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Time-varying Sampled-data Observer with
Asynchronous Measurements
(Extended Version)

Antonino Sferlazza, Member IEEE, Sophie Tarbouriech, Member IEEE, Luca Zaccarian, Fellow Member IEEE.

Abstract—In this paper a time-varying observer for a linear
continuous-time plant with asynchronous sampled measurements
is proposed. The observer is contextualized in the hybrid systems
framework providing an elegant setting for the proposed solution.
In particular some theoretical tools are provided, in terms
of LMIs, certifying asymptotic stability of a certain compact
set where the estimation error is zero. We consider sampled
asynchronous measurements that occur at arbitrary times in a
certain window with an upper and lower bound. The design
procedure, that we propose for the selection of the time-varying
gain, is based on a constructive algorithm that is guaranteed
to find a solution to an infinite-dimensional LMI whenever a
feasible solution exists. Finally a numerical example shows the
effectiveness of the proposed approach.

Index Terms—Sample data observer, discrete asynchronous
measurements, hybrid systems, linear systems, linear matrix
inequalities.

I. INTRODUCTION

In the last years, the design of observers for systems
with sampled measurements has received great attention. This
interest is motivated by many engineering applications, such as
sampled-data systems, quantized systems, networked systems,
localization of mobile vehicles, etc. [1], [2], [3]. In these cases,
the output is available only at sampling instants, and, for this
reason, classical observer structures cannot be used.

This problem is not new in control engineering and there
are many works in the literature dealing with these issues,
providing several solutions. In particular this problem has been
considered in a stochastic framework, and particular Kalman
filters have been developed for these purposes. For example in
[4], a Kalman filter with intermittent observations is developed
starting from the discrete Kalman filtering formulation, and
modeling the input of the observation as a random process.
A similar approach is followed in [5] where the observations
are available according to a Bernoulli process. Further con-
vergence analysis and boundedness analysis on the estimation
error have been recently analyzed in [6] and [7]. Other
examples are given in [8] where the intermittent observations
are considered in the development of an unscented Kalman
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filter. Another stochastic approach, is proposed in [9], where
an intrinsic filtering on the special orthogonal group SO(3)
is shown. Here the problem of the continuous-time dynamics
with discrete measurements is cast into a rigorous stochastic
and geometric framework.

A deterministic approach has been followed in other works.
For example recently in [10], the Ho state estimation problem
in the context of sampled-data linear systems is presented with
a fixed sampling-rate, and a time-invariant injection gain is
computed in order to optimize the Hy performance index for
the estimation error dynamics. Another interesting approach
is proposed in [11] where the finite time convergence of
an observer is proven for linear systems with sampled mea-
surements. Subsequently in [12] and [13], a similar method
has been proposed, but for nonlinear Lipschitz systems with
sampled measurements. This approach has been extended in
[14] by means of new conditions in terms of linear matrix
inequalities (LMIs). Also [15] deals with the same problem,
developing an observer for the same class of systems, but
the computation of the injection gain is based on different
conditions. Moreover, also the structure of the observer is
different from the previous cited works, since in [15] a high
gain observers is proposed. In [16] and [17], nonlinear uni-
formly observable single output systems are addressed. Finally,
by using Lyapunov tools adapted to impulsive systems, some
classes of systems with both sampled and delayed outputs are
addressed in [18] and [19].

Recently, different approaches have been proposed using
the hybrid system formalism of [20]. The use of the hybrid
formalism provides a natural setting for the modeling of this
type of observers, where both continuous-time and discrete-
time dynamics coexist. Indeed a sampled-data observer can
be modeled by a “flow map”, which describes the continuous-
time dynamics when the measurement is not available, while
the measurement can be considered as a discrete event and can
be modeled by a suitable ’jump map”. This kind of formalism
is applied in [21], [22], where the estimation of the state of
a linear time-invariant system is proposed, with asynchronous
measurements and a constant output error injection gain. In
the same context [23], proposes a hybrid observer for linear
systems producing an estimate that converges to the plant
state in finite time. These concepts have also been applied
to distributed systems such as in [24], where the problem
of estimating the state of a linear time-invariant plant is
addressed in a distributed fashion over networks allowing only
intermittent transmission of information.



In this paper we address the presence of asynchronous
sampled measurements for continuous-time plants using a
hybrid formalism. Differently from existing results, a design
procedure based on a constructive solution to an infinite-
dimensional LMI is given, leading to a time-varying observer
gain. Since the proposed hybrid time-varying observer is based
on a solution to an infinite-dimensional LMI, an algorithm is
proposed, which is proven to find a solution to the infinite-
dimensional problem in a finite number of iterations, whenever
the problem admits one. The given conditions are shown to
be nonconservative in the special case of a periodic sampling.

Preliminary results in the directions of this paper have
been presented in [25]. As compared to [25], we reformulate
completely the numerical algorithm, which is here proven to
always lead to a solution, whenever the (infinite-dimensional)
observer design conditions are feasible. Moreover we include a
new symbolic example where the approach is nonconservative
and establish necessary and sufficient feasibility conditions for
the periodic sampling case.

