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Abstract—Colonoscopy is the gold standard for colon cancer
screening though still some polyps are missed, thus preventing
early disease detection and treatment. Several computational
systems have been proposed to assist polyp detection during
colonoscopy but so far without consistent evaluation. The lack
of publicly available annotated databases has made it difficult to
compare methods and to assess if they achieve performance levels
acceptable for clinical use. The Automatic Polyp Detection sub-
challenge, conducted as part of the Endoscopic Vision Challenge
(http://endovis.grand-challenge.org) at the international confer-
ence on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in 2015, was an effort to address this
need. In this paper, we report the results of this comparative eval-
uation of polyp detection methods, as well as describe additional
experiments to further explore differences between methods. We
define performance metrics and provide evaluation databases
that allow comparison of multiple methodologies. Results show
that convolutional neural networks (CNNs) are the state of the
art. Nevertheless it is also demonstrated that combining different
methodologies can lead to an improved overall performance.

Index Terms—Endoscopic vision, Polyp Detection, Hand-
crafted features, Machine Learning, Validation Framework
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I. INTRODUCTION

A. Clinical context

Colorectal cancer (CRC) is the third largest cause of cancer
deaths in the United States among men and women, and it is
expected to have resulted in about 49, 196 deaths in 2016 in the
USA [1]. CRC arises from adenomatous polyps (or adenomas),
that are growths of glandular tissue originating from the
colonic mucosa. Though adenomas are initially benign, they
might become malignant over time and spread to adjacent
and distant organs such as lymph nodes, liver or lungs, being
ultimately responsible for complications and death [2].

CRC prevention is first based on the detection of at-risk
patients: those with symptoms (such as hematochezia and
anemia), those with positive screening tests (such as a fecal
occult blood test or a fecal immunochemical test), and those
with a past history of adenoma or with a family history of
advanced adenoma or CRC. In these groups of patients, a
colonoscopy is proposed to detect polyps before any malignant
transformation or at an early cancer stage. This stage refers
to the most superficial colon layers, with no deep invasion,
and it is associated with a 5-year survival rate over 90% [3],
[1]. If any polyp found is characterized as a likely adenoma,
its removal should be considered to confirm the diagnosis, to
set its histological stage and to confirm its complete removal,
giving clinicians clues to determine the need and timing of the
next colonoscopy [4].

Though colonoscopy is the gold standard for colon screen-
ing, other alternatives, such as CT colonography [5] or wireless
capsule endoscopy (WCE) [6], are also used to search for
polyps. They are less invasive to patients and do not present
perforation risk. Though, as colonoscopy, they require bowel
preparation. Nevertheless in these cases, if a polyp is found,
a colonoscopy must be considered to remove the suspicious
lesion. These alternatives have specific limitations that may
affect the outcome of the screening. For instance, CT colonog-
raphy has a low small lesions (5 mm or less) detection rate
due to resolution constraints [7] and it implies using ionising
radiation. WCE allows to detect all kind of lesions but their
observation depends on whether they are recorded during the
progress of the camera through the gastrointestinal tract or
not. Moreover, its diagnostic yield is highly dependent on the
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cleanliness of the colon (whereas colonoscopy has some in-
situ lavage capabilities). Last but not least, the analysis of the
information provided by WCE can be highly time-consuming,
as the recorded videos can last up to 8 hours [8].

Colonoscopy presents some drawbacks, polyp miss-rate
being the most important among these. Colonoscopy rarely
misses polyps bigger than 10 mm, but the miss-rate increases
significantly with smaller sized and/or flat polyps [9], [10]. It
has also to be noted that colonoscopies are seldom recorded, so
a new procedure must be performed to revisit explored areas.

The outcome of the colonoscopy exploration depends on: 1)
bowel preparation [11]; 2) specific choice of endoscope and
video processor, affecting image quality and preventing the
use of certain image enhancing tools; 3) clinicians’ skills, as
both endoscopist’s experience and his/her actual concentration
during the intervention may influence the degree of procedure
completion (reaching the cecum or not) and the percentage
of the colon that has been explored [12], [13] and 4) patient-
specific issues, as due to colon movements and the appearance
of folds and angulations during the exploration, some parts of
the colon which may potentially present polyps may not be
reached [9]. Moreover, patients’ personal and family history
can increase the risk of having a polyp and, in this case, the
exploration should be even more thorough.

B. Technical strategies to improve polyp detection rate

Apart from the continuous improvement of clinicians’ skills
through training programs and practice [14], technical efforts
are being undertaken to improve colonoscopy’s outcome. We
clustered them into two groups: improvement of devices and
the development of computational support systems.

Amongst the device improvements, the following should be
highlighted: 1) increase in image resolution and, consequently,
textural information; 2) the use of wide-angle cameras showing
more colon wall surface; 3) the development of zooming and
magnification techniques [15] and 4) the development of new
imaging methodologies such as autofluorescence imaging [16]
or virtual chromoendoscopy (Olympus’ Narrow Band Imaging
[17], Fujinon’s FICE [18] or Pentax’s i-Scan [19]). This last
group of techniques modify how the scene is observed by
improving the contrast of endoluminal scene elements, which
may help in lesion detection and also with in-vivo lesion
diagnosis due to the enhanced visualization of lesion tissues
[20]. These advances have fostered the cooperation between
clinicians and computer scientists in the development and
validation of computer-aided support systems for colonoscopy,
aimed to help clinicians in all stages of CRC diagnosis. A
significant part of this effort has been focused on computer
assisted polyp detection. As it is indicated in [21], cooperation
between technologists and clinicians is essential to develop
clinically useful solutions, with both these groups understand-
ing challenges and limitations in their respective domains.

Automatic polyp detection in colonoscopy videos has been
an active research topic during the last 20 years and several
approaches have been proposed. We present a review of the
most relevant methods in Section II but, to the best of our
knowledge, none of them has been adopted for a routine

patient treatment. There might be several reasons behind this.
First of all, in order for a given method to be clinically
useful, it has to meet real time constraints; e.g. for videos
acquired at 25 frames per second (fps) the maximum time
available to process each image frame should be under 40ms.
Secondly, some of them are built from a theoretical model of
a polyp appearance [14], [22] and therefore limited to only
certain polyp morphologies, which may not translate to the
actual scene where polyp appearance varies greatly. Thirdly,
the majority of methods are mainly focused on the polyps
and they do not consider the presence of other elements such
as folds, blood vessels or the lumen that can affect methods’
performance [14]. Last but not least, some of these methods
have been only trained and tested on selected good quality still
image frames. The lack of temporal coherence and the great
variability in polyp appearance due to camera progression and
visibility conditions might impact their performance in the full
sequences analysis, as they might cause instability in their
response against similar stimuli.

Computational methods also have to deal with additional
colonoscopy-specific challenges. For instance, they should
consider the impact of image artifacts generated due to scene
illumination (specular highlights, overexposed regions) or to
specific configuration of the videoprocessor attached to the
colonoscope, which might overlay information over the scene
view. These artifacts, apart from altering the view of the
scene, might not be stable within consecutive frames and
therefore methods should both compensate their impact on
the individual frame polyp detection and tracking in the full
sequence analysis. Additionally, though an effort is made to
ensure an adequate bowel preparation, some particles may still
appear which, in some cases, could lead to false detections
when isolated or to occlusion leading to miss detection or
localization errors. As mentioned before, these methods have
to cope with a great degree of variability in polyp appearance
which depends on illumination conditions, camera position
and on clinician skills when progressing through the colon.
Finally, available methods have been typically validated on
small and restricted databases, under specific endoscope device
conditions (brand and resolution), in some cases even covering
only one specific polyp type, shape or morphology hindering
their actual performance in a more generic setting.

C. Motivation of the comparison study

Unfortunately, the lack of a common validation framework,
which is a frequent problem in medical and endoscopy image
analysis [21], has limited the effectiveness of the comparison
between existing approaches, making it difficult to determine
which of them could have actual advantage in clinical use.
To cope with this, efforts have been made on publishing fully
annotated databases [14], [22] and on organizing challenges
as part of international conferences (ISBI, MICCAI), which
offer a basis to discuss validation strategies.

Considering this and taking inspiration from recent works
on quantitative comparative methods’ analysis in areas such
as laparoscopic 3D Surface Reconstruction [23] or liver seg-
mentation [24], we present in this paper a complete validation
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study of polyp detection methods performed as part of the
2015 MICCAI sub-challenge on Automatic Polyp Detection.
This sub-challenge was organized jointly by three research
teams: 1) Computer Vision Center/Universitat Autònoma de
Barcelona and Hospital Clinic from Barcelona, Spain (CVC-
CLINIC); 2) ETIS Lab (ENSEA/CNRS/University of Cergy-
Pontoise) and Lariboisière Hospital-APHP at Paris, France
(ETIS-LARIB), and 3) Arizona State University and Mayo
Clinic, USA (ASU-Mayo).

The objective of this paper is to present a comparative study
of polyp detection methods under a newly proposed validation
framework. This validation framework was firstly introduced
as part of MICCAI 2015 Sub-Challenge on Automatic Polyp
Detection in Colonoscopy and we present in this paper the
results of the mentioned sub-challenge. Beyond this, we also
propose additional experiments to assess even more in-depth
the performance of an automatic polyp detection method.
These new experiments are focused on exploring the actual
clinical applicability of a given method by assessing up to
what extent they are affected by some of the technical and
clinical challenges reported in the literature or whether they
incorporate temporal coherence features or not. Finally we
also go beyond the individual analysis of methods and propose
combination strategies in order to study whether a combination
method may lead to improved individual performance.

The remainder of the paper is structured as follows: In
Section II we present the methods proposed by each of the
participating teams in the challenge, including them in the
context of existing published methods. In Section III we
describe the complete validation framework. Results from the
comparative study are presented in Section IV. Section V
provides an in-depth analysis of the results and discusses
some topics related to challenge organization. Finally, the
concluding remarks are drawn in Section VI.

