

The Snail: procédé d'analyse et de visualisation du son

Thomas Hélie / Charles Picasso

Chargé de recherche au CNRS - S3AM / Développeur à l'IRCAM-AS

Equipe S3AM http://s3am.ircam.fr

Laboratoire des Sciences et Technologies de la Musique et du Son IRCAM-CNRS-UPMC

1, place Igor Stravinsky

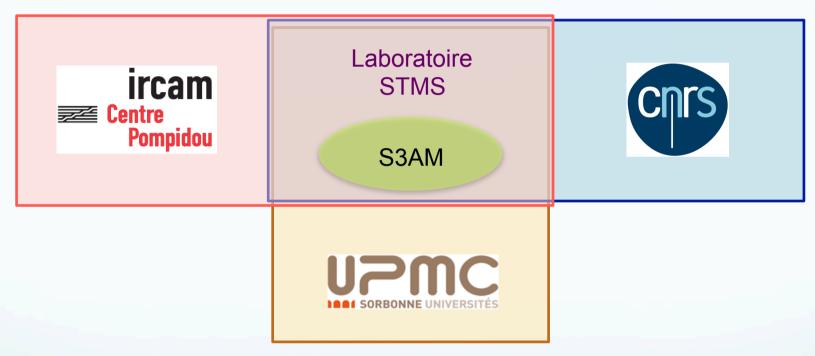
75004 Paris, France

C. Picasso

Rencontres Maths/Industries

Acoustique numérique et signal audio

13 mars 2017


Ecole Polytechnique, Palaiseau, France

https://indico.math.cnrs.fr/event/1936/

Plan

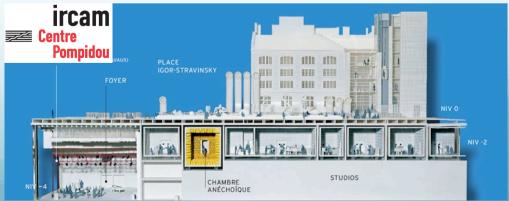
1. IRCAM-CNRS-UPMC / Laboratoire STMS / Equipe S3AM

- 2. « The Snail »: principe et éléments techniques (version labo)
- 3. Démonstration sur un corpus sonore varié (version pro)

Laboratoire Sciences et Technologies de la Musique et du Son UMR9912, IRCAM-CNRS-UPMC, 7 équipes, directeur: Gérard Assayag

Hébergé à l'IRCAM : Institut de Recherche et Coordination Acoustique/Musique

Pierre Boulez (1925-2016)


Création: en 1977 par Pierre Boulez, associé au centre Georges Pompidou

Vocation: interaction entre

- Recherche scientifique (son/musique)
- **Développement** technologique
- Création musicale contemporaine

Départements (~160 personnes):

- Laboratoire STMS / R&D (~100 personnes)
- Production/Création (concerts+20 créations/an)
- Pédagogie (cursus musical: compositeurs, M2 ATIAM-UPMC: sciences pour la musique)
- Interface Recherche/Création

Equipe S3AM

« Systèmes et Signaux Sonores: Audio/Acoustique, instruMents »

- B. Descriptif: Modéliser, simuler, identifier, optimiser, contrôler, analyser dans des paradigmes réels, virtuels ou hybrides
- Quoi ? Instrument/Musicien; Voix; Haut-parleurs; Circuits audio; etc.
- Comment? Outils théoriques, technologiques et expérimentaux

C. Approche

Systèmes

2015

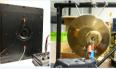
Développements **Technologiques** & Expérimentaux

Identification Optimisation Contrôle

2017

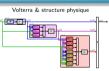
Modélisation Physique

(Syst. Hamiltoniens à Ports, Géométrie différentielle)