The paper is organized as follows. In Section II the problem
statement is formalized by fitting our problem in the hybrid
systems framework. Then in Section III we provide analysis
and synthesis conditions and discuss feasibility issues also
using a symbolic example. In Section IV a numerical algorithm
is proposed in order to solve the infinite-dimensional LMIs
given in Section III in a finite number of steps. Conclusion
are in Section VI

Notation: R™ denotes the n-dimensional Euclidean space.
R>( denotes the set of nonnegative real numbers. Z denotes
the set of all integers, while Z>( denotes the set of nonnegative
integers. B denotes the closed unit ball, of appropriate dimen-
sion, in the Euclidean norm. I, denotes the identity matrix of
order ¢ € Z>g. Ay (S) and Aps(S) denote, respectively, the
minimum and the maximum eigenvalues of a positive definite
symmetric matrix S. z* denotes the state of a hybrid system
after a jump. |z| denotes the Euclidean norm of a vector
x € R™ [-] and |-] denote, respectively, the smallest integer
upper bound and the greatest integer lower bound of their
arguments.

II. PROBLEM STATEMENT

In this work we consider a class of systems described by
the following equation:

iz = Ax + Bu, (1

where © € R™ is the state of the system, u : [0,00) — R?
is a known input that belongs to the class of locally bounded
measurable functions, A € R"*™, and B € R™ 9. Let us
assume that an output of system (1) is accessible at discrete
instants of time, resulting in a sequence of m dimensional
vectors Yy, k € Z>1 defined as:

yr = C(ty), 2

where C' € R™*" is full row rank and ¢, k € Z>4, is a
sequence of increasing non-negative real numbers that satisfies
the following sssumption:

Assumption 1: There exist scalars T, and Ty, with 0 <
T, < Ty, such that:

T < |tht1 —tg] <Tm, VEk€Zsy. 3)

Assumption 1 considers the case of asynchronous discrete-
time measurements with a sampling interval lower and upper
bounded by two known positive constants 7}, and Th;. Note
that 7}, must be strictly greater than zero to avoid Zeno
behaviors in the hybrid model developed below.

Taking inspiration from the hybrid systems formalism of
[20], it is possible to represent the sampled-data system
associated with this setting as follows:

i — Az + B
{i _ THEU G r) e =R x[0,Tn],  (4a)
at =, n
‘g (£,7) € Dy :=R" x [T\, Tat], (4b)
T = U,
y=Cux, (4¢)

where the variable 7 is a timer keeping track of the elapsed
time since the last sample, and the impulsive nature of the
available measurement is represented by the extra property
that output y is only available at jump times. With model (4),
it follows that for any sequence y;, in (2), satisfying (3), there
exists a solution to (4) such that y, = y(tx, k), k € Z>1, and
vice versa.

Constraining the jump set to be included in the set where
T € [Tyn, Ths] ensures that Assumption 1 is verified as clarified
in the next statement, which is a corollary of [26, Props 1.1
& 1.2, page 747].

Proposition 1: Consider any solution to (4) and denote by
ti, k € Z>1, its jump times. Then the sequence t;, satisfies
Assumption 1. Moreover, consider any sequence i, k € Z>1,
satisfying Assumption 1. For each zy € R™ there exists 79 €
[0, Ths] such that a solution ¢ to (4) with ¢(0,0) = (zq, 7o)
has jump times coinciding with t5, k € Z>1.

In this paper, we propose an observer whose structure im-
plicitly complies with the restriction specified in Assumption 1
on the available output. Our observer is capable of providing
an asymptotic estimate of the plant state, regardless of the
sequence of times tj, at which the sampled output is available.
The hybrid structure of the proposed observer is the following:

{i: = A% + Bu, (Z,z,7) € R™ x Cy, 5)

#t =i+ K(r)(y—C#), (& ,7)€R"xD,,

where the matrix function K : [T),,Ta;] — R™ ™ corre-
sponds to the time-varying gain of the observer responsible
for the discrete output injection term. It is clear that with
dynamics (5), and due to Proposition 1, output y is only used
at the sampling instants ¢; compliant with Assumption 1.

The design of the time-varying gain K (-) will be performed
in the next section. Note that as compared to a standard
LTI Luenberger architecture (such as the one used in [21]),
observer (5) is based on an injection term that depends on the
elapsed time since the last measurement. Such an elapsed time
is known to the observer by way of state 7 in (4).



III. STABILITY CONDITIONS GAIN SELECTION

One of the main goals of this work is to give design rules
to select the gain function K'(-) in (5) such that the estimation
error e := x — & converges asymptotically to zero. Such a
property is well characterized in terms of the stability of the
following error dynamics, issued from (4)-(5):

{i_‘fe’ (e,7) €C:=R"x [0,Ty], (6a)

(e,7) € D:=R" x [Ty, Tps]. (6b)

We first present an analysis result certifying asymptotic
stability of the compact set:

A= {(6,7‘): e:O,TG[O7TM]}, )

corresponding to the set where the estimation error is zero.
Then we will design K (-) inducing Global Asymptotic Sta-
bility (GAS) of A, corresponding to Lyapunov stability (for
each € > 0, 3§ > 0 such that |e(0,0)| < § = |e(t, j)| < e for
all (t,j) € dome) and convergence (lim¢ ;o |e(t,7)] = 0).
Due to the developments in [20, Chapter 7], and compactness
of A, GAS is actually equivalent to Uniform Global Asymp-
totic Stability (UGAS) defined in [20, Chapter 3] involving
Lyapunov stability, uniform global boundedness and uniform
global attractivity.

Lemma 1 below is an extension of [21, Theorem 1] to the
case of a time-varying injection gain K (-).

