is well-
known [18, Section 1.3] that there exist finitely generated ideal of KX∗ which do not admit any
finite noncommutative Gröbner basis. For this reason, 3.1.3 does not terminate in general.
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3.2 Soundness

The aim of this section is to show that a completed presentation is a confluent presentation by
operator.

3.2.1. Lemma. Let w ∈ X∗ and let T and T ′ be two reduction operators such that T ′ � T .

1. Let (n,m) be a pair of integers such that w is not Tn,m-reduced. Then,
(
Tn,m − T ′n,m

)
(w)

admits a (T ′, w)-type decomposition.

2. Let f ∈ KX∗ admitting a (T,w)-type decomposition. Then, f admits a (T ′, w)-type de-
composition.

Proof. Let us show Point 1. We let w = w(n)w′w(m), where w(n) and w(m) have length n and
m, respectively. Let

T (w′) =
k∑

i=1

λiwi, (13)

be the decomposition of T (w′) with respect to the basis X∗. By hypotheses, T ′ is smaller than
T , so that T ′ ◦ T is equal to T ′ (see Relation (6) of 2.1.5). Hence, we have(

Tn,m − T ′n,m
)
(w) = w(n)

(
T (w′)− T ′(w′)

)
w(m)

= w(n)
(
T (w′)− T ′

(
T (w′)

))
w(m).

From (13), we obtain

(
Tn,m − T ′n,m

)
(w) =

k∑
i=1

λiw
(n)
(
wi − T ′(wi)

)
w(m). (14)

By hypotheses, w is not Tn,m-reduced. Thus, w′ is not T -reduced, so that each wi is strictly
smaller than w′ for <. The strict order < being monomial, each w(n)wiw

(m) is strictly smaller
than w(n)w′w(m) = w. Hence, (14) is a (T ′, w)-type decomposition of

(
Tn,m − T ′n,m

)
(w).

Let us show Point 2. Let

f =
n∑

i=1

λiw
1
i (wi − T (wi))w

2
i , (15)

be a (T,w)-type decomposition of f . Letting

A =
n∑

i=1

λiw
1
i

(
wi − T ′(wi)

)
w2
i and B =

n∑
i=1

λiw
1
i

(
T (wi)− T ′(wi)

)
w2
i ,

we have
f = A−B.

The decomposition (15) being (T,w)-type, each w′i = w1
iwiw

2
i is strictly smaller than w. In

particular, A is (T ′, w)-type. For every i ∈ {1, · · · , n}, let ni and mi be the lengths of w1
i and

w2
i , respectively. We have

B =

n∑
i=1

λi
(
Tni,mi − T ′ni,mi

)
(w′i).
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Each wi being not T -reduced, each w′i is not Tni,mi-reduced. Hence, from Point 1 of the
lemma, each

(
Tni,mi − T ′ni,mi

)
(w′i) admits a (T ′, w′i)-type decomposition, so that it admits a

(T ′, w)-type decomposition since w′i is strictly smaller than w. Hence, B admits a (T ′, w)-type
decomposition, so that f also admits such a decomposition.

3.2.2. Notation. For every integer d, let Fd be the reduction family of
〈
(X,<) | Sd

〉
:

Fd =
{(

Sd
)
n,m

| (n,m) ∈ N2
}
.

3.2.3. Lemma. Let d be an integer, let (w, (n,m), (n′,m′)) ∈ Pd \ Qd and let f be the S-
polynomial of (w, (n,m), (n′,m′)):

f =
(
Sd
)
n,m

(w)−
(
Sd
)
n′,m′

(w).

1. (∧Fd) (f) is equal to 0.

2. f admits a
(
Sd+1, w

)
-type decomposition.

Proof. Let us show Point 1. By construction of Ed, we have

w −
(
Sd
)
n,m

(w) ∈ Ed and w −
(
Sd
)
n′,m′

(w) ∈ Ed.

Hence, by definition of the method Reduction, the operators

T1 = T

(
w −

(
Sd
)
n,m

(w)

)
and T2 = T

(
w −

(
Sd
)
n′,m′

(w)

)
,

belong to Fd. In particular,

f = (w − Sd
n,m(w))− (w − Sd

n′,m′(w)),

belongs to the kernel of T1 ∧ T2. The latter is included in the kernel of ∧Fd, so that Point 1
holds.