II. AUTOMATIC POLYP DETECTION METHODS

A. Historical review of computational polyp detection methods

After analyzing approaches reported in the literature, we
propose to cluster methods into three groups: 1) hand-
crafted; 2) end-to-end learning and 3) hybrid approaches.
This taxonomy represents the different historical trends of
polyp detection methods, as in early 2000s, the majority
of the methods used a given texture descriptor to guide
a classification method but, subsequently, some researchers
decided to go for hand-crafted features, aiming at a real time
implementation. As technology evolved and the computational
capabilities increased, techniques such as neural networks that
were developed in the past and abandoned due to excessive
computational cost have now resurfaced.

Regarding hand-crafted methods, the majority are based
on exploiting low-level image processing methods to obtain
candidate polyp boundaries (using Hessian filters in the work
of Iwahori et al. [25], intensity valleys in the work of Bernal et
al. [14] or Hough transform in the work of Silva et al, [26]) and
then use resulting information to define cues unique to polyps.
For instance, the work of Zhu et al. [27] analyzes curvatures
of detected boundaries whereas the method of Kang et al. [28]

is focused on searching ellipsoidal shapes typically associated
with polyps. Finally, the method of Hwang et al. [29] combines
curvature analysis and shape fitting in their strategy.

Concerning end-to-end learning, texture and color informa-
tion were formerly used as descriptors such as in the work of
Karkanis et al. [30] which proposed the use of color wavelets,
the work of Ameling et al. [31] that exploits the use of co-
ocurrence matrices or the work of Gross et al. [32], which
proposed the use of local binary patterns. Active learning
methodologies have also been introduced as in the work
of Angermann et al. [33] to reinforce the tradeoff between
performance and computation time. Some of the most recent
methods use deep learning tools to aid in polyp detection tasks,
as in the work of Park et al. [34] or in the work of Ribeiro et
al. [35]. In these very recent developments, differences among
methods are based on the selection of a specific network
architecture and databases used for training.

Finally, there are several hybrid methods which combine
both methodologies for polyp detection, such as in the works
of Tajbaksh et al. [22], which combines edge detection and
feature extraction to boost detection accuracy, the work of
Bae et al. [36], that propose a system based on imbalanced
learning and discriminative feature learning; the work of Silva
et al. [26], which uses hand-crafted features to filter non-
informative image regions and the work of Ševo et al. [37],
which combines edge density and convolutional networks.

As mentioned in Section I, the great majority of the methods
are tested on private databases though we can observe that
more recent publications such as the work of Park et al. [34]
or the work of Ribeiro et al. [35] have started to use publicly
available databases such as the ones used in the MICCAI
2015 Sub-challenge on Automatic Polyp Detection. Related
to this, apart from new proposals, some of the referenced
methods have been adopted by participants, such as the
works of Bernal et al. [14], Silva et al. [26] or the work of
Tajbaksh et al. [22]. We provide in the next subsection a brief
description of participating methods highlighting their most
relevant contributions to the field. We grouped the methods
following the taxonomy defined earlier in this subsection.

B. MICCAI 2015 Polyp Detection Sub-challenge methods

1) Hand-crafted features:
• CVC-CLINIC: This method [14] is based on a model

of appearance considering polyps as protruding surfaces,
being their boundaries defined from intensity valleys
detection. Their proposal includes a pre-preprocessing
stage to mitigate the impact of other valley-rich structures
(blood vessels, specular highlights). To build final energy
maps highlighting polyp presence, four different
constraints (continuity, completeness, concavity, and ro-
bustness against spurious structures) are imposed to
candidate boundaries to differentiate polyps from other
structures.

2) End-to-end learning:
• CUMED: The architecture of the proposed network con-

tains two sections including a downsampling path and an
upsampling path [38]. The former contains convolutional
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TABLE I
SUMMARY OF INFORMATION FROM THE TEAMS THAT TOOK PART IN MICCAI 2015 CHALLENGE ON AUTOMATIC POLYP DETECTION.

Team
acronym Full team details Methodology Published Still-frame

analysis
Video
analysis

Training
(seconds)

Testing
(seconds)

System tested

ASU Arizona State University (USA) Hybrid Yes [22] No Yes N/A 2.7

2.4 GHz Intel quad
core processor and an
NVIDIA GeForce GTX
760 video card

CUMED
Department of Computer Science
and Engineering, Chinese Uni-
versity of Hong Kong (China)

End-to-end
learning
(CNNs)

No Yes Yes 10800 0.2

A standard PC with
a 2.50 GHz Intel(R)
Xeon(R) E5-1620 CPU
and a NVIDIA GeForce
GTX Titan X GPU

CVC-CLINIC
Computer Vision Center and
Universitat Autònoma de
Barcelona (Spain)

Hand-crafted Yes [14] Yes Yes N/A 10 Intel core i7-4790 at
3.6GHz

ETIS-LARIB
ETIS, ENSEA, University of
Cergy-Pontoise, CNRS, Cergy
(France)

Hybrid Yes [26] Yes No 196 2.14 Intel i5 4200U 2.30 GHz

OUS
Oslo University Hospital, OUS
Norway, University of Oslo
(Norway)

End-to-end
learning
(CNNs)

No Yes Yes 86400 5

Intel i5, 4 cores at
2.8 GHz, 4 GB RAM.
Graphic card with 4 GB
memory used for training

PLS

Polyp Localize and Spot Team,
Media Performance Group, Sim-
ula Research Laboratory and
University of Oslo (Norway)

Hybrid No Yes Yes 0.33 per image 0.145

2 Intel(R) Xeon(R) CPU
E5-2650 at 2.00GHz
CPU, 64 GB of RAM,
NVIDIA Corporation
GK110, GeForce GTX
TITAN

SNU Seoul National University, Seoul
(South Korea)

End-to-end
learning
(CNNs)

No Yes Yes 360 0.8-1 NVIDIA TITAN X GPU

UNS-UCLAN

School of Engineering, Uni-
versity of Central Lancashire,
Preston (UK) and University
of Nice-Sophia Antipolis, Nice
(France)

End-to-end
learning
(CNNs)

No Yes No 18000 5

i7-5930K @ 3.5GHz (6
cores), 64 GB RAM,
NVIDIA GeForce GTX
TITAN X

and max-pooling layers while the latter contains convo-
lutional and upsampling layers, increasing the resolutions
of feature maps and output prediction masks. To alleviate
the problem of vanishing gradients and encourage the
back-propagation of gradient flow in deep neural net-
works, the auxiliary classifiers are injected to train the
network. Furthermore, they can serve as regularization
to reduce over-fitting and improve the discriminative
capability of features in intermediate layers [39], [40].
The classification layer, after fusing multi-level contex-
tual information, produces the detection results. Network
training is formulated as a pixel-wise classification prob-
lem with respect to ground-truth masks. The highlight of
this approach is that it explores multi-level feature repre-
sentations with fully CNNs in an end-to-end way, taking
an image as input and directly providing the score map.
In addition, feature-rich hierarchies from a large scale
auxiliary dataset are transferred into the model to reduce
over-fitting and further boost detection performance [41].

• UNS-UCLAN: This method, inspired by reported works
[42], [43], [44], uses three CNNs trained at different
image scales, namely 1, 0.5, and 0.25, of the original
training images. For all the scales the CNNs use the
same architecture, but they are trained independently on
the RGB images at their corresponding scale. After this
initial training phase, the last fully connected part of each
CNN is removed and the outputs from the ’convolutional
part’ of all the three networks are fed as input to a single
Multi-Layer Perceptron (MLP) network. This additional
network is trained independently from the three CNNs.
In this approach CNNs are used as feature extraction
engines operating at different spatial scales, and the MLP

performs the classification based on these features.
The method’s output is the polyp incidence probability
map, which is then processed to locate dominant prob-
ability peaks, as peaks locations and probability values
are returned as the final output of the system. The
training was performed exclusively on the CVC-CLINIC
database.

• OUS: This method is based on the popular AlexNet
model [44] for CNNs and its slight modification Caf-
feNet, which is pre-trained on the ILSVRC 2012 [45]
dataset. Computations are achieved using the Caffe li-
brary [46]. The original model is modified to take input
patches of size 96 × 96, and the kernel size of the
two first pooling layers is decreased from 3 to 2, while
the last pooling layer is removed. The output layer is
modified to give two outputs, polyp or non-polyp. In order
to increase the training examples, data augmentation is
performed in the form of random mirroring, rotation, up-
and down-scaling, cropping, and brightness adjustment.
Final polyp presence or absence was determined by using
a sliding-window strategy, with three scalings for still
frame analysis and two for full video sequence analysis.

• SNU: This methodology proposes a two-step approach:
detection and localization. For both steps, CNNs were
used. Starting from GoogleNet (pre-trained on the Ima-
geNet dataset), a CNN fine-tuning was performed. Input
image is resized to 224x224 pixels prior training and data
augmentation (rotation and scaling) is also performed.
Training set images are augmented by using several
degrees of random rotation and scaling. Detection is con-
sidered as a simple binary classification task whereas, for
localization, CNN are applied on polyp-positive images
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which are then segmented into a uniform-sized 8x8 grid
(64 grids per image). Then, for each image, one grid is
overlaid in black and then CNNs are applied thereafter
to perform the binary classification task. The 64 overlaid
grid images are then sorted by classification score to
calculate final polyps’ position.

