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Time-varying Sampled-data Observer with
Asynchronous Measurements

(Extended Version)
Antonino Sferlazza, Member IEEE, Sophie Tarbouriech, Member IEEE, Luca Zaccarian, Fellow Member IEEE.

Abstract—In this paper a time-varying observer for a linear
continuous-time plant with asynchronous sampled measurements
is proposed. The observer is contextualized in the hybrid systems
framework providing an elegant setting for the proposed solution.
In particular some theoretical tools are provided, in terms
of LMIs, certifying asymptotic stability of a certain compact
set where the estimation error is zero. We consider sampled
asynchronous measurements that occur at arbitrary times in a
certain window with an upper and lower bound. The design
procedure, that we propose for the selection of the time-varying
gain, is based on a constructive algorithm that is guaranteed
to find a solution to an infinite-dimensional LMI whenever a
feasible solution exists. Finally a numerical example shows the
effectiveness of the proposed approach.

Index Terms—Sample data observer, discrete asynchronous
measurements, hybrid systems, linear systems, linear matrix
inequalities.

I. INTRODUCTION

In the last years, the design of observers for systems
with sampled measurements has received great attention. This
interest is motivated by many engineering applications, such as
sampled-data systems, quantized systems, networked systems,
localization of mobile vehicles, etc. [1], [2], [3]. In these cases,
the output is available only at sampling instants, and, for this
reason, classical observer structures cannot be used.

This problem is not new in control engineering and there
are many works in the literature dealing with these issues,
providing several solutions. In particular this problem has been
considered in a stochastic framework, and particular Kalman
filters have been developed for these purposes. For example in
[4], a Kalman filter with intermittent observations is developed
starting from the discrete Kalman filtering formulation, and
modeling the input of the observation as a random process.
A similar approach is followed in [5] where the observations
are available according to a Bernoulli process. Further con-
vergence analysis and boundedness analysis on the estimation
error have been recently analyzed in [6] and [7]. Other
examples are given in [8] where the intermittent observations
are considered in the development of an unscented Kalman
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filter. Another stochastic approach, is proposed in [9], where
an intrinsic filtering on the special orthogonal group SO(3)
is shown. Here the problem of the continuous-time dynamics
with discrete measurements is cast into a rigorous stochastic
and geometric framework.

A deterministic approach has been followed in other works.
For example an interesting approach is proposed in [10] where
the finite time convergence of an observer is proven for linear
systems with sampled measurements, and subsequently in [11]
and [12], where a similar method has been proposed for
nonlinear Lipschitz systems with sampled measurements. This
approach has been extended in [13] by means of new condi-
tions in terms of linear matrix inequalities (LMIs). Moreover
similar types of observers has been developed, such as in [14],
where the same category of systems have been treated, but
obtaining conditions in different form, or in [15] and [16],
where nonlinear uniformly observable single output systems
[17] are addressed. Finally, by using Lyapunov tools adapted to
impulsive systems, some classes of systems with both sampled
and delayed outputs are addressed in [18] and [19].

Recently, different approaches have been proposed using
the hybrid system formalism of [20]. The use of the hybrid
formalism provides a natural setting for the modeling of this
type of observers, where both continuous-time and discrete-
time dynamics coexist. Indeed a sampled-data observer can
be modeled by a ”flow map”, which describes the continuous-
time dynamics when the measurement is not available, while
the measurement can be considered as a discrete event and can
be modeled by a suitable ”jump map”. This kind of formalism
is applied in [21], [22], where the estimation of