Let us show Point 2. The operator CFd being a complement of Fd, we have

∧
(
Fd ∪

{
CFd

})
= ∧Fd, (16)

and Fd ∪
{
CFd

}
is confluent (see 2.1.11), that is, it has the Church-Rosser property (see 2.1.9).

Hence, from Point 1 of the lemma and Relation (16), there exist T1, · · · , Tr ∈ Fd∪
{
CFd

}
, such

that
(Tr ◦ · · · ◦ T1) (f) = 0. (17)

We let
f1 = (IdKX∗ − T1) (f),

and for every k ∈ {2, · · · , r},

fk = (IdKX∗ − Tk) (Tk−1 ◦ · · · ◦ T1(f)) .
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From (17), we have

f =
r∑

k=1

fk. (18)

The tuple (w, (n,m), (n′,m′)) being a critical branching of
〈
(X,<) | Sd

〉
, we have

w ∈ Nred
((

Sd
)
n,m

)
∩Nred

((
Sd
)
n′,m′

)
,

so that the leading monomial of f is strictly smaller than w. Moreover, each Ti is either of
the form T

(
w1(w2 − Sd(w2))w3

)
, or is equal to CFd . Hence, each fi admits a

(
Sd, w

)
-type

decomposition or a
(
CFd , w

)
-type decomposition. The reduction operators Sd and CFd being

smaller than Sd+1, each fi admits a
(
Sd+1, w

)
-type decomposition from Point 2 of Lemma 3.2.1,

so that f admits a
(
Sd+1, w

)
-type decomposition from (18).

3.2.4. Proposition. Let d be an integer. For every (w, (n,m), (n′,m′)) ∈ Qd, the S-polynomial(
Sd
)
n,m

(w)−
(
Sd
)
n′,m′

(w),

admits a
(
Sd, w

)
-type decomposition.

Proof. We show the proposition by induction on d. The set Q0 being empty, Proposition 3.2.4
holds for d = 0.

Assume that for every (w, (n,m), (n′,m′)) ∈ Qd, Sd
n,m(w) − Sd

n′,m′(w) admits a (Sd, w)-
type decomposition. We let

A =
(
Sd
)
n′,m′

(w) −
(
Sd+1

)
n′,m′

(w) ,

B =
(
Sd
)
n,m

(w) −
(
Sd+1

)
n,m

(w),

C =
(
Sd
)
n,m

(w) −
(
Sd
)
n′,m′

(w).

We have (
Sd+1

)
n,m

(w)−
(
Sd+1

)
n′,m′

(w) = A−B + C.

By construction, Sd+1 is smaller than Sd. Moreover, (w, (n,m), (n′,m′)) being a critical branch-
ing, we have

w ∈ Nred
((

Sd
)
n,m

)
∩Nred

((
Sd
)
n′,m′

)
.

Hence, from Point 1 of Lemma 3.2.1, A andB admit a
(
Sd+1, w

)
-type decomposition. It remains

to show that C admits a
(
Sd+1, w

)
-type decomposition. By construction, Qd+1 is equal to Pd,

so that it contains Qd from Point 2 of Lemma 3.1.5. If (w, (n,m), (n′,m′)) does not belong
to Qd, C admits a

(
Sd+1, w

)
-type decomposition from Lemma 3.2.3. If (w, (n,m), (n′,m′))

belongs to Qd, C admits a
(
Sd, w

)
-type decomposition by induction hypothesis. Hence, from

Point 2 of Lemma 3.2.1, C admits a
(
Sd+1, w

)
-type decomposition.
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3.2.5. Notation. Recall that the completed presentation of 〈(X,<) | S〉 is written
〈
(X,<) | S

〉
,

where S is the operator defined in 3.1.7. The last lemma we need to prove Theorem 3.2.7 is:

3.2.6. Lemma.

1. For every integer d, let Id be the ideal spanned by ker
(
Sd
)
. The sequence (Id)d∈N is

constant.