3) Hybrid approaches:

• PLS: The proposed full localization scheme consists of
two parts, detection and localization. Regarding detec-
tion, two sets of images, one containing polyps, and
the other without polyps, are used for training. Global
image features [47] are used as they are easy and fast
to calculate. Based on similarity scores between input
frame and training ones and results ranks, the detection
subsystem decides in real-time to which class (polyp or
no polyp) the input frame belongs to.
The localization scheme is implemented as a sequence of
preprocessing filters (RGB to YCbCr color space conver-
sion, removal of borders and sub-images, flare masking
and low-pass filtering) and uses the polyp’s physical
shape to find its exact position, approximating polyps
by elliptical shape regions presenting local features that
differentiate them from surrounding tissues. The final
decision regarding polyp location is taken by means of the
maximum values in the energy map computed using the
elliptical shape of the polyp’s usual appearance. Finally,
the method outputs four possible locations per frame.

• ETIS-LARIB : This method [26] is inspired by the
psycho-visual methodology used by clinicians when per-
forming an endoscopic examination. First, a detection of
the Regions of Interests (ROI) that may contain a polyp
is performed using shape and size image features. This
first pre-selection allows a first and fast scanning of the
image. Due to being circular/elliptical shapes associated
to polyps, a Hough transform was used for this first
filtering stage. Once ROIs are detected, a second analysis,
based on texture is achieved in order to remove those
ROIs with no actual polyp content. To achieve this, an
ad-hoc classifier based on a boosting-based learning pro-
cess using texture features computed from co-ocurrence
matrices (standard Haralick features) is proposed.

• ASU: This method [22] consists of two stages. In the first
stage, a set of polyp candidates is generated using geo-
metric features. Specifically, given a colonoscopy frame,
a crude set of edge pixels is first obtained. This edge map
is then refined using a classification and feature extraction
scheme [48]. The goal of the edge classification scheme is
to remove as many non-polyp boundary pixels as possible
from the initial edge map. The geometry of the retained
edges is then used in a voting scheme that localizes
polyps candidates as objects with curved boundaries
in the refined edge maps. The voting scheme further
estimates a bounding box for each generated candidate
based on the generated voting map. In the second stage,
an ensemble of CNNs -each of them specialized in one
type of features- is applied to each candidate bounding
box [49]. Finally, the outputs of the CNNs are averaged to

generate a confidence score for a given polyp candidate.
Table I shows a summary of the different methods partic-

ipating at MICCAI 2015 Challenge on Automatic Polyp De-
tection. As each method was tested under different conditions,
computation times are given to complete the information on
the training and testing processes.

III. VALIDATION STUDY

We introduce in this section the complete validation study
proposed to assess and compare the performance of different
polyp detection methods.

A. Definitions and general performance metrics

We define Polyp detection as the capability of a given
method to determine polyp presence in a colonoscopy frame
(Polyp presence detection) and, once this is determined, it
is able to provide the location of the polyp within the image
(Polyp localization). Consequently, a good polyp detection
method should select images (video frames) containing polyps
and ignore all others and it should indicate the position of all
polyps present in an image. There are some terms defined
next which are key to set performance metrics. As we deal
with images from real patients examinations, we will find two
different cases: images with polyps and images without polyps.

In the first case, if detection output is within the polyp,
the method is said to be providing a True Positive (TP)
or correct alarm. It has to be noted that only one TP will
be considered per polyp, no matter how many detections fall
within the polyp. Any detection that falls outside the polyp is
considered a False Positive (FP) or false alarm. The absence
of alarm in images with a polyp is considered a False Negative
(FN), counting one per each polyp in the image that has not
been detected. Regarding images without polyps, we define as
a True Negative (TN) whenever the method does not provide
any output for this particular image. Any detection provided
for frames without a polyp counts as a False Positive (FP).
Considering these definitions, we propose the use of the frame-
based performance metrics presented in Table II.

B. Databases

Three different databases are used in the context of the
validation study presented in this paper. Two publicly avail-
able databases were proposed for still frame analysis, CVC-
CLINIC and ETIS-LARIB. CVC-CLINIC [14] contains 612

TABLE II
PERFORMANCE METRICS FOR POLYP DETECTION.

Metric Abbreviation Calculation
Precision Prec Prec = TP

TP+FP

Recall Rec Rec = TP
TP+FN

Specificity Spec Spec = TN
FP+FN

F1-measure F1 F1 = 2×Prec×Rec
Prec+Rec

F2-measure F2 F2 = 5×Prec×Rec
4×Prec+Rec
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TABLE III
CONTENT OF ASU-MAYO CLINIC COLONOSCOPY VIDEO © DATABASE.

Training database Testing database
Video Length Polyp/Total [Res] Video Length Polyp/Total [Res] Video Length Polyp/Total [Res] Video Length Polyp/Total [Res]

1 22 0/682 [712 × 480] 11 10 245/324 [1920 × 1080] 1 19 0/599 [712 × 480] 11 15 338/452 [1920 × 1080]

2 27 0/838 [712 × 480] 12 30 910/910 [1920 × 1080] 2 20 0/625 [712 × 480] 12 4 134/0134 [1920 × 1080]

3 25 0/769 [712 × 480] 13 17 374/519 [1920 × 1080] 3 20 0/628 [712 × 480] 13 10 312/312 [1920 × 1080]

4 23 0/712 [712 × 480] 14 16 391/501 [856 × 480] 4 20 0/607 [712 × 480] 14 60 0/1815 [712 × 480]

5 61 0/1843 [712 × 480] 15 36 1106/1200 [856 × 480] 5 30 693/918 [856 × 480] 15 59 0/1795 [712 × 480]

6 64 0/1925 [712 × 480] 16 11 209/339 [1920 × 1080] 6 40 1218/1218 [856 × 480] 16 54 0/1627 [712 × 480]

7 51 0/1550 [712 × 480] 17 13 234/418 [856 × 480] 7 18 445/555 [712 × 480] 17 60 0/1807 [712 × 480]

8 58 0/1740 [712 × 480] 18 18 189/259 [1920 × 1080] 8 14 335/446 [856 × 480] 18 61 0/1835 [712 × 480]

9 60 0/1802 [712 × 480] 19 20 235/616 [1920 × 1080] 9 13 290/396 [1920 × 1080]

10 54 0/1639 [712 × 480] 20 13 385/410 [856 × 480] 10 60 548/1805 [1920 × 1080]

Standard Definition (SD) frames and comprises 31 different
polyps from 31 sequences. ETIS-LARIB database contains
196 High Definition (HD) frames and comprises 44 different
polyps from 34 sequences. More details on these databases
are presented in Table IV. It has to be noted that all images
contain at least a polyp; both databases were built to cover
as many different polyp appearances as possible. Ground
truth consisting of a polyp mask was generated using the
same procedure for both databases: Images were annotated by
expert videoendoscopists from the corresponding associated
clinical institution. These experts (one per hospital) were
asked to outline the boundaries of any polyps present in the
image. These boundaries are used to generate a binary mask
representing the actual polyp area within the image, also to
be used for validation purposes. Examples from these two
databases are shown in the first two columns of Fig. 1.

The ASU-Mayo Clinic Colonoscopy Video © Database
[22] comprises a set of short and long colonoscopy videos, col-
lected at the Department of Gastroenterology at Mayo Clinic,
Arizona. This database consists of 38 different, fully annotated
videos. The videos were selected to display maximum varia-
tion in colonoscopy procedures including different resolutions
and examination strategies (careful vs. fast inspection) and
also include frames containing biopsy instruments or device
information. Ground truth consisting of binary masks (polyp
frames) and black frames (non-polyp frames) were created by
volunteer students at Arizona State University and have been
reviewed and corrected by a trained expert. Table III outlines
information about the videos in that database, including for
each video duration in seconds (Length), number of frames
with polyps and the total number of frames (Polyp/Total) and
the image resolution (Res). An example from this database is
shown in the third column of Fig. 1.

TABLE IV
SUMMARY OF CONTENT OF STILL FRAME VALIDATION DATABASES. SD

STANDS FOR STANDARD DEFINITION, HD STANDS FOR HIGH DEFINITION.

Database Purpose Institution Content Device

CVC-CLINIC Training

Hospital
Clinic,
Barcelona,
Spain

612 SD frames
(388 × 284)
from 31
sequences

Olympus
Q160AL and
Q165L, Exera II
videoprocessor

ETIS-LARIB Testing

Lariboisière
Hospital,
Paris,
France

196 HD frames
(1225 × 966)
from 34
sequences

Pentax 90i se-
ries, EPKi 7000
videoprocessor

C. Statistical analysis

In order to account for statistically significant differences
in performance between methods, we propose first to perform
a Saphiro-Wilk test to find out whether the available data
follows a normal distribution or not. In the first case (normal
distribution) statistically significant differences across methods
will be assessed using an analysis of variance (ANOVA) to
detect differences regarding proposed metrics. In the second
case (no normal distribution), the Kruskal-Wallis test will be
used. All tests are done at a confidence level 1− α = 0.95.

Considering the scope of the analysis presented in the paper,
the metric that will be used to compare different methods will
be F1-score, as it presents a balance between missed polyps
and false alarms. We perform a statistical study of this metric
only in videos with polyp (and potentially non-polyp) frames,
as the number of samples in the still-frame analysis is not big
enough to provide with statistically relevant conclusions and
the analysis in videos with no polyps would cause the F1 score
to be zero for all methods. We also perform statistical analysis
of detection latency but, for the sake of a proper statistical
comparison, this analysis is only done for those teams which
detect the polyp in all sequences.

D. MICCAI 2015 Sub-challenge validation study

Two different scenarios were presented to the participants
of the challenge: (i) still frame analysis and (ii) full video
analysis. In the following, we present specific information of

(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the content of the CVC-CLINIC (first column), ETIS-
LARIB (second column) and ASU-Mayo Clinic (third column) databases.
The first column shows the original images with the corresponding reference
polyp contour shown as a blue line and the second contains binary masks
representing the ground truth
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the two presented scenarios, including validation databases and
performance metrics used in each of them.