Signaux Sonores

Réduction d'ordre & Simulation

Analyseur



D. Membres

Resp. S3AM

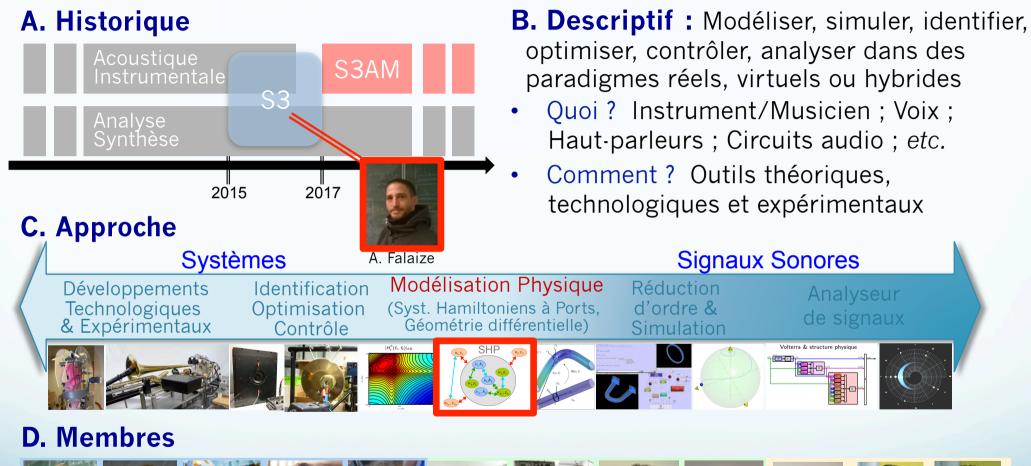
T. Hélie J. Bensoam R. Caussé R. Piéchaud D. Roze CR CNRS CR IRCAM DR émérite Ingé. IRCAM CR CNRS

Permanents

D. Bouvier

M. Jossic

T. Lebrun


R. Muller D. Chalabi

P. Carré

Apprenti & Stagiaires

Equipe S3AM

« Systèmes et Signaux Sonores: Audio/Acoustique, instruMents »

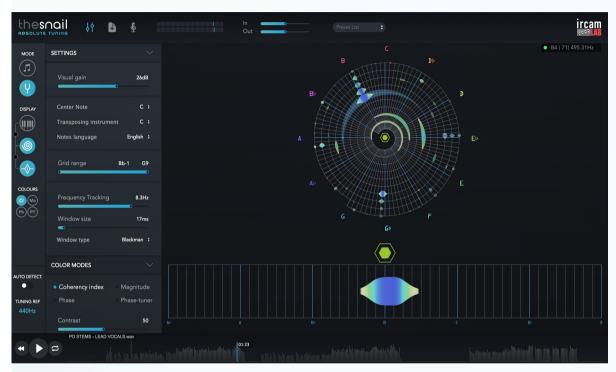
Equipe S3AM

« Systèmes et Signaux Sonores: Audio/Acoustique, instruMents »

AXES SCIENTIFIQUES

1. Problèmes directs : modéliser et simuler avec des garanties

- Modélisation de systèmes non linéaires multi-physiques et bio-physiques
- Réduction d'ordre, Méthodes à perturbations
- Analyse numérique, Simulation à passivité et à invariants garantis
- Génération de code temps réel, Parallélisation et High Performance Computing


2. Problèmes inverses : analyser, contrôler et optimiser

- Identification de systèmes, Estimation de paramètres
- Correcteurs, Observateurs, Contrôleurs de systèmes
- Optimisation de paramètres (de géométrie, matériaux, composants)

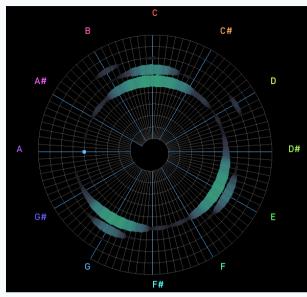
3. Développements technologiques et expérimentaux : explorer, mesurer et reprogrammer la (bio-)physique

- Mécatronique et Robotique
- Métrologie, Electronique et Informatique embarquées
- Logiciels

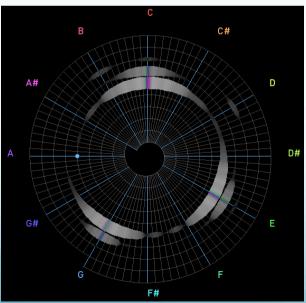
Analyseur de signal: The Snail – IrcamLab

1. Analyse spectrale haute précision

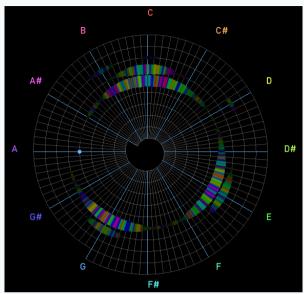
- Transformée de Fourier
- Méthode brevetée (CNRS-2014): par filtrage de phase démodulée
- **2. Affichage** (testé sur des enfants)
- Abaque en spirale
- 1 tour = 1 octave
- 1 note = 1 angle