2. We have
Nred

(
S
)

=
⋃
d∈N

Nred
(
Sd
)
. (19)

Proof. Let us show Point 1. By definition of the method Reduction, the kernel of each element
of Fd is included in Id. In particular,

ker (∧Fd) =
∑
T∈Fd

ker (T ) ,

is also included in Id. Moreover, CFd being a complement of Fd, it is smaller than ∧Fd, that is
its kernel is included in the one of ∧Fd. In particular, ker

(
CFd

)
is included in Id, so that

ker
(
Sd+1

)
= ker

(
Sd
)
+ ker

(
CFd

)
,

is also included in Id. Hence, the sequence (Id)d∈N is not increasing. Moreover, the sequence(
Sd
)
d∈N is not increasing by construction, which means that

(
ker
(
Sd
))

d∈N is not decreasing.
Hence, (Id)d∈N constant.

Let us show Point 2. The equality (19) means that the set

F =
{
Sd | d ∈ N

}
,

is confluent. From Newman’s Lemma (see 2.1.10) in terms of reduction operators, it is sufficient
to show that F is locally confluent. Let f ∈ KX∗ and let d and d′ be two integers. Without
lost of generalities, we may assume that d is greater or equal to d. In particular,

(
Sd
)
d∈N being

not increasing, from Relation (6) of 2.1.5, we have

Sd ◦ Sd′ = Sd.

Hence, Sd ◦ Sd′(f) and Sd(f) are equal, so that F is locally confluent.

3.2.7. Theorem. Let A be an algebra and let 〈(X,<) | S〉 be a presentation by operator of
A. The completed presentation of 〈(X,<) | S〉 is a confluent presentation of A.

Proof. Let S be the operator define in 3.1.7.
First, we show that

〈
(X,<) | S

〉
is a presentation of A. From Point 1 of Lemma 3.2.6, the

ideal spanned by the kernels of the operators Sd is equal to the ideal I spanned by the kernel
of S0 = S. In particular, the ideal spanned by

ker
(
S
)

=
∑
d∈N

ker
(
Sd
)
,
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is equal to I. Hence, 〈(X,<) | S〉 being a presentation of A,
〈
(X,<) | S

〉
is also a presentation

of A.
Let us show that this presentation is confluent. From Proposition 2.2.17, it is sufficient to

show that for each critical branching

b =
(
w, (n,m), (n′,m′)

)
,

of
〈
(X,<) | S

〉
, the S-polynomial

SP (b) =
(
Sn,m − Sn′,m′

)
(w),

admits a
(
S,w

)
-type decomposition. From Point 2 of Lemma 3.2.6, there exist integers d and

d′ such that
w ∈ Nred

((
Sd
)
n,m

)
∩Nred

((
Sd′
n′,m′

))
.

Without lost of generalities, we may assume that d is greater or equal to d′. Hence, Nred
(
Sd
)

is included in Nred
(
Sd′
)

from Relation (7) of 2.1.5, so that b is a critical branching of〈
(X,<) | Sd

〉
, that is it belongs to Pd = Qd+1. We let

Ad =
(
Sd+1

)
n′,m′

(w) − Sn′,m′(w),

Bd =
(
Sd+1

)
n,m

(w) − Sn,m(w),

Cd =
(
Sd+1

)
n,m

(w) −
(
Sd+1

)
n′,m′

(w).

We have
SP (b) = Ad −Bd + Cd. (20)

From Proposition 3.2.4, b being an element of Qd+1, Cd admits a
(
Sd+1, w

)
-type decomposition,

so that it admits a
(
S,w

)
-type decomposition from Point 2 of Lemma 3.2.1. Moreover, Sd+1

being smaller than Sd, from Relation (7) of 2.1.5, we have

w ∈ Nred
((

Sd+1
)
n,m

)
∩Nred

((
Sd+1

)
n′,m′

)
.

The operator S being smaller than Sd+1, Ad and Bd also admit a
(
S,w

)
-type decomposition

from Point 1 of Lemma 3.2.1. Hence, from (20), SP (b) admits a
(
S,w

)
-type decomposition.

3.2.8. Example. We consider the algebra of Example 2.2.7: let X = {x, y, z}, let < be the
deg-lex order induced by x < y < z and let A be the algebra presented by 〈(X,<) | S〉, where
S is defined for every word w by

S(w) =


x, if w = yz

xy, if w = zx

w, otherwise.

We do not give details of computations of successive F -complements. These computations
appear in Section 4.3.
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We have one critical branching of 〈(X,<) | S〉:

P0 =
{
b1 = (yzx, (1, 0), (0, 1))

}
,

and we have
E0 =

{
yzx− xx, yzx− yxy

}
.