1) Still frame analysis: The objective of this analysis was to
explore localization capabilities of a polyp detection method.
We aim to test how different methods perform in challenging
high-definition (HD), high-quality images showing great vari-
ability in polyp appearances. In this case, each image contains
at least one polyp and images have been selected in order to
have shots in which polyp appearance can be mistaken with
other elements of the scene (folds, vessels).

Two different databases were used in this study: CVC-
CLINIC is used for the training stage whereas ETIS-LARIB
is used during the testing stage. Participating methods are
compared using performance metrics exposed in Table II.
Additionally, in case a given method provides confidence
values a Precision-Recall curve is also provided otherwise the
operating point will represent its performance.

2) Video analysis: In this second scenario we aim to
explore full polyp detection capabilities (localization and pres-
ence detection) of a given method in full sequences from
actual colonoscopy procedures. In this case, polyp detection
methods have to deal, apart from appearance variability, with
potential polyp presence or absence in each image and,
moreover, with variability in image quality (blurring, bowel
preparation). Additionally, the videos in the second scenario
may contain images with extra-endoluminal elements such as
device information or surgical instruments. We also have to
consider that, as in real procedures, nor all the sequences or
all the frames contain a polyp.

The ASU-Mayo Clinic Colonoscopy Video © Database
was used in this experiment. Apart from using common
performance metrics exposed in Table II, we proposed an
additional performance metric to assess whether how fast
a given detection method reacts to polyp presence. In this
context, Detection Latency (DL): DL = first_detection−
first_appearance represents the delay in frames between
the first appearance of the polyp in the video sequence
(first_appearance) and the first actual detection of the
polyp by a method (first_detection). Considering this, a
clinically useful support system should have a DL close to
zero. Finally we also provide with Receiver Operating Curves
(ROC), though again, each method’s representation depends
on whether they provide detections’ confidence values or not.

From a general organization perspective, all teams taking
part in the challenge were to use the same data for both their
training and testing stages. Participants were provided with
labelled training data on June 15th whereas unlabelled testing
data (still frames and full sequences) was released on July
24th. In order to take part in the challenge, each participating
team was asked to provide a unique CSV file for the analysis
of the ETIS-LARIB database and/or one CSV file for each of
the 18 testing videos in the ASU-Mayo database, depending on
the sub-category the team would take part in. Each row in the
CSV file represents a detection candidate region. Additionally,
teams could also provide a confidence value (value between 0
and 1) for the performance curves drawing purposes, though
this was not mandatory. Finally, though 8 different teams
took part in the challenge, not all of them participated in all

(a) (b) (c)

Fig. 2. Synthetical examples of different ways to perform a combination
of methods: (a) original image; (b) result of combination by union, and (c)
result of combination by saliency map creation. Outputs from different teams
are represented by different colors and shapes. In all images, the contour of
the polyp is represented as a blue curve.

categories. ASU did not take part in the still-frame analysis
sub-category whereas ETIS-LARIB and UNS-UCLAN did not
take part in the video analysis one.

E. Additional validation experiments

1) Combination of methods: In this study we propose to go
beyond the analysis of individual methods by providing quan-
titative elements on how potential combinations of some of the
presented approaches may lead to an improved performance.
Inspired by [50], we have studied two options of fusing the
methods, namely: 1) combination by union and 2) saliency
map creation.

The first one consists of adding, for a particular frame, the
outputs from all submitted methods. Saliency maps creation
proposes a combination of the output of the methods in order
to generate heat maps which aim to represent those areas in the
image where most of the methods coincide in their decision
regarding polyp location, following the methodology proposed
in [14]. We show in Fig. 2 a graphical comparison between
both strategies.

In this case, we treat the output of each method as a
’fixation’ or vote, and we create saliency maps from this set of
discrete fixations/votes. These fixation points are interpolated
by a Gaussian function to build up the final saliency map for
a given image as follows:

s (x, y) =
1

N

N∑
n=1

1

2πσ2
s

.exp

(
−
(
x− xfn

)2
+
(
y − yfn

)2
2σ2

s

)
,

(1)
where: x and y denote, respectively, the horizontal and vertical
positions of a given image pixel; xfn and yfn represent the hor-
izontal and vertical coordinates of a detection point (fixation);
N indicates the total number of detected points and finally
σs denotes the standard deviation of the Gaussian function,
determined as proposed in [14]. We determine the location of
the global maximum of the saliency map as the final output
of the combination of methods for a particular frame.

Two versions of saliency map creation have been imple-
mented: (saliency by union) calculates the saliency maps for
each frame considering all the methods that have provided any
output whereas (saliency voting) only calculates the saliency
maps if the majority of the teams in the studied combination
provide an output for the specific frame.

We provide results for each combination strategy in the two
challenge scenarios (still frame analysis and video analysis)
using the same frame-based performance metrics.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Examples of the 8 technical and clinical challenges selected for the study: (a) Presence of overlay information; (b) High presence of specular
highlights; (c) Overexposed regions; (d) Intestinal content; (e) Luminal region; (f) Polyp cannot be seen completely in the image; (g) Specular highlights
within the polyp and (h) Impact of low visibility quality

2) Impact of image challenges on method’s performance:
This experiment aims to study the impact of some of the
technical and clinical challenges reported in Section I over the
performance of a polyp detection method. In order to study
this, we proposed clinicians and computer scientists from the
contributing teams to define the main image challenges present
in colonoscopy frames that were to be studied. The following
ones were selected: 1) Presence of overlay information in
images (including patient information and camera shots); 2)
Presence of specular highlights; 3) Appearance of overexposed
regions; 4) Occurrence of intestinal content (fecal particles,
bubbles); 5) Presence of the luminal region; 6) Lack of
visibility of the whole polyp in the image; 7) Presence of
specular highlights within the polyp region and 8) Images with
low visibility (due to blurring or excessive intestinal content).
Fig. 3 shows examples of each of the challenges.

A graphical user interface was built for experts to label
individually each frame from the testing videos of ASU-
Mayo Clinic Colonoscopy Video © Database according
to the mentioned image challenges. For the sake of statistical
representativeness of the results, we did not perform the same
experiment for ETIS-LARIB database due to its smaller
size.As some of them may lead to subjective interpretations
we collected three different annotations per frame and the final
decision of a frame for each challenge was taken by majority
voting from the three experts. We present statistics about the
presence of the different image challenges in Table V.

We can observe how roughly half of the frames contain a
high number of specular highlights, some degree of intestinal
content and overexposed regions. Regarding polyp frames,
which equate to a 25% (4313) of the frames, we can observe
that about a 30% of them (1360) do not show completely the
polyp and that nearly all of them (3959) present specularities
within the polyp region. Finally, it is interesting to mention
that more than a 70% of the images were considered of low
visibility quality, which indicates how the methods are tested
in clear challenging conditions.

Once we have final annotations, we broke down the methods
performance analysis into two groups: frames with polyps

and frames without polyps. For the first case, we analyze
differences between performance for frames with and without
a specific image challenge regarding Precision, Recall and F1-
score whereas for the second the same kind of analysis was
done regarding Specificity score.

3) Impact of polyp morphology on methods’ performance:
This experiment assesses whether methods’ performance de-
pends on the polyp morphology. This analysis examines if
the methods perform differently for polyps with different
associated morphological type. Such analysis could be useful
to check whether existing methods are able to cope with
different morphologies as well as determining which method
to choose if a given morphology is predicted before the
examination. In order to study these potential differences in
performance, we propose to categorize each of the polyps that
appear in the testing databases using the Paris classification
criteria [51]. We show graphical examples of each type in
Fig. 4.

To account for differences in performance related to polyp
morphology we will use Precision, Recall and F1 scores as
defined in Table II. We also study differences in latency score
for the case of video sequences analysis.

4) Temporal coherence on method’s response: One capabil-
ity that a computational method should have when dealing with
video analysis is temporal stability in its response. That is, if a
given method detects a polyp in a given frame and considering
normal camera movement, its output for the following frame

TABLE V
BREAKDOWN OF CLINICAL AND TECHNICAL CHALLENGES WITHIN

ASU-MAYO TEST DATABASE.

Challenge Number of frames Challenge Number of frames

Overlay
information 517[02.94%]

Massive specular
highlights
presence

8638[49.15%]

Overexposed
regions 8270[47.05%] Intestinal content 10013[56.97%]

Visible
luminal region 4963[28.24%]

Images showing
an incomplete
polyp

3286[18.69%]

Specular
highlights
within polyp

93[19.88%] Low visibility 12788[72.67%]
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Fig. 4. Graphical representation of Paris classification of endoscopic polyps.
M stands for mucosa, MM for muscularis mucosa and SM for submocusa.

should provide a relevant detection. As we can observe in the
example shown in Fig. 5, none of the methods presented in the
challenge incorporated per se temporal stability capabilities in
their methodologies but we consider that it is important to
assess up to what extent they provide this kind of stability.
Moreover, and as a consequence of this stable temporal output,
the method should provide with correct detection in the
majority of the frames in which the polyp appears.

In order to study this we perform two evaluations. Regarding
detection stability in consecutive frames, for each testing video
from ASU-Mayo Clinic Colonoscopy Video © Database
that contained a polyp, we extracted the pairs of consecutive
frames containing a polyp. We analysed methods’ output
for each pair of consecutive polyp frames and calculated as
metric the percentage of these pairs in which the method
provided correct output - detection inside the polyp mask -
for both frames. With respect of overall detection stability in a
sequence, we study Recall scores over the different sequences,
analyzing mean and standard deviation values to account for
intra and inter-sequence stability on detection performance.