Lemma 1: Assume that there exists a matrix P = PT > 0,
and a continuous matrix function 7 — K(7) such that:

e(fATT)P e(=47) p
P P

0 *
> |:PK(T)O O:|, V1 e [Tm7T]V[}.
®)

Then set A in (7) is uniformly globally asymptotically stable
(UGAS) for the error dynamics in (6).
Proof: Consider the Lyapunov function:

Ve, )= eTe(fATT)Pe(*AT)e, )

and observe that there exist positive scalars c¢; and ca satisfy-
ing:

2y < 2

cile[” < V(e 1) < colel”,

Ve e R", 7 €[0,Ty], (10)

where, denoting by \,,,(S) and \p;(.S) the minimum and the
maximum eigenvalues of symmetric matrix S, respectively, we
selected:

¢1 ;= min )\m<e(7ATT)Pe(7AT)), (11a)
T€[0,T]

c2 '= max )\M(e(_ATT)Pe(_AT)>, (11b)
7€[0,Tnr]

which are well defined and positive, from positive definitive-
ness of P and invertibility of e(=47),

The variation of V' along flowing solutions of (6) is:

Ve, )=
2eTe(-ATT) pe=An)g 4 eT(fAT)e(fATT)P =47
+ eTe(_ATT)Pe(_AT)(—A)e =
eTe(=4T7) po(=A7) (2Ae — Ae — Ae) =0,
V(e,7) € R™ x [0, Th]. (12)
The variation of V' across jumping solutions of (6) is:
AV(e,7):=V(et,77) = V(e,7) =
e (I- K(T)C)TP(I - K(1)C)e — eTe(mA T pe(-4m)¢ =
—eT (AP — (1 - K(1)0) P(1 - K(1)0)) e,

M(t):=

V(e,T) € R™ x [Tm,T]u], (13)

where we recall that 7 € [T},,, Tis] for all (e, 7) € D. Consider
now (8), which implies:

e(=AT7) p o(—47)

P(I—K(T)C) p|”°

V7 € [T, Tu], (14

and after a Schur-complement:
(AT peAT (T - K(7)C) P(I - K(r)C) > 0,

namely M (7) > 0, V7 € [T}, Ta]. Define the positive scalar
c3 as follows:

= i A | M . 15
1= i M (M07) 09
Then one gets from (13):

AV (e,7) < —czlel?, V(e 7)€ D. (16)

The proof is completed by first noting that, for attractor A in
(D), |(e, )4 :=1inf,ec 4 |(e,T) — y| = |e|, and then exploiting
the fact that solutions to (6) are persistently jumping at least
every T, ordinary time. Indeed, for each solution ¢ and for
each (t,j) € dom ¢, it is immediate to check that j > ﬁ -1

Then uniform global asymptotic stability of .4 follows from
(10), (12), (16) and [20, Proposition 3.24] with N, = 1 and
v (t) = TL. O

Based on the analysis result of Lemma 1, we can now prove
a few relevant constructions for the gain K (-), corresponding
to a few special cases. The first case is relatively straightfoward
and corresponds to the case where C' is invertible (namely
the state is completely accessible at the sampling instants).
This case is somewhat interesting because it corresponds to
the source of inspiration of the subsequent construction, and
has been used in a dedicated application by the first author in
[27]. Tt is reported below.

Theorem 1: If C' is invertible, then for any P = PT > 0
and any A € [0, 1), inequality (8) is satisfied with:

K(r) = (I - /\e(_AT)) ot 17)

which then guarantees UGAS of A for system (6).



Proof: By virtue of selection (17), we have

P(T)K(1)C = P(I — Xe{=47)), (18)
Then condition (8) in Lemma 1, becomes:
e(fATT)Pe(fAT) )\e(fATT)P P AP
AP o(—A7) P >0 \P P >0.
(19)
The last one is always verified for 0 < A < 1, and for any
positive definite matrix P. (]

Remark 1: Replacing the gain K(7) of (17) in (6b), we
obtain:

et = /\e(_AT)e, (20)

that clearly reveals that the choice A = 0 leads to a dead-beat
controller, while the choice A = 1 leads to a nontrivial reset
that resets back the estimation error to the value that it had
immediately after the previous sample (this fact is evident by
keeping in mind the explicit expression of the error e(¢, k) =
e e(ty, k) for all t € [ty, tx41]). Clearly, the choice A = 1
is not allowed in our result because it leads to a bounded, but
non converging, response. a

The solution of Theorem 1 is only viable under demanding
conditions on the available measurements, that are only seldom
verified. Due to this reason, one of the main contributions of
this paper resides in a construction for the gain K (-) as long
as one can find a constant matrix P satisfying the following
infinite set of matrix inequalities:

T (-ATr (A7) L
EP(T) = (C ) e( )J_Pe C * >0,
pPC P
V1 € [T, Ta), (21)

where O denotes the orthonormal complement of C'T.
Despite the non-uniqueness of C-, feasibility of (21) is
independent of the specific selection. Indeed replacing C'*
by any of the alternative selections C+S (with S being any
unitary matrix) does not affect feasibility of (21) because one
can factor out matrix diag(S,I) without affecting feasibility.
Matrix inequality (21) is not easy to solve, but we provide
in Section IV a numerical algorithm that is guaranteed to
converge to a solution, whenever it exists, in a finite number
of steps. Insight about the implication of (21), at least for
the periodic case T}, = Tjs, can be given by the following
proposition, whose proof is postponed to the end of this
Section.

Proposition 2: Consider any positive value of T' = T,,, =
Ty. LMI (21) is feasible if and only if pair (C, e47T) is
detectable.

While Proposition 2 characterizes feasibility (and non-
conservativeness) of (21) for the periodic case, in the general
case T;, < Ts some level of conservativeness may arise from
the use of a common P for all 7 € [T}, T)]. Nevertheless
condition (21) is relatively mild and for the following planar
example it is shown to be never conservative.