The words xx and yxy having each sub-word S-reduced, Reduction(E0, S) is equal to

F0 =
{
T1 = T (yzx− xx) , T2 = T (yzx− yxy)

}
.

Given a word w different from xx, yxy and yzx,
(
CF0

)
(w) is equal to w. Hence, CF0 can be

computed by its restriction to the subspace of KX∗ spanned by

G1 = {xx < yxy < yzx}.

We identify T1 and T2 to their canonical matrices relative to G1:

T1 =

1 0 1
0 1 0
0 0 0

 and T2 =

1 0 0
0 1 1
0 0 0

 .

We obtain

CF0 =

1 1 0
0 0 0
0 0 1

 .

The operator
S1 = S ∧ CF0 ,

can be computed by restriction to the vector space spanned by

G2 = {x < xx < xy < yz < zx < yxy} .

We have

S =



1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 and CF0 =



1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 ,

and we obtain that S1 is the operator defined for every word w by

S1(w) =


x, if w = yz

xy, if w = zx

xx, if w = yxy

w, otherwise.

We have
P1 =

{
b1, b2 = (yxyz, (2, 0), (0, 1)) , b3 = (yxyxy, (2, 0), (0, 2))

}
.
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Hence, P1 \Q1 contains b2 and b3, and we have

E1 =
{
yxyz − xxz, yxyz − yxx, yxyxy − xxxy, yxyxy − yxxx

}
.

Each sub-word of the words xxz, yxx, xxxy et yxxx are S-reduced, so that Reduction
(
E1, S

1
)

is equal to

F1 =

{
T3 = T (yxyz − xxz) , T4 = T (yxyz − yxx)
T5 = T (yxyxy − xxxy) , T6 = T (yxyxy − yxxx)

}
.

The restriction of CF1 to the subspace spanned by

{xxz < yxx < xxxy < yxxx < yxyz < yxyxy} ,

is

CF1 =



1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

so that S2 is the operator defined for every word w by

S2(w) =



x, if w = yz

xy, if w = zx

xx, if w = yxy

xxz, if w = yxx

xxxy, if w = yxxx

w, otherwise,

and

P2\Q2 =
{
b4 = (yxyxx, (2, 0), (0, 2)), b5 = (yxyxxx, (2, 0), (0, 3)) , b6 = (yxxx, (0, 0), (0, 1))

}
.

We have

E2 =

{
yxxx− xxzx, yxxx− xxxy, yxyxxx− yxxxxy
yxyxx− yxxxz, yxyxxx− xxxxx, yxyxx− xxxx

}
,

and we check that

F2 =



T7 = T (yxxx− xxzx) , T8 = T (yxxx− xxxy)
T9 = T (yxyxxx− yxxxxy) , T10 = T (yxyxx− yxxxz)
T11 = T (yxyxxx− xxxxx) , T12 = T (yxyxx− xxxx)
T13 = T (xxzx− xxxy) , T14 = T (yxxxz − xxxyz)
T15 = T (xxxyz − xxxx) , T16 = T (yxxxxy − xxxyxy)
T17 = T (xxxyxy − xxxxx)


.
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We obtain
CF2 = IdKX∗ .

Hence, S3 is equal to S2, so that Q3 is equal to P3. Thus,〈
(X,<) | S2

〉
,

is a confluent presentation of A.

4 Source Code and Example

4.1 Preliminaries

4.1.1. Purpose. Let (G,<) be a totally ordered finite set and let K be a commutative field.
In Section 4.2, we write the source code of the bijection (5) of 2.1.4, that is, of the map

ker−1 : L (KG) −→ RO (G,<) ,

mapping every subspace of KG to the unique reduction operator relative to (G,<) with kernel
this subspace. We deduce from this implementation the ones of the lower bound, the upper
bound and the F -complement.

4.1.2. Reduction Operators and Gaussian Elimination. Let V be a subspace of KG.
The set G being finite, the Gaussian elimination provides a unique basis B of V satisfying the
following conditions:

• for every e ∈ B, lc (e) is equal to 1,

• given two different elements e and e′ of B, lg (e′) does not belong to the support of e.

Let T be the endomorphism of KG defined on the basis G in the following way:

T (g) =

{
lg (e)− e, if g = lg (e) for e ∈ B

g, otherwise.
(21)

We check that T is a reduction operator relative to (G,<). Moreover, the kernel of T is equal
to V , so that ker−1 (V ) is equal to T .