5) Analysis of the direct output of the methods: As men-
tioned in Section III-D, participating teams were only asked
to provide CSV files indicating detection output for the testing
frames (x and y position). This file is created from the output
of the different methods and we propose here to analyze this
actual output. As a first study, we asked the teams participating
in the still frame analysis challenge sub-category to provide

Fig. 5. Example of non-temporal coherence of polyp detection methods.
The example represents the performance of the CVC-CLINIC method for the
testing video 6 of ASU-Mayo Clinic Colonoscopy Video © Database. Image
at the top shows ground polyp presence per frame (1 is polyp, 0 is no polyp)
whereas bottom image shows detection score (1 correct, 0 no correct).

their actual output for each frame of ETIS-LARIB database.
In this context, we foresee the output of a method to be

interpreted as a likelihood or heat map, in which brighter
(hotter) areas of the image represent parts of the image more
likely to contain a polyp. By analyzing these maps, we could
observe up to what extent method’s attention is only focused
on the polyp. To measure this, we propose Concentration
Ratio (CR) to compare these maps as proposed in [14]; CR
measures, for each frame, the rate of total energy in the image
(calculated as the sum of the each pixel’s value from the
energy map image) falling within the polyp. High CR values
are interpreted as a method actually focusing on the polyp,
being lower values related to sparser energy maps.

IV. RESULTS

In this section, we present the performance achieved by
each method in the several experimental studies proposed in
the paper, including those part of the MICCAI 2015 Sub-
Challenge on Automatic Polyp Detection in Colonoscopy.

A. MICCAI 2015 Challenge Results

We present main still frame analysis results in both Fig.
6 (a) and in Table V. CUMED offers the best performance
in all metrics evaluated, being the team which detected the
most polyps (144) frames along with providing the lowest
number of false alarms (55). The comparison between the
performance of CNN-based approaches shows the importance
of specific network configuration, as relevant differences in
both number of detected polyp frames and false alarms can
be observed - for instance, the number of detected polyp
frames falls into a range between 131 (OUS) and 20 (SNU) -.
Finally we can observe a performance gap between end-to-end
learning and hybrid/hand-crafted methods, which provide less
correct detections and significantly more false alarms. It has
to be noted that as PLS provides four locations per image, the
number of false alarms for this method is inherently higher
than for other methods.

Considering full video analysis, the study shows superior
performance by CNN-based methods -see Table VII and in
Fig. 6 (b)- , with CUMED being the method providing a higher
number of polyp frames detected (3081). In this case, it has to
be noted that CUMED does not outperform all other methods

TABLE VI
SUMMARY OF STILL FRAME ANALYSIS RESULTS.

TP FP FN Prec Rec F1 F2

Individual team analysis
CUMED 144 55 64 72.3 69.2 70.7 69.8
CVC-CLINIC 102 920 106 10.0 49.0 16.5 27.5
ETIS-LARIB 103 1373 105 6.9 49.5 12.2 22.3
OUS 131 57 77 69.7 63.0 66.1 64.2
PLS 119 630 89 15.8 57.2 24.9 37.6
SNU 20 176 188 10.2 9.6 9.9 9.7
UNS-UCLAN 110 226 98 32.73 52.8 40.4 47.1

Combination of teams analysis
Best concatenation re-
sult (all teams) 188 3410 20 5.2 90.4 9.9 21.2

Best saliency result
(CUMED, OUS) 159 38 49 80.7 76.4 78.5 77.2

Best saliency voting
(CUMED, OUS) 159 38 49 80.7 76.4 78.5 77.2
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TABLE VII
SUMMARY OF THE MOST RELEVANT RESULTS REGARDING VIDEO SEQUENCE ANALYSIS.

All videos
TP FP TN FN Prec [%] Rec [%] Spec [%] F1 [%] F2 [%]

Individual team analysis
ASU 2636 184 13149 1677 93.5 61.1 98.6 73.9 65.7

CUMED 3081 769 13010 1232 80.0 71.4 94.4 75.5 73.0
CVC-CLINIC 1578 3456 10927 2735 31.3 36.6 75.9 33.8 35.4

OUS 2222 229 13245 2091 90.6 51.5 98.3 65.7 56.4
PLS 1594 10103 12258 2719 13.6 36.9 54.8 19.9 27.5

SNU(Only videos with polyps) 721 3285 1140 3592 17.9 16.7 25.7 17.3 16.9
Combination of teams analysis

Best concatenation result (all teams) 3576 14741 10064 737 19.5 82.9 40.6 31.6 50.3
Best saliency result (all teams) 3294 4070 10064 1019 44.7 76.4 71.2 56.4 66.9

Best saliency voting result (ASU,CUMED) 3316 557 12915 997 85.6 76.8 95.9 81.0 78.4
Videos with frames with and without polyp

TP FP TN FN Prec Rec Spec F1 F2
Individual team analysis

ASU 1218 92 1864 1431 92.9 45.9 95.3 61.5 51.1
CUMED 1439 600 1692 1210 70.6 54.3 73.8 61.4 57.0

CVC-CLINIC 195 1343 1430 2454 12.7 7.4 51.6 9.3 8.0
OUS 651 55 1914 1998 92.2 24.6 97.2 38.8 28.8
PLS 328 6953 920 2321 4.5 12.4 11.7 6.6 9.2
SNU 282 2085 1140 2367 11.9 10.6 35.3 11.2 10.9

Combination of teams analysis
Best combination by union (all teams) 1949 11128 493 700 14.9 73.6 4.2 24.8 41.2

Best saliency by union (all teams) 1588 2557 493 1061 38.3 59.9 16.2 46.7 53.9
Best saliency voting result (CUMED,ASU) 1698 439 1649 951 79.4 64.0 79.0 70.9 66.7

Videos with only polyp frames
TP FP TN FN Prec Rec Spec F1 F2

Individual team analysis
ASU 1418 40 no 246 97.2 85.2 N/A 90.8 87.4

CUMED 1642 149 no 22 91.7 98.7 N/A 95.0 97.2
CVC-CLINIC 1383 272 no 281 83.5 83.1 N/A 83.3 83.2

OUS 1571 167 no 93 90.4 94.4 N/A 92.3 93.6
PLS 1266 3150 no 398 28.7 76.1 N/A 41.6 57.2
SNU 439 1200 no 1225 26.8 26.4 N/A 26.6 26.5

Combination of teams analysis
Best combination by union (all teams) 1664 4978 N/A 0 25.0 100.0 N/A 40.0 62.6

Best saliency by union (all teams) 1662 2 N/A 2 99.8 99.8 N/A 99.8 99.8
Best saliency voting (all teams) 1662 2 N/A 2 99.9 99.9 N/A 99.9 99.9

Videos without polyp frames
TP FP TN FN Prec Rec Spec F1 F2

Individual team analysis
ASU N/A 52 11286 N/A N/A N/A 99.5 N/A N/A

CUMED N/A 20 11318 N/A N/A N/A 99.8 N/A N/A
CVC-CLINIC N/A 1841 9497 N/A N/A N/A 83.8 N/A N/A

OUS N/A 7 11331 N/A N/A N/A 99.9 N/A N/A
PLS N/A 0 11338 N/A N/A N/A 100.0 N/A N/A

Combination of teams analysis
Best combination by union (all teams) N/A 1920 9454 N/A N/A N/A 83.2 N/A N/A

Best saliency by union (PLS,OUS) N/A 20 11318 N/A N/A N/A 99.8 N/A N/A
Best saliency voting (CUMED,PLS,OUS) N/A 0 11338 N/A N/A N/A 100.0 N/A N/A

in all considered metrics, as ASU provides a better balance
between true and false alarms (higher F1-score) at the cost of
detecting less polyp frames (2636 vs. 3081).

We present in Table VII a complete breakdown of video
analysis results, dividing them into 3 groups according to
the degree of polyp presence in the sequences: 1) videos
containing frames with and without polyps; 2) videos con-
taining only frames with polyps, and 3) videos containing
non-polyp frames. In all cases, results again show a superior
performance of CUMED in terms of total number of polyp
frames detected. Deepening the analysis, we observe a de-

crease in the difference in performance observed in global
analysis between hand-crafted methods (CVC-CLINIC) and
CNN-based methods when videos with only polyp frames are
analyzed. This can be related to those methods being designed
to highlight polyp-like structures in the image (localization)
but not for determining specific polyp presence. The analysis
of sequences without polyp frames shows that PLS offers the
best performance, which is possibly due to the presence of a
specific polyp presence module in this approach.

As mentioned in Section III-C, a statistical analysis is
performed to account for differences in performance between
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(a) (b)

Fig. 6. Performance curves: (a) Precision-Recall curve for the analysis of the ETIS-LARIB database and (b) Receiver Operating Characteristic (ROC curves)
for the analysis of the ASU-Mayo database. For the ROC curve, SNU operating point is calculated from the videos the team provided results for. Methods
are represented with a line in cases where the confidence value has been provided for each detection, otherwise the operating point is used.

methods. Results of the Saphiro-Wilk test over the F1 results
for each video and method indicates a normal data distribution
(p−value > 0.05). Considering this, we perform a subsequent
ANOVA analysis and multicomparison test to compare the
different methods. The ANOVA test detects significant dif-
ferences across F1 values (p − value = 5.4e−10), which are
explored in the multicomparison test shown in Fig. 8. Results
of this test show the superior performance of ASU, providing
CUMED with a comparable performance different from the
rest in a statistically significant way. CUMED and OUS also
show performances comparable to each other. Finally CVC,
PLS, and SNU also present comparable performances.

We present in Fig. 7 detection latency results. We can
observe how there are only two teams (ASU and CUMED)
which present latency scores for all the videos. We perform a
statistical analysis to account for the differences between them.
The result of the Saphiro-Wilk test indicates a non-normal
data distribution (p − value < 0.05) and, consequently, the
Kruskal-Wallis test is performed to account for statistically
significant differences. In this case the test confirms the
null hypothesis that both data samples come from the same
distribution p−value = 0.76, which can be observed in Fig.8.
Concerning the rest of the methods, we can observe that they
do not detect the polyps in all the videos which is also a cause
of the difference in performances shown in Table VII.