Example 1: Consider system (1)-(2) where A = [ % 1],
C =[10], C+t =[9], with @ > 0 to avoid trivialities. Due
to the oscillatory response with period 27, the state is not

detectable, regardless of a > 0, if kw € [Ty, Tas] for some
k € Z>o. Ruling out those infeasible cases corresponds to
requiring:

ke < Ty < Tag < (k+ 1) (22)

for some k € Z>p, which is a necessary condition for

detectability. We construct below a solution P to (21) under
assumption (22). By replacing e =47 = e~*7 {;Tj((:; zf)lslzg)}
in (21), choosing P = [# pgz], and applying a Schur
complement, inequality (21) is satisfied if and only if:

e 7297 (p11 sin®(7) + pa cos?(7)) — paz > 0. (23)
Consider now any selection of pi1, po satisfying
2aT v
© 22
P11 > P (24)

min{sin?(T},),sin?(Tas)}’
which is well defined from (22). Then inequality (23) holds
because 0 < pyy (min{sin®(7T,,), sin®(Thy)}) — 2@ M pyy <
P11 SiHQ(T) — e Tpgy < p11 SiHQ(T) + P22 COSQ(T) — ®Tpo.
Note that this selection applies for any (destabilizing) choice
of o > 0 even though, through p;; in (24), the Lyapunov
function is stretched for larger values of o and 1.

We report below the explicit expression of K (-), which in-
duces UGAS of attractor A for the observation error dynamics,
as long as (21) is satisfied.

Theorem 2: Assume that C is full row rank and denote by
C* a basis of the orthogonal complement of C' . If there
exists P = PT > 0 satisfying (21), then selection:

K(7) ::(CKOL ((CL)Te(fATT) pe<fAT>cl)_l(oL)T

-
(e(*ATT)Pe(’AT)) CT)(CCT)*% (25)

guarantees UGAS of A for system (6).

Note that K(-) in (25) does not depend on the

selection of C*. Indeed all such selections are

parametrized by C-S, with any unitary S, and S
does not affect the value of K(-) in (25) because

- -1
cts(sTeyTeAmpe-Ancts) sT(ch) " =

-1
c+ (Cl)Te(_ATT)Pe(_AT)CL) (CL)T Coming back to
Example 1, we can compute the observer gain using (25):

sin(7) cos(7)] "
(P11 — p22) sin(7) ()} 7 26)

K(r) {1 p118in? () + pag cos2(7)
where p11 and poy are any positive constant satisfying (24).

Proof of Theorem 2: The proof is divided into two parts. In
the first part we show that condition (21) is enough to ensure
the existence of a gain K (-) such that (8) is satisfied. In the
second part we show that given a matrix P satisfying condition
(21), then (8) is satisfied for the gain K (-) selected as in (25).
Then the result follows from Lemma 1.

Part 1 (Proof of the existence): In this first part we have to
show that if (21) holds, then there exists K (-) (equivalently
Y'()) such that the following inequality holds:

e(—ATT)Pe(—AT) “

0
p-pPK(r)Cc P| "

e Bl @)




where we introduced (7) := (=4 ™) Pe(=47) and V(1) :=
—PK (7). Equation (27) can be written as:
T
{‘I'Z(J) ;} + m y(r)[c o+ {CO ]Y(T) [0 1]>o0.
——
—_— = QT
Q(r) H
(28)

Applying the elimination lemma (see, e.g. [28, Equations
(2.27)-(2.28)]) for each 7 there exists a matrix Y (7) such that
(28) is satisfied if and only if the following relations hold:

(HY) Q(r) (HY) >0, (G Q(r)(GY) >0, (29)

where HL = é is a basis of the Kernel of H', and
c+|o
G+ = 0T is a basis of the Kernel of G'T. Note that

all possible selections of H+ and Gt are parametrized by

HL Sy and G+ S, with any unitary matrices Sy, Sg, which

can be factored out and do not affect the feasibility of (29).
Using the above relations, the left equation in (29) becomes:

1[0 7] [f] = v = eaIpean -

which is always satisfied because P > (0. Regarding the right
equation in (29) we have:

g -
{(Ci); gpy)ci

which is satisfied by hypothesis (21). This means that if condi-
tion (21) is satisfied, then there exists Y () (and consequently
a matrix gain K(7) = —P~'Y (7)) such that (28) (therefore
(8)) is satisfied.

Part 2 (Selection of K(-)): We show next that for a given
matrix P satisfying condition (21), inequality (8) is satisfied
for the gain K (-) proposed in (25).

Since C' is full row rank, then R := [C+ CT] € R™*" is
nonsingular, and inequality (27) holds if and only if:

L] [ e ][] -

*
P} >0, 31)

(CcHTw(rct * *
= C¥(r)C+ cy(r)oT * | >0,
PC* PCT+Y(r)CCT | P
VT € [Tm,TI\/[], (32)

where we used CC+ = 0. By applying a Schur-complement,
and using the property (C+)T¥(7)Ct > 0, V7 € [T}, Tos]
(ensured by the upper left entry of (21)), we obtain that
inequality (32) is equivalent to the following constraint:

|:M11(7') * ] _ { cy(r)oT *}
Mo (1) Mao(T) PCT +Y(r)CCT P
- [C‘I;QLCT [(CL)T\IJ(T)CLFZ >0 (33)
T

Since we already established (in Part 1 of this proof) the
existence of a solution Y(7) to (33), the diagonal terms
M;i1(7) and My, (7) in (33), which are independent of Y (7),
must necessarily be positive definite. So in order to ensure
that inequality (33) is satisfied, it is enough to show that
Mo (t) = 0, V7 € [T, Tn), which is done below. In
particular, noting that expression (25) corresponds to:

Y(r)=—-PK(7) =
PcH((CH)Tw(m)ct ) Hewre) T- T ey
(34)

Then simple manipulations are sufficient to show that:

Moy (1) = PCT +Y(r)CCT
— pCt((CHTw()eh)  (cu(r)et) =0, 35)

Thus completing the proof. ]
Remark 2: Selection (25) for gain K(-) can well be
understood as follows:

K(7) ;:(PcL (CHTw(neH) ™ (cur)et) '

Moy (7) — PCT) (ccTy, (36)
where ¥(7) := e(=A"T) pe(=47) and where any matrix
M;i2(7) can be selected, as long as it guarantees inequality
(27). Part 1 of the proof of the theorem guarantees that
both Mii(7) and Moo(7) are uniformly positive definite
in [Ty, Ths]. We may then be inspired by the parametric
selection (17) of Theorem 1 and pick:
1 T 1

Mar(7) = A (Mgy(r)) Mi(r), A€l0,1),  (37)
where Mlél(T) and MQ%Q(T) are the Cholesky’s factorizations
of the positive definite matrices M7 (7) and Mao(T), respec-

tively. With selection (37), we always satisfy (33) because a
Schur-complement ensures (33) as long as:

M1 (1) =My, (7) My (1) Moy (1) = (1=A?) M1 (1) >0, (38)

which holds true as long as A € [0, 1). For any A # 0, se-
lection (37) makes the observer heavy from the computational
point of view, because M1(7) and Mao(7) are time-varying
matrices, so the Cholesky’s factorization must be performed
at each sampling time in order to determine M (7) in (37),
and consequently the gain K (7) in (36).

This computational aspect motivated us to present an effi-
cient solution corresponding to A = 0 in Theorem 2. However,
based on similar arguments to those presented in Remark 1,
it might be desirable to pick larger values of A to reduce the
aggressiveness of the output error injection and increasing the
filtering action of the sampled-data observer. a

Based on Theorem 2 we can now prove Proposition 2.

Proof of Proposition 2: The first implication, i.e. if LMI
(21) is feasible, then the pair (C, eT) is detectable, is trivial,
because in the case 1T' = T;, = T only periodic sampling
(with period T') is allowed by the observer dynamics. Then
the definition of detectability implies that there does not exist



an asymptotic state observer and condition (21) cannot be

feasible.
Let us prove the converse implication. If the pair (C, e47)
is detectable, then there exist matrices () > 0 and L such that:
Q- (T —LC) QAT —LC) > 0. (39)

Condition (39) is equivalent to the following condition, after
a Schur-complement:

{(eATCELC) Q*—l] > 0. (40)

Since e=4T € R™*" is nonsingular, inequality (40) holds if
and only if:

5 (e o) o] 7

—ATT - AT
it g

Equation (41) can be written as:

e—ATTQe—AT % 0 Car
[ I Q‘l] +He {—I} L [Ce O] >0.
N:= E:= Fhi=
(42)

Applying the elimination lemma, as in Theorem 2, there exists
a matrix L such that (42) is satisfied if and only if the following
relations hold:

(EY) N (EY) >0, (FH'N(FY) >0,  @3)

where EX =T 0 T is a basis of the Kernel of ET, and
F-= 0 T is a basis of the Kernel of F''.

Using the above relations, the left equation in (43) becomes:

[I O} |:eATTIQeAT Q*1:| |:é:| :e(iATT)Qe(_AT)>07
(44)

which is always satisfied because ) > 0. Regarding the right
equation in (43) we have:

[ (CL)TeATT‘ 0 } |:e—ATTQe—AT « } { ATOL | ]
0 \ I

I Q! 0 1
cH' ot «
= {( e“?TC% o1 >0 (45)
which is equivalent to:
T 1L INT ATT A AT ~L
(C’ ) QC f(C’ ) e Qe C— >0, (46)
after a Schur-complement. Let us now select P :=

T . . .. .
e TQeAT | which is positive definite because @ > 0 and
AT

et is nonsingular. Then using P = PP~ P, we obtain:
(1) e AT Tpe=ATCh — (c4) ' PP1PCE >0, (47)

which implies (21) after a Schur-complement. (]

IV. DESIGN ALGORITHM

We propose here an algorithm to solve the infinite-
dimensional problem (21) in a finite number of steps. To this
end let us introduce the following optimization problem:

(P*’ p*) = arg min D, SubjeCt to: (48)
P=PT pym
EP(T) > 2ul, VT € [vaTJW]v

where Zp(7) is defined in (21), and p > 0 is a positive
scalar constant. Problem (48) is again infinite dimensional,
but it avoids numerical problems and solutions that lead to
large values of P because its upper bound is minimized. The
feasibility of problem (48) is equivalent to the feasibility of
problem (21) as established in the following result.

Lemma 2: The optimization problem (48) is feasible if
and only if relation (21) is feasible, moreover any matrix P
solution to (48) is also a solution to (21).