4.1.3. Organisation of the Source Code. In our implementation, the subspaces of KG are
represented by lists of vectors: given such a list, the associated subspace is the one spanned by
this list. Our implementation of ker−1 works as follows: consider a list of vector L, we compute
the basis B such as 4.1.2 of KL using Gaussian elimination, then we compute ker−1 (KL) using
(21). For that, we define several intermediate methods. We use SageMath software 2, written
in Python.

4.2 Source Code

4.2.1. Basic Methods. We first introduce several basic methods used in the sequel. We
assume that the ground field K is the field of rational numbers Q.

2http://www.sagemath.org
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1 def f(u,v,a) :
return v-a*u

def notZero(v) :
5 V=VectorSpace(QQ,len(v))

return v!=V.zero()

def lg(v): # returns lg(v)
9 k=0

for i in [0.. len(v)-1]:
11 if v[i]!=0: k=i+1

return k

def order(u,v):
15 if lg(u)>lg(v): return int(-1)

elif lg(u)==lg(v): return int(0)
17 else: return int (1)

19 def leadingVector(L): # returns v of L such that lg(v) is maximal
v=L[0]

21 for i in [1.. len(L)-1]:
if lg(L[i])>lg(L[i -1]): v=L[i]

23 return v

25 def dimension(L): # returns the dimension of the subspace spanned by L
A=matrix(L)

27 V=A.image()
return dim(V)

4.2.2. Pivot. The following method takes as inputs a list of vector L and a vector v. It
replaces each element v′ of L by a vector v′ − λv, where the scalar λ is chosen in such a way
that the coefficient of lg (v) in v′ − λv vanishes. After we have made this procedure on every
vector of L, we remove from the list the zero vectors.

def pivot(L,v):
2 k,G=lg(v),[]

for i in [0.. len(L)-1]:
4 G=G+[f(v,L[i],L[i][k-1]/v[k -1])]

return filter(notZero ,G)+[v]

4.2.3. Ordered Basis. Let L be a list of vectors. We wish to construct a list of vectors L′

satisfying the following conditions:

• KL′ is equal to KL,

• the leading generators of the elements of L′ are pairwise distinct,

• given two distinct elements v and v′ of L′, the leading generator of v does not belong to
supp (v′).
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For that, we define an intermediate method with input a list of vectors using as pivot a leading
vector of this list, that is, a vector of this list with maximal leading generator. This intermediate
method returns the list such obtained, where the elements are ordered with respect to their
leading generators. This list satisfies the following conditions

1. KL′ is equal to KL,

2. L′ does not contain any zero vector,

3. for every integer i, the i-th element of L′ as a leading generator not greater than the
i+ 1-th,

4. the list L′ contains exactly one vector with maximal leading generator.

1 def orderedBasisStep1(L):
G=pivot(L,leadingVector(L))

3 G.sort(cmp=ordre)
return G

def orderedBasis(L):
7 n,G=dimension(L),orderedBasisStep1(L)

for i in [1..n-1]:
9 G=pivot(G,G[i])

G.sort(cmp=order)
11 return G

4.2.4. Gaussian Elimination. The list returned by the method of 4.2.3 is not the one ob-
tained by Gaussian elimination: it remains to divide each vector of this list by its leading
generator. This is the purpose of the following method:

1 def reducedBasis(L):
G=orderedBasis(L)

3 n=len(G)
H=[]

5 for i in [0..n-1]:
v,k=G[i],lg(G[i])

7 H=H+[1/v[k-1]*v]
return H

4.2.5. Reverse Order. The method of 4.2.4 returns a reduced basis, where the elements are
written in the non-decreasing order with respect to their leading generators. In the following
method, we return the reduced basis written in the reverse order:

def reverseReducedBasis(L):
2 if L==[]: return L

else: G=reducedBasis(L); G.reverse (); return G

29



4.2.6. Reduction Operator. The following method takes as input a list of vectors L and
returns ker−1 (KL):

1 def operator(G):
L=reverseReducedBasis(G)

3 n=len(L[0])
V=VectorSpace(QQ,n)

5 v=V.zero()
G=(lg(L[0]) -1)*[v]+[L[0]]

7 k=len(L)
for i in [1..k-1]:

9 G=G+(lg(L[i])-lg(L[i-1]) -1)*[v]+[L[i]]
G=G+(n-lg(L[k -1]))*[v]

11 return identity_matrix(QQ,n)-matrix(G). transpose ()

4.2.7. Lower Bound and Upper Bound. The following two method compute the lower
bound and the upper bound of two reduction operators:

1 def lowerBound(T_1 ,T_2):
V_1 ,V_2=kernel(T_1.transpose ()), kernel(T_2.transpose ())

3 G_1 ,G_2=basis(V_1),basis(V_2)
L_1 ,L_2=reverseReducedBasis(G_1),reverseReducedBasis(G_2)

5 G=L_1+L_2
L=reverseReducedBasis(G)

7 return operator(L)

9 def upperBound(T_1 ,T_2):
V_1 ,V_2=kernel(T_1.transpose ()), kernel(T_2.transpose ())

11 V=V_1.intersection(V_2)
G=basis(V)

13 L=reverseReducedBasis(G)
return operator(L)

4.2.8. F -complement. By definition of the F -complement, we need an intermediate method
with input a reduction operator T and output ker−1 (KRed (T )). We define this method before
defining the one of the F -complement:

def tilde(T):
2 n,L=T.nrows (),[]

for i in [0..n-1]:
4 j,k=i,n-i-1

if T[i,i]==1: L=L+[ vector(j*[0]+[1]+k*[0])]
6 return operator(L)

8 def complement(L):
n,C,T=len(L),L[0], tilde(L[0])

10 for i in [1..n-1]: C=lowerBound(C,L[i])
for j in [1..n-1]: T=upperBound(T,tilde(L[j]))

12 return lowerBound(C,T)
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4.3 Example

In this section, we compute the successive F -complements of Example 3.2.8. Recall that given
f ∈ KX∗, we let

T (f) = ker−1 (Kf) .

4.3.1. First Step. We have

F0 =
{
T1, T2

}
,

where

T1 =

1 0 1
0 1 0
0 0 0

 and T2 =

1 0 0
0 1 1
0 0 0

 .

We obtain

CF0 = complement ([T1, T2])

=

1 1 0
0 0 0
0 0 1

 .

4.3.2. Second Step. We have

F1 =

{
T3 = T (yxyz − xxz) , T4 = T (yxyz − yxx)
T5 = T (yxyxy − xxxy) , T6 = T (yxyxy − yxxx)

}
.

For the deg-lex order induced by x < y < z, we have

xxz < yxx < xxxy < yxxx < yxyz < yxyxy. (22)

The matrices of T3, T4, T5 and T6 relative to (22) are

T3 =



1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 , T4 =



1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1



T5 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , T6 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

 .
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We obtain

CF1 = complement ([T3, T4, T5, T6])

=



1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

4.3.3. Third Step. We have

F2 =



T7 = T (yxxx− xxzx) , T8 = T (yxxx− xxxy)
T9 = T (yxyxxx− yxxxxy) , T10 = T (yxyxx− yxxxz)
T11 = T (yxyxxx− xxxxx) , T12 = T (yxyxx− xxxx)
T13 = T (xxzx− xxxy) , T14 = T (yxxxz − xxxyz)
T15 = T (xxxyz − xxxx) , T16 = T (yxxxxy − xxxyxy)
T17 = T (xxxyxy − xxxxx)


.

For every integer n, we write
xn = x · · ·x︸ ︷︷ ︸

n letters

.

We have

x4 < x3y < x2zx < yx3 < x5 < x3yz < yx3z < yxyx2 < x3yxyx < yx4y < yxyx3.
(23)

We write matrices of T7, · · · , T17 in the basis (23). We obtain that the F2-complement is the
identity matrix of size 11.

Conclusion. We wrote a lattice formulation of the F4 completion procedure. However, our
procedure does not take into account that there exist unnecessary critical branchings. For
instance, in the second step of the example developed in 3.2.8, we reduced the S-polynomials
of critical branchings with source yxyz and yxyxy. However, in turns out that it is sufficient
to reduce the first one to obtain a confluent presentation by operator. Hence, a natural further
work is to avoid reductions of unnecessary critical branchings, that is, we should relate reduction
operators to F5 completion procedure. Another further work is to exploit the lattice formulation
of completion to obtain applications in homological algebra using Brown reduction [7].
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