Fig. 7. Detection latency for polyp-containing videos.

B. Additional validation experiments

1) Combination of methods: We have included in Table
IV-A and in Table VII the best performance achieved after
applying each of the proposed method combination strategies.
The most important though logical conclusion extracted is that
a combination of methods leads to better detection results. As
expected, any combination of methods leads to an increase of
the total number of detected polyps. This shows that different
methods detect different polyps and that even those with lower
performance can contribute positively to the overall detection.

We can observe in Fig. 9 (d-f) that if we do not include
all teams in the combination, the number of correct polyp
frame detections could be affected. We can also observe in
Fig. 9 (a-c) that the combination of the two best methods in
each category surpasses the individual methods’ performance,
which indicates the potential of saliency map methods to build
up more reliable systems. It is clear that the combination by
union strategy increases the total number of detected polyp

Fig. 8. Multicomparison test for the analysis of the F1 score in videos
showing frames with and without polyps. Each method is represented as
a horizontal line whose center is located in corresponding method’s mean
F1 score and whose width corresponds to the variance calculated according
anova1 fit model. The best ranked group is represented by a blue horizontal
line, comparable methods are shown in grey, and methods that are different
in a statistically significant way are shown in red.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Examples of the benefits of using a saliency-map-based approach.
The first row shows the impact of combining the two best methods that
surpass their individual performances: (a) original image; (b) saliency map
with the position of detection points superimposed (best method, CUMED);
(c) saliency map with the position of detection points superimposed (two
best method, CUMED and OUS). The second row shows the positive impact
of the worst performing method: (d) original image; (e) saliency map with
the position of detection points superimposed (all method); (f) saliency map
with the position of detection points superimposed (all method but SNU).
The polyp contour is represented in blue. Each method is represented by a
different color and shape.

frames at the cost of vastly increasing the number of false
alarms and, consequently, other strategies should be explored
to achieve a clinically useful system.

Considering this, we observe that the use of saliency maps
leads to a better balance between correct and false alarms.
Regarding the two saliency-map sub-strategies, the voting
strategy leads to a slightly better performance for the case
of still frame analysis, specifically observed in the reduction
of FP. This can be explained as being due to those poorly
performing methods providing outputs for almost all frames.
Once their contribution is not considered as majority is not
achieved for a particular frame, these false alarms vanish.

Taking into account these results, if we consider a potential
combination of methods as the solution for polyp detection,
we would propose saliency maps with a voting sub-strategy
as the strategy that leads to a better compromise between
correct detections and false alarms, though other potential
combinations can be explored. For instance, we can think of
a system which also includes the specific detection modules
that some approaches have presented here (PLS, SNU), with
polyp localization within a given image being then obtained
using CNN-based approaches (CUMED, OUS).

2) Impact of image challenges on individual methods’
performance: We present in Table VIII a summary of the
results of the experiment assessing the impact of several image
challenges on individual methods’ performance. With respect
to polyp frames, the first conclusion to be extracted is that
low visibility images and the presence of specular highlights
within the polyp affect all methods in the same way. We
interpret the impact of image quality as being both mucosa
wall and its elements, such as polyps, better visually defined
in good visibility images hence helping in polyp detection. We
associate the positive impact of specular highlights inside the
polyp to polyps appearing commonly as protruding elements
in the scene and, as a consequence of this, specularities appear
in their surface as their reflect light back to the camera [52].

There are some image challenges that generally seem to
make polyp frames detection difficult such as the presence of
overlay information and overexposed regions, with the latter
being more prevalent in the explored images. The clear view
of the luminal region also negatively affects detection capabil-
ities, which we interpret as result of lumen presenting strong
boundaries and contrast in comparison with the mucosa, which
is a feature that polyps also exhibit. Surprisingly, the presence
of intestinal content affects positively Recall and F1-score;
this could be explained by the fact that this image challenge
appears clearly different from polyps (weak contours, different
color). Finally, the degree of completeness of the polyp seems
to present a low impact on the performance of the methods,
specially regarding F1-score.

Regarding non-polyp frames, we can observe that the pres-
ence of overlay information and overexposed regions helps
methods to discard frames without a polyp. Intestinal content
leads to more false alarms, as does the presence of the luminal
region and the presence of specular highlights; the three of
them may falsely indicate the presence of a polyp, as the may
also present contrast to mucosa or an indication of protrudness.
We can also observe how methods tend to provide a higher
number of false alarms for good quality images, which we
interpret as a result of structures likely to be confused with
polyps being better visually defined.

With respect to individual methods, we observe that those
including boundary information (ASU, CVC-CLINIC and
SNU) in their methodologies are specially damaged by the
presence of structures with strong boundaries such as lumen
or overlay information. End-to-end learning approaches are
less affected in non-polyp frames analysis and they benefit
from the presence of specular highlights in polyp frames.

3) Impact of polyp morphology on methods’ performance:
We present in Table X and in Table IX results of the study on
the impact on polyp morphology on method’s performance.
It has to be noted that we only provide results for the mor-
phologies that appear in each particular database, as described
in Section III. We can observe that for both still frames and
video sequences analysis, methods’ performance do depend
on polyp morphology. With respect to still frame analysis, we
can observe that Recall scores are higher for sessile polyps
(including sub-types 0-ISp and 0-IIa+Is) than for those less
elevated (including flat) ones. We associate this to appearing
sessile polyps more different to the mucosa and hence attract-
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TABLE VIII
IMPACT OF CLINICAL AND TECHNICAL CHALLENGES ON INDIVIDUAL METHODS’ PERFORMANCE.

Clinical and Technical Challenges

Team Overlay
information

High specular
highlights
presence

Overexposed
regions

Intestinal
content

Luminal
region

Incomplete
polyp

Specular
highlights
inside polyp

Low visibility

Polyp frames: Recall [differences in %]

ASU -14.3 48.2 -10.2 7,7 -11.10 -0.2 43.5 -11.9
CUMED -3.9 42.1 -24.7 8.3 -17.1 -1.3 23.0 -30.1
CVC-CLINIC -28.8 24.7 -20.7 28.9 -35.5 3.4 26.9 -11.6
OUS -27.3 49.6 -31.3 18.8 -21.4 15.9 41.0 -14.1
PLS -12.0 21.3 -3.7 28.4 -16.1 1.0 35.3 -13.4
SNU -18.5 13.9 -2.1 2.5 -10.7 -2.5 14.8 5.6

Polyp frames: F1-score [differences in %]

ASU -11.1 50.8 -8.4 5.5 -8.2 0.3 43.5 -9.3
CUMED -18.6 32.1 -28.0 8.3 -16.9 1.1 16.3 -18.0
CVC-CLINIC -31.6 23.3 -23.4 30.3 -40.8 1.0 27.9 -13.1
OUS -25.6 58.9 -30.4 15.0 -16.1 13.0 44.2 -11.9
PLS -7.4 20.2 -5.1 18.7 -15.1 2.5 25.9 -4.0
SNU -20.6 15.3 -1.9 3.2 -12.9 -4.1 15.6 6.6

Non-polyp frames: Specificity [differences in %]

ASU 0.8 -0.4 0.5 -0.7 -0.5 N/A N/A 0.3
CUMED -7.9 -1.2 2.6 0.1 -3.6 N/A N/A 4.8
CVC-CLINIC -63.8 -26.0 12.5 -24.5 2.1 N/A N/A 32.7
OUS 0.1 -0.2 -0.1 -0.1 -0.1 N/A N/A 0.1
PLS 13.7 -3.9 28.2 -17.0 -32.2 N/A N/A 42.5
SNU 40.8 5.6 -15.7 -14.6 17.9 N/A N/A 20.9

ing the attention of the different methods. We can also observe
how CVC-CLINIC and ETIS-LARIB , despite offering worse
overall performance, are able to detect all kind of polyps
though they obtain worse Precision scores.

Concerning video sequences, differences regarding degree
of polyp elevation follow the same trend; in this case we
can observe big differences in Recall for all methods but, in
this case, Precision is not greatly affected but for the case
of CVC-CLINIC, which is logical due to its big dependence
on boundary presence to guide polyp detection; boundaries
between mucosa and the polyp are less distinguishable for the
case of slightly elevated polyps. Finally, this positive increase
in Recall score associated to sessile polyps also has an impact
in latency score; all teams achieve smaller latency scores for
those videos containing polyps of this morphological type
(videos 2, 6, 8 and 9) in Fig. 7.

4) Temporal coherence on method’s response: We present
results of our temporal coherence study on Table XI(a). For
both consecutive frame and within sequence detection stability,
we can observe that results follow the same trend than the
analysis of individual frames, being CUMED and ASU the

TABLE IX
IMPACT OF POLYP MORPHOLOGY IN METHODS’ PERFORMANCE: VIDEO

SEQUENCE ANALYSIS. ONLY FRAMES CONTAINING A POLYP ARE
CONSIDERED FOR METRICS CALCULATION.

0-Is (4 polyps, 2212 images) 0-IIa (5 polyps, 2101 images)
Prec Rec F1 Lat Prec Rec F1 Lat

ASU 97.4 73.7 83.9 0.5 97.2 47.9 64.1 13.4
CUMED 92.1 86.8 89.4 0.0 77.3 55.3 64.4 16.8
CVC-CLINIC 81.9 62.5 70.9 0.3 19.3 9.3 12.5 46.7
OUS 90.9 77.6 83.7 0.0 92.1 24.1 38.2 18.7
PLS 24.6 62.6 35.3 3.5 10.2 9.9 10.1 46.0
SNU 26.6 23.3 24.9 79.0 15.9 9.7 12.1 42.4

teams which present a higher degree of temporal coherence,
despite none of them including temporal information as part
of their methodology. We can also observe how CUMED and
ASU are able to correctly detect polyp frames in more than
half of the polyp frames that each sequence contain, which
can be associated to them being more capable to cope with
polyp appearance variability within a same sequence.