Proof: Any solution to (48) is also a solution of (21), because
(21) has relaxed constraint. Vice versa, consider any P satis-
fying (21) and denote by p,,, pas its minimum and maximum
eigenvalues. Also denote by:

Cmi= i A (up(T)),
where A,,(-) denotes the smallest (real) eigenvalue of the
symmetric matrix at argument. Then it is straightforward

to verify that P —= max{ﬁ%nﬂufm}P satisfies (48) with

pPM = max {%7 2M§mﬁM}p- U

Focusing on (48) we introduce now a numerical algorithm,
aiming at finding a matrix P solution to condition (21) V7 &
[T, Tar]. The scheme of the algorithm is shown at the top
of next page. The algorithm can be roughly divided into three
parts: the initialization, the synthesis, and the analysis phase.
During the initialization we establish an exponential bound on
e~4T by finding a solution IT = ITIT > 0 and 8 > 0 to the
generalized eigenvalue problem:

(A+BI) T+ (A + BI) > 0, (49)

which is a quasi-convex problem easily solved by bisection

algorithms (e.g. with the Matlab command gevp), and then

selecting v := / iM ((1{8 , as established in Lemma 3 below.

Then, during the synthesis phase, we solve the finite dimen-
sional optimization:

Py p¥) =a i , subject to: 50

(Pr,p7) =arg  min  p, subj (50)
Ep(t)>2ul, V7T,
I1<P<puml,

where 7 ranges over a finite number of points collected in the
discrete set 7 (in the first step T = {7}, Tas}). Given an
optimal solution (Pg, p%-) to (50), during the analysis phase
we check the following eigenvalue conditions, relaxing the
constraints in (50) to half of their values:

Spe(r) > pl,  VreTa (51)



Algorithm 1 NUMERICAL PROCEDURE TO SOLVE (50)-(51) (NOTATION set AND solvesdp ARE CONSISTENT WITH Yalmip [29])

Initialize the internal variables: T = {T,,, Tar}; = 1;
constr =set(P > I,,) + set(P < pym1,);
for ¢ from 1 to length(7) do
constr = constr+set (EP(T(Z')) > 2,u12n_m) ;
end for
Until END do
7. (P, Py) = solvesdp(constr,py);
8: if The problem is not feasible then
: END: (48) and (21) are not feasible.
10: end if
11: Define 6% = p (p% || Al veBTM)_l;
12: Define Tg = [Tp, : 205 : Ty
13: for j from 1 to length(7;) do

A A o e

14: mineigs(j, 1) = A\, EP;(E(J'))); mineigs(j,2) = Ta(j);

(21) with P = P7.
15: end for
16: if mineigs(j,1) > p V5 then
17: END: Pr solves (21);

18: else

19: k € argmin;(mineigs(j,1)); 7 = mineigs(k,2);
20: constr = constr + set (Ep(T) > 2u12n_m)

21: end if

Initialize the parameters: /3, II from (49) and v = i‘\M gg)) ;

> Initialize parameters.

> Initialize variables.

> Define the constraints (here called ‘constr’): positivity of P and P bounded.

> The constraints of problem (50) are included. Zp(+) is defined in (21).

> Find a pair (P, P;) solution to the LMI optimization (50).

> Define 63 as in (52).
> Generate T4 in (51) as a set equally spaced values with step 257-.

> For each T € Ty store (Am, (EP?(T)),T). Epj;_(') is defined in

> If all the minimum eigenvalues are larger than f, then P is a solution to (21).

> Locate a worst-case value of 7 € Tg.

> A new constraint is included in (50) by adding 7 to set 7.

where 73 C [T, Tas] contains an ordered set of scalars T, =
T < Tp < - < Ty« = Ty satisfying:

2u

P k=1
Py Al eP T

*
, vt — 1.

(52)
Finally, if this analysis phase is successful, then the algorithm
stops and returns Pr as a solution to (21). Otherwise, a value:

(53)

Th1 — T < 207 =

T € arg }_2}71_{11 (>\7n (EP% (T)))

is added to the set 7, and the algorithm restarts from the
synthesis phase.

A useful property of this algorithm is reported below in
Theorem 3, ensuring that if there exists a pair (P*, p*),
solution to (48), then the algorithm terminates successfully
in a finite number of steps, thus providing a solution to (21).

For stating Theorem 3, the following useful results are
presented. The first result is a straightforward consequence
of standard Lyapunov theory applied to the linear time-
invariant systems & = —Ax. The second result is proven after
Theorem 3 to avoid breaking the flow of the exposition.

Lemma 3: For any square matrix A, there exist a symmetric
positive-definite matrix II > 0 and a scalar S > 0 satisfying
(49). Moreover for any values of I and 5, the following holds:

>\M (H) eﬁ'r

< 7P =
s e )\m(H) >

He“f”) Vr>0.  (54)

Lemma 4: Consider a symmetric matrix 0 < P < pl, a
constant y > 0 and a value 7 € [T}, Tis] such that:

Ep(7) > 2ul. (55)

If v and B are chosen as in Lemma 3, the following holds:

Ep(r) > pl, VY7 €E[T—06,7+0], (56)
as long as § satisfies:
-1
§ < u(pllAllveBTM) : (57)

Now the main theorem can be given. Note that by Lemma 2
assuming the existence of a solution to (48) is equivalent to
assuming the existence of a solution to (21).

Theorem 3: If there exists a solution P* < p*I to prob-
lem (48), then the proposed algorithm terminates successfully
at line 17, providing an output P, after a finite number of
iterations IV satisfying:

§* — H

= Ay OV

where (v, () are any solution to (49). Moreover such an output
Pz is a solution to the infinite-dimensional problem (21).

Proof: Consider the solution (P*, p*) to (48). For any finite
set of points 7 in (50), we have T C [T,,, Tas], therefore
(P*, p*) is also solution to (50) for any selection of 7. As
a consequence, for each 7 we have that (50) is feasible and
its solution (P7, p%) satisfies p% < p*. Then, line 7 of the
algorithm always gives a solution.