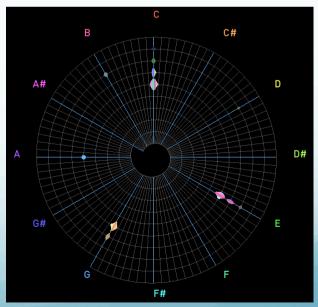

Tests in situ

- Chœur & Orchestres Sorbonne Universités
- Accordeurs de piano (Europiano'2016)
- Facteurs de violons (COST WoodMusick'2017)


Communications

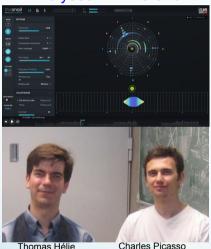
- Communiqué CNRS, Usbek & Rica, etc
- Salons NAMM-Show, Musicora
- Ville de Paris (DAC)
- Professeurs des conservatoires de Paris


Analyseur : illustration des étapes principales


1. Transformée de Fourier→Sonie

3. Rotation de phase rapide → désaturation

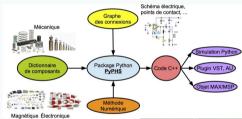
2. Phase démodulée (palette de couleur circulaire)


4. Sélection finale des couleurs saturées

Merci de votre attention

Aujourd'hui:

1. Analyseur: « The Snail »



2. Correction de Haut-Parleur (SHP et platitude différentielle)

Tristan Lebrun et coll.

3. PyPHS: génération de code temps réel à passivité garantie

Antoine Falaize et coll.

4. MODALYS: synthèse sonore par modèle physique

Si vous voulez tester

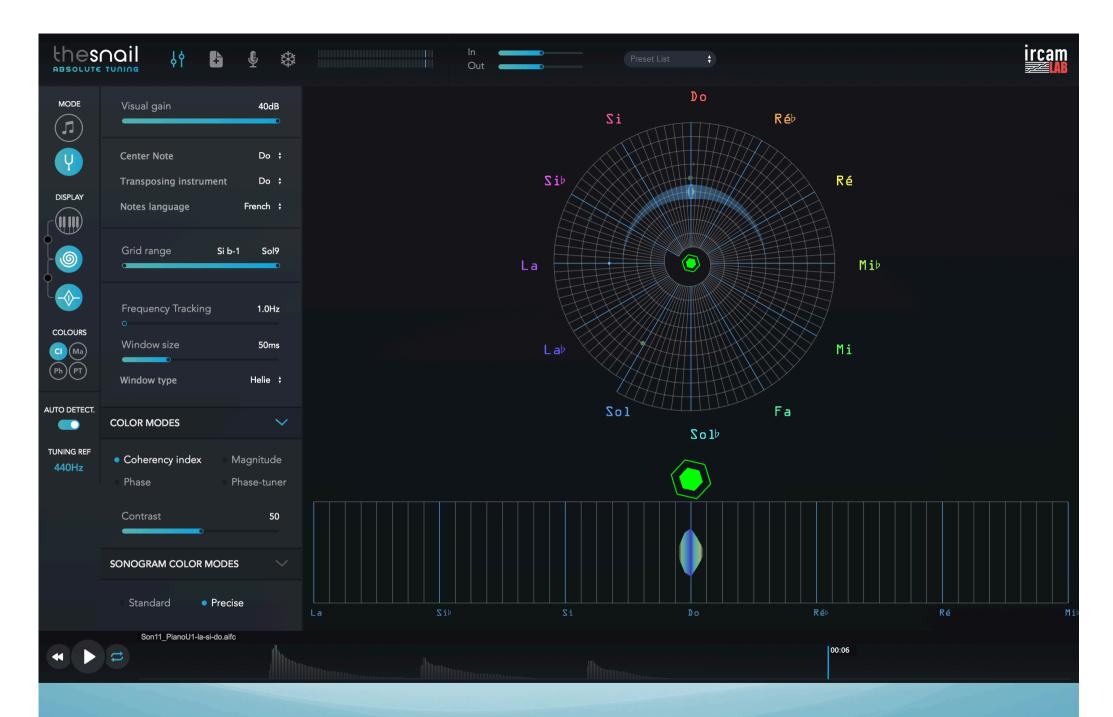
http://www.ircamlab.com/products/p2242-The-Snail/

Logiciel téléchargeable:

1. Disponible:

- Application Mac (AAX,AU,VST): gratuit 2 semaines puis 49euros
- iPhone (spécialisé pour l'accordage): 0.99euros

2. Dans quelques mois:


iPad (version complète)

Vidéos et informations

Google: the snail ircamlab