5) Analysis of the direct output of the methods: We present
mean and standard deviation values of CR in Table XI(b). As
we can observe, CUMED achieves the higher mean CR value
across all frames from ETIS-LARIB database, concentrating
around half of the total energy of the image inside the polyp. It
has to be noted that, in this case, differences between methods
can be associated to several reasons. First of all, it is clear
that methods detecting correctly more polyps will be prone
to concentrate more energy inside them hence the superior
performance of CUMED, which was the best performing team
in still frame analysis. Second, we also have to consider how
the actual output of the method looks like, as it can have an
impact in the specific metric considered.

We observe in Fig. 10 how some methods do not provide
probabilistic energy maps but binary masks approximating
the polyp region. Due to these regions having pre-determined
shapes, two problems may appear. First, it is highly unlikely
that actual polyps fit those shapes, so that any pixel-wise
metric value can be damaged by the shape choice. Second,
if methods’ evaluation is based on the calculation of detection
scores from single-position values and this position is calcu-
lated as the centroid of the pre-determined shape in case of
large regions partially covering the polyp, it may happen that
the detection position falls outside the polyp when in fact part
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TABLE X
IMPACT OF POLYP MORPHOLOGY IN METHODS’ PERFORMANCE: STILL FRAME ANALYSIS.

0-Is (27p,127im) 0-IIa (9p,45im) 0-IIb (4p,6im) 0-IIa+c (2p,6 im) 0-Isp (1p,6im) 0-IIa+Is (1p,6im)
Team Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
CUMED 79.5 79.5 79.5 57.4 60.0 58.7 33.3 11.1 16.6 42.8 50.0 46.1 100.0 100.0 100.0 83.3 83.3 83.3
CVC-CLINIC 7.7 44.8 13.1 10.4 48.9 17.1 35.7 27.8 31.2 42.8 100.0 60.0 66.6 100.0 80.0 18.2 100.0 30.7
ETIS-LARIB 5.4 50.4 9.7 13.9 46.6 21.4 6.7 22.2 10.4 75.0 50.0 60.0 11.6 83.3 20.4 18.2 100.0 30.7
OUS 67.3 76.4 71.6 66.6 40.0 50.0 0.0 0.0 0.0 100.0 66.6 80.0 100.0 100.0 100.0 85.7 100.0 92.3
PLS 15.3 58.3 24.2 15.0 60.0 24.1 0.0 0.0 0.0 33.3 100.0 50.0 28.6 100.0 44.4 25.0 100.0 40.0
SNU 11.8 11.8 11.8 4.4 4.4 4.4 0.0 0.0 0.0 16.6 16.6 16.6 0.0 0.0 0.0 33.3 33.3 33.3
UNS-UCLAN 24.2 74.0 36.5 15.3 55.5 24.0 0.0 0.0 0.0 75.0 100.0 85.7 75.0 100.0 85.7 33.3 100.0 50.0

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Comparison of energy maps provided by each method: (a) original
image (b) CUMED (c) CVC-CLINIC (d) PLS (e) UNS-UCLAN (f) ETIS-
LARIB (g) OUS,s and (h) SNU. In each of the images, a green line represents
the reference polyp mask.

of the polyp region was covered by method’s output.
Consequently, we think it is not fair to include those meth-

ods (ETIS-LARIB, OUS and SNU) in a CR-based comparison.
We did statistically compare the different energy map-based
methods. Preliminary results shown in Fig. 11 indicate again
a superior performance of CUMED over the rest. Regarding
the statistical significance of the differences, the Saphiro-
Wilk test over CR values indicates a normal distribution
of data. Therefore ANOVA and multicomparison tests are
performed to study potential differences across methods. The
ANOVA test detects significant differences across CR values
(p − value = 2.51e−61), which are explored in the multi-
comparison test shown in Fig. 11. CUMED’s performance is
statistically different from the rest of the approaches, which
present comparable performances between them.

V. DISCUSSION

A. Impact of the methodology used on method’s performance

The main result of this comparative study is that methods
including some degree of machine learning outperform classic

TABLE XI
TEMPORAL COHERENCE AND CONCENTRATION RATIO RESULTS. FOR

EACH METHOD, MEAN AND STANDARD DEVIATION VALUES OF
CORRESPONDING METRIC ARE PROVIDED.

(a) Temporal Coherence

Method Consecutive
frames

Within
sequence

ASU 54.8 ± 21.4 61.2 ± 21.9
CUMED 63.7 ± 23.9 67.7 ± 23.2
CVC-
CLINIC 34.1 ± 37.6 30.3 ± 37.0

OUS 48.7 ± 30.8 47.2 ± 34.1
PLS 27.4 ± 26.1 31.7 ± 30.4
SNU 10.2 ± 06.3 11.7 ± 11.7

(b) Concentration Ratio
Method Value
CUMED 48.5 ± 26.7
CVC-CLINIC 17.9 ± 24.1
PLS 11.9 ± 14.4
UNS-UCLAN 18.7 ± 18.8

hand-crafted methods, specially regarding specificity scores
in non-polyp videos. This correlates with the trend actually
observed on computer vision research; methods traditionally
were hybrid, using hand-crafted features and machine learning
to classify a given input image according to the specific
problem to solve. There is an extensive amount of hand-crafted
features defined within the computer vision community, cover-
ing from general ones such as HOG or SIFT features to others
more domain-specific, such as the ones presented by CVC-
Clinic team. Designing hand-crafted features to solve specific
problems can be complicated and highly time consuming,
as well as limiting the widespread use of a new developed
technology.

CNNs allow to learn jointly problem-specific features and
the classifier to differentiate among classes. Their great power
comes from the ability of learning problem-specific features
in an increasing depth of complexity and abstraction. As
it has been shown in this paper, we can observe a supe-
rior performance of CNN-based approaches over hand-crafted
methods. We can also observe differences in performance
between CNN-based methods which shows how obtaining
good performance of these networks depends strongly on
defining the proper architecture and having quality data to
feed the network. Regarding the design of the network, there
are several details to take into account which go from pure
architecture decisions (number of layers, number and size of
the filters of each layer or activation functions) to how the
training is done (choice of optimization method, setting a
learning rate, data preprocessing). A proper selection of these

Fig. 11. The multicomparison test for the analysis of the CR score
in the ETIS-LARIB database. Each method is represented as a horizontal
line centered in corresponding method’s mean CR score and whose width
corresponds to the variance calculated according anova1 fit model. The best
ranked group is represented by a blue line, comparable methods are shown
in grey, and statistically significant different methods are shown in red.
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parameters may lead to a boost in performance achieved.
Apart from differences related to parameter tuning, we can

also observe that one important difference between CNN-
based proposals rely on the type of data used to define
the network. CUMED uses only colonoscopy data whereas
OUS and SNU networks are pre-trained over general image
databases. CNNs are structured in layers and each of them
captures a different kind of features from the data; first layers
capture basic image features such as boundaries whereas
deeper ones capture more meaningful and abstract features
built over the previous ones. Considering this, features learnt
on the first layers might work well in several domains but
those learnt in the last layers are more application dependent.
One big requirement to use CNNs is to have a large amount of
labelled data that may not be available for the case of medical
imaging analysis. One widespread solution (used in SNU
methodology) is to train the network on a very big database
such as ImageNet (with over 106 images and 103 classes)
and then fine tune the network to adapt for a more specific
domain. The problem relies on ImageNet containing images
potentially very different that the ones that the polyp detection
system will have to deal with and, as results show, this may
limit the use of those pre-trained networks. In this sense, we
can observe how methods using colonoscopy data from end
to end (CUMED) obtain better performance than those trained
in general datasets such as OUS or SNU, which indicate that
efforts should be made to build up domain-specific networks
in order to obtained desired performance levels.

Concerning a general comparison among methods regard-
less their methodology, we can also observe from Table
VII that recall scores improve if we only consider frames
with polyps. As non-polyp frames are included in the study,
performance of hand-crafted and some of the hybrid methods
decrease with respect to all metrics. We explain this as being
due to some of the methods being specifically tuned for polyp-
like structures detection, but not on specific polyp presence or
absence; this can be observed in the high number of false
positives that these approaches provide as they seem to find
these polyp-like structures in frames without a polyp. We link
this to non-polyp frames containing structures which guide
polyp detection methods, such as, boundary information which
also appears associated in other endoluminal structures such
as folds or vessels. We also observe strong differences in the
performance of hand-crafted methods when dealing with polyp
frames in the two proposed scenarios (still frames and videos).
This could be related to the fact that the ETIS-LARIB database
presents a high number of lateral polyp views, deviating from
the model of appearance which the hand-crafted method is
based on [14].

B. Impact of clinical and technical image challenges on
method’s performance

We have presented in this paper a preliminary study on
whether image challenges defined and reported by clinicians
and technicians do impact the performance of an automatic
polyp detection method. Results exposed in Table VIII show
that all of them, in a certain degree, should be tackled in

order the automatic system to efficiently assist clinicians
during the procedure. The most straightforward conclusion
from this experiment is that image quality matters, as meth-
ods’ performance decrease when only bad quality images
are considered. The presence of extra-endoluminal structures
such as overlay information or overexposed regions do also
affect negatively the performance of automatic methods. This
indicates that efforts should be made during the exploration
in order a computational support system to efficiently assist
clinicians. We can also observe that results do improve if
luminal region is not present in the image; this correlates with
actual exploration guidelines in which a thorough inspection of
the mucosa is prescribed in order to efficiently detect polyps.