Consider now a solution (P7, p%) at some step of the
algorithm iteration and note that for each 7 € 7 we have
Epz(7) > 2ul. Then from Lemma 4 we have that inequality:

Epg;_(’l’) > ul, VTET+5*BCT+6;-B, 59)



where 0" given in (58), and 6% given in (52), satisfy 0* < 6%
because p* > pi-.

Consider now the case Ty — T, < 6*. Then {Tpy, Trn} +
5*B contains [Ty, T),] and the theorem is proven with N =1
iterations. In the less trivial case when Ty, — T;,, > &%, either
the analysis step verifying (51) (see line 17 of the algorithm)
is successful, or it identifies a new value 7 ¢ T + 0*B that
is added to T (the value of 7 at the next synthesis step).
The previous reasoning (together with Ty —T,,, > §*) implies
that 7 only contains elements whose mutual distance is larger
than 0*. Since 7 increases by one element at each iteration,
the algorithm must terminate successfully when 7 has at most
% + 1 elements. Since 7 has two elements at the first
iteration, an upper bound on the number of iterations before
termination is given by:

N:{TM_Tm+1—2w<TM_T’”, (60)
0* 0*

where [-] denotes the smallest integer upper bound of its
argument.

When the algorithm stops, it provides a matrix P satisfying
(51), (52). Then Lemma 4 with § = 03 and (51), (52) imply
that Ep;,(T) > 0Vr € T+ 065B C [T, T, where the
last inclusion follows from comparing (52) and (57). As a
consequence inequality Zp: (1) > 0 is satisfied for all 7 in
[Ty, Tar), which implies (21) with P = P (]

Remark 3: 1If no solution P exists to (21), then either the
algorithm terminates at step 10 with a certified infeasibility
(because infeasibility with T € [T,,, Ts] implies infeasibility
with [T;,,, Tas]), or it runs indefinitely, eventually meeting
numerical problems. A stopping condition could be imposed
by adding an extra well-conditioning constraint P < pl to
(21), (48) and (50), for some reasonably large p € R>¢. Then
the algorithm would be guaranteed to terminate successfully
whenever a solution to (21) with P < pl exists and to
terminate negatively when such a solution does not exist. .

Remark 4: In our preliminary work [25] we proposed a
simple discretization algorithm to get an appropriate solution
to (21). Instead Theorem 3 certifies that whenever (21) is
feasible, Algorithm 1 provides an exact solution to (21). 4

Proof of Lemma 4. Since matrix Zp(7) is symmetric
positive definite, from [30, Corollary 2.5.11] it is possible to
decompose it as:

Ep(F) = NANT, (61)
where A = diag(A\i,---,\,), N = [py,---,Dy,] contain,
respectively, the eigenvalues and an orthonormal set of eigen-
vectors of Zp(7). Under these conditions, and based on
the fact that the eigenvalues \;(7) of Zp(7) are continuous
functions of 7, in [31, Eq. 1.3] it is shown that the first order

derivatives of the eigenvalues \; are:
oN(T)  _10=p(T) _
ar T ar P
where, in our case,
0Zp(7) _[(C*) AT CATP—PA) AT 0L 0
or 0 0|
(63)

N'N =1,

(62)

Therefore, taking into consideration the fact that {7;} is an
orthonormal set, we obtain from (62):

ol 0=p(T)

(64)

U

O (T)
or

< 2| |l A] [e~47

where we used the sub-multiplicativity of the norm, and the
fact that HC’J-H = 1. Based on bounds (49) and (54), and on
the assumption that P < pl, inequality (64) implies:

or

< 2p||A| ve®T < 2p || Al T, (65)

where we used 7 € [T}, Ths]-

If inequality (55) is satisfied, then A, (Ep(?)) > 2
Therefore, from (65), the minimum eigenvalue of Zp(7)
cannot be less than p as long as:

1 -1
relr-n(pllAalye™™) " ru(plAlre™) .

V. NUMERICAL EXAMPLE

Consider system (1)-(2) with the following data:

—0.02 —14 98 9.8 177
A=|(-001 -04 0|, B=|63]|, C=|0| , (66)
0 1 0 0 1
where eig(A4) ={—0.656, 0.118+0.368i, 0.118—0.368:}.

T
0 1 0
: : 1 _
For this selection we fix C— = 07071 0 —0.7071

Algorithm 1 is applied for three different choices of
[T, T In particular for 7 € [1, 3], 7 € [3, 4] and
7 € [4, 8]. In the first case, 7 € [T}, Ta] = [1, 3], the
algorithm finds a solution with only one iteration, as shown
in Figure 1(a). The value of P, solution to the problem is:

0.8334 —0.0041 0.8333
P = {-0.0041 2.0116 —0.0359 (67)
0.8333 —0.0359 0.8341
In a second case we select 7 € [T,,,Tn] = [3, 4] and the

algorithm does not find a solution because the periodically
sampled plant is not observable for 7* = 3.425 € [3, 4]. This
fact is clear looking at Figure 2 where the minimum singular
values of the observability matrix
T
o(m=lc cetr C ()"
are shown. Moreover it is confirmed by Figure 1(b), where it
is shown that, after four iterations, the minimum eigenvalue of
matrix (21) is always negative in a neighborhood of 7 = 3.425.
Finally, in the last case, we select 7 € [T}, Tas] = [4, 8], and
the algorithm finds a solution with two iterations, as shown in
Figure 1(c). The value of P, solution to the problem is:

0.9573 —0.0031 0.9571
P=|-0.0031 22754 —0.0122 (68)
0.9571 —0.0122 0.9573



@

[=]

o

=]
1

_ . - _, 50
‘S * ‘% 0 ’\/_<) £ )
= I ‘:
= ~ -50 = . :
00 0 3 32 3.4 36 38 4 -100, = s
1 15 2 25 3 500
0 ~ ‘ ‘ ‘ ‘ 2
. N
: ‘\J”’ :
£ 06 g
2 *% 10 /
& g
=500 =
3 32 3.4 3.6 3.8 4 = o2 o >
o 200 T?S)
Z100
3 /
£ 00 ) 5
g
~-100 . . : .
3 3.2 3.4 3.6 3.8 4
200
-t
£100 (
g 00 ® P
~-100
3 3.2 3.4 3.6 3.8 4
T (s)
(@) (b) (©

0.2+

0.1

0.05

—
=
—
Q
L
=}
5]
=
g
—
< 015+
=}
B0
g
7]
g
=
g
g
g

Figure 2. Minimum singular values of the observability matrix O(7) for the
periodically sampled plant.

A. Simulation results

Initially, the unstable plant (66) has been stabilized by
means of a state feedback using a low gain:

K, =10"2[0.16 5.47 —0.01],
such that:
eig(A + BK,) = {-0.01, —0.02, —0.03}.

The corresponding slow transient ensures that the signals do
not blow up during the simulation, but they are associated to
a sufficiently rich behavior.

The dynamics expressed in (4) has been implemented
together with the observer (5) in the MATLAB®-Simulink
environment. The gain K (7) is computed on-line according
to (25) by using matrix P in (67) for 7 € [1, 3] and P in (68)
for 7 € [4, 8]. Moreover, in order to implement a random
value of the time-instant of the measurements, we implement
the following modified error dynamics, corresponding to (6)
with random selection of the inter-measurement intervals:

é = Ae,
7=1, 7 € [T, 0], (69a)
o= -1,

—0 7 = 0. (69b)

where vTis a random variable uniformly distributed in the
interval [0,1]. This modified dynamics is inspired, with the
same notation, by [32].

In Figure 3 the real and estimated state vector components
i, T, 1 = 1,2,3, as well as estimation errors e; = x; — j,
i = 1,2,3, are shown, during the first test with 7 € [1, 3].
Moreover, for the same test, the waveforms of the Lyapunov
function V, of the variables 7 and 7, and of the output error
y — ¢ are shown in Figure 4.

From Figure 3 it is evident that the estimated variables track
very well the corresponding state variables and all the errors
go to zero asymptotically. Moreover, it is possible to note
the impulsive behavior of the estimate especially during the
initial transient. From Figure 4 we note that the Lyapunov
function is constant during flow, and decreases across jumps,
as expected from the theoretical results (Lemma 1). Finally,
from the waveforms of 7 and 7,, we see that the jumps occur
randomly in the interval [1, 3] according to the described
dynamics.

Figures 5-6 show the results for the same test described
above, but when the measurements are provided more sporad-
ically, 7 € [4, 8]. In this case the same comments given for
the first test can be provided, confirming the effectiveness of
the proposed approach. Obviously, the convergence rate in this
case is slower because the measurements are accessible less
frequently.

VI. CONCLUSION

In this work an observer with a time-varying output error
injection has been proposed for a linear continuous-time
plant with asynchronous sampled measurements. In particular
some theoretical tools have been provided, in terms of LMlIs,
certifying asymptotic stability of a certain compact set where
the estimation error is zero. Two solutions have been proposed,



10*
10 = ‘ ‘ ‘ ‘
& 50 --—-Real i
§ —— Estimated
0 L L L L
0 20 40 60 80 100
_ 500 : : : :
“ 0 A/I/l
I
8 500 . . . .
0 20 40 60 80 100
10 ‘ ‘ ‘ ‘
<§: 0 FA\ |
g
10 ‘ ‘ ‘ ‘
0 20 40 60 80 100
10 T T T T
I 0 ™
= 10 ‘ ‘ ‘ ‘
0 20 40 60 80 100
200 ! ! ! !
“ 100 ¢ ]
&
0 : : : :
0 20 40 60 80 100
. 40 : : : :
B
| 20 /LL‘_“ ]
&
O n n n "
0 20 40 60 80 100

time

Figure 3. Real and estimated state vector components z;, T;, ¢ = 1,2, 3, as
well as estimation errors x; — &5, ¢ = 1,2, 3, during a test with 7 € [1, 3].
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Figure 4. Waveforms of the Lyapunov function V/, of the variables 7 and 7,
and of the output error y — g, during a test with 7 € [1, 3].

one under the restrictive assumption that the output matrix is
invertible, and one for the more general case of a detectable
pair, under the assumption that some LMI conditions hold.
Moreover, necessary conditions for the feasibility of those
LMI have been established. Since the proposed time-varying
observer is based on a solution to an infinite-dimensional
LMI, a numerical algorithm has been introduced which is
guaranteed to converge after a finite number of iterations to
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Figure 5. Real and estimated state vector components x;, &;, ¢ = 1,2, 3, as
well as estimation errors x; — &4, ¢ = 1,2, 3, during a test with 7 € [4, 8].
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Figure 6. Waveforms of the Lyapunov function V, of the variables 7 and 7,
and of the output error y — ¢, during a test with = € [4, 8].

a solution to the infinite dimensional problem whenever one
exists. The results provided by a numerical example show
the effectiveness of the proposed approach, confirming the
theoretical results and the feasibility of the proposed numerical
solution.
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