It is also interesting to observe how there are some cases
in that image challenges considered for both technical and
clinical domains do not suppose an actual technical challenge.
For instance, we would expect that the presence of intestinal
content or the observation of specular highlights over the
polyp would impact negatively the performance of an auto-
matic method; results show that studied methods are indeed
positively affected by their presence. We associate this to these
image challenges appearing clearly different from polyps.

Moreover, and also related to this, there are some image
challenges which may provide unexpected results and which
would need to be better defined to avoid potential subjectivity.
Though we have gathered three observations per frame to
mitigate this, some of the image challenges should be defined
appropriately to avoid discrepancies between observers. For
instance, the presence of intestinal content, image quality
or, specially, the high specular highlights presence should be
redefined as, for the former, we should also consider its size
and type (solid, bubbles) and, for the latter, we may consider
not only the number but their size and position in the image.

Apart from the image challenge experiment, we have also
performed another one to assess the impact of polyp mor-
phology on methods’ performance. Even considering that this
experiment is limited to the actual morphologies that the
databases contain, differences can already be observed in a
way such methods obtain better performance as the polyp
protrudes more from the mucosa. With respect to polyps with
flat morphology cited by clinicians as the most difficult ones
to the detect [9], [10] we observe, for the case of still frames
analysis in which they are present, that there are methods that
are already able to detect them, despite its low presence in
training and testing databases.

C. Towards clinical applicability

One of the objectives of the challenge and, consequently, of
this paper, was to assess if any of the participating methods is
close to clinical applicability. In order to assess this, we have
proposed several studies to observe certain features that a given
clinically applicable computational polyp detection method
should have. The main feature that a clinically applicable
system should have is that it should detect all polyps regardless
their appearance (high detection rate (DR), measured as the
percentage of polyps detected in at least one frame out of the
total of polyps present in the testing videos). This detection



16

TABLE XII
SUMMARY OF INDIVIDUAL METHOD’S PERFORMANCE. FOR LATENCY

AND TEMPORAL COHERENCE MEAN AND STANDARD DEVIATION VALUES
FROM THE ANALYSIS OF THE 9 VIDEOS WITH POLYPS ARE PROVIDED.

Method DP
[%]

Latency
[frames]

Rec
[%]

F1
[%]

TempC
[%]

ASU 100.0 7.4 ± 15.6 61.1 73.9 54.8 ± 21.4
CUMED 100.0 9.3 ± 16.4 71.4 75.9 63.7 ± 23.9
CVC-CLINIC 77.8 26.8 ± 39.0 36.6 33.7 34.1 ± 37.6
OUS 88.9 9.4 ± 17.2 51.5 65.7 48.7 ± 30.8
PLS 88.9 24.7 ± 37.8 36.9 19.9 27.4 ± 26.1
SNU 77.8 32.5 ± 40.9 10.6 11.2 10.2 ± 06.3

should also be fast enough to be of an actual help; speed here
is not only considered in terms of computation time but also in
response to a stimuli as a computational method should react
to polyp presence as soon as it appears in the image (associated
to a low latency score). The actual response of a given
method should be stable over time (high temporal coherence)
in order to provide an smooth assistance to clinicians in polyp
search. Finally, and considering the scope of application of
the methods, the number of false alarms should be kept low
(high F1 score associated to an also high Recall value) as
the contrary would suppose indicating the clinicians to further
explore uninteresting regions of the image.

Considering these criteria, we present in Table XII a sum-
mary of the main results presented in this paper for the video
analysis challenge. Columns are ordered according to the,
under our point of view, relevance of the specific criteria. As
it can be seen, there are only two methods (CUMED, ASU)
that may be actually considered for a potential clinical use
as they do detect all polyps. Concerning the rest of criteria,
both do perform similarly: ASU presents a lower latency
which could be compensated by CUMED’s higher temporal
coherence degree. Concerning frame-based metrics we can
observe that ASU leads to a better balance between true and
false alarms though CUMED detects polyps in more frames.

It has to be noted that we have not included in Table
XII information regarding computation time for comparison
purposes as they have not been tested under the same con-
figuration and, consequently, provided times may vary in an
actual final deployed system. Nevertheless, a clinically useful
method should operate under real-time constraints. Consider-
ing that videos are recorded on 25 or 30 frames per second,
processing of a new frame should not take more than 40 ms
(33 ms for NTSC systems) in order not to suppose a delay
in overall procedure time. All methods studied in this paper
have computation times higher than these threshold values and,
consequently, do not comply with real-time constraints though
the processing of all frames might not be needed considering
due to the small variation between consecutive frames due to
usual smooth camera movement.

D. Possible improvements in validation framework

During the analysis of the performance of each of the
methods, we have discovered several aspects to be considered
for future iterations of this study.

The first one deals with the variability of the image quality
provided in the training and testing stages. In this study, the

databases used for validation come from three different sources
presenting differences in image size or acquisition system, as
we have source data from both OLYMPUS and PENTAX
devices. This was done on purpose, as it is impossible to
predict under which specific scenario a given system can be
potentially used, as there is no standard regarding resolution
or manufacturer and a given method should perform similarly
regardless of the specific conditions. But it is true that these
variabilities may have affected the performance of the different
methods, as training was done using images with resolutions
different from the ones used for testing. These differences in
resolution can imply to have a greater level of texture detail
which can impact the performance of systems trained with
SD images (i.e. edge detection could be greatly affected by
the presence of small texture details inside the polyp).

Also related to database content, and after observing that
polyp morphology can impact methods’ performance, an effort
could also be made on enlarging the databases to cover those
types that are not currently present. It is important to mention
that performance of learning-based approaches for certain
morphologies could be affected by the lack of frames of this
particular type in the training set. In our experiment, this only
happens for still frames analysis as CVC-CLINIC database
does not contain polyps of types 0-IIa+c and 0-IIa+Is which
are indeed present in ETIS-LARIB database. Nevertheless it
has to be noted that these types are only present in 12 frames
out of the 196 frames of the database and, consequently,
global performance should not be greatly affected by this
issue. Finally, not all types are represented in the database
(for instance, proposed databases have no examples of types
0-Ip, 0-IIc or 0-III); it would surely be helpful to study how
computational methods deal with those polyp types reported
as the ones with higher associated miss-rate [9], [10].

The second are of improvement deals with how actual
results are calculated. The majority of results presented in
this paper have been calculated from the CSV files provided
by participants in the challenge. Though they are useful to
represent the actual performance of the method, we think it is
also necessary to analyze how these files are generated (the
actual output of the method they come from) in order to have
a deep understanding on how a given method performs. In
this sense, we proposed a preliminary study comparing the
amount of actual image energy that is kept inside the polyp.
As it was shown in Fig. 10, there are big differences in how
the actual output of the methods is calculated, inherent in each
teams’ methodology. Therefore, if we wanted to present a fair
comparison between methods over their direct output, specific
guidelines should be given to participants in order to gather
comparable data.

Finally, we think that Precision-Recall and ROC curves
should be used for methods’ comparison as well. In order to
provide these curves for all teams, confidence values should
have been provided; in this case, only one team per sub-
category (UNS-UCLAN in still-frame analysis and ASU-Mayo
for full video analysis) provided this information whereas the
rest only provided what we assume are results obtained using
the best configuration of each particular method. Nevertheless,
we have presented both curves in Fig. 6 along with quantitative
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data in both Table IV-A and Table VII.

VI. CONCLUSIONS

We present in this paper a complete validation study com-
paring the performance of different polyp detection methods.
Eight different teams took part in this challenge, ranging from
methodologies based on hand-crafted methods to trending
techniques such as CNNs. We propose the use of uniform
performance metrics and common, publicly available, fully
annotated databases to objectively assess their performance.

The analysis of the results obtained by each method shows
a superior performance by methods using machine learning as
part of their methodologies, obtaining promising performance
in both still frames and full-sequence sets. The global analysis
of methods’ performance shows that some of them are close
to be clinically applicable as they are able to detect polyps in
all sequences with a small reaction time. We have also shown
how there is a clear link between clinical and technical chal-
lenges and that mitigating them is key to improve methods’
performance. As it was expected, our preliminary study proves
that image quality and careful mucosa inspection do have a
positive impact in methods’ performance.

A deep analysis of the results shows that, as different
methods detect different polyps, there is room for improvement
by combining some of the methods into a new solution. Going
along this line, we have performed a first study on how to
combine some of the methods in order to improve detection
performance. Preliminary results show how the combination of
the best methods can be used to exceed best individual scores,
indicating the potential of creating clinically useful systems
integrating capabilities from several individual methods.

Beyond presenting challenge results, this study shows areas
in which methods might focus to increase their performance,
such as the ability to work equally under different conditions,
the necessity of include spatial and temporal coherence in
full sequences analysis or by considering the presence of
other elements of the scene to help in polyp detection task.
More importantly, this study also shows how efforts should
be made between clinicians and computer scientists to build
up image acquisition protocols that can help to better ob-
serve (clinicians) and analyze (computational methods) the
endoluminal scene. Finally and concerning availability of data
to test methods, the study shows that granting access to
large available labelled data is needed for a comprehensive
validation of a polyp detection method and that this might lead
to a boost in performance of end-to-end learning methods. We
believe efforts should also be made to create and use data from
new imaging technologies such as magnification endoscopy
or virtual chromoendoscopy, due to increased visualization
performance already observed by clinicians.

After analyzing the complete validation study, we have
detected several areas in which the study can be extended to
provide with an even deeper comparative analysis of the per-
formance of polyp detection methods. More precisely, future
studies should tackle some of the issues detected such as the
variability in source data resolution and size and should aim
to cover all different polyp morphological types. Moreover, a

consensus should be reached on how the information provided
by each method is to be interpreted to allow a comparison
beyond simple detection positions. This may result in, apart
from a more complete analysis, a deeper understanding on how
each method works and in which scenarios each of them show
the most benefit, thinking of potential optimized combinations
of them to finally build up a clinically useful method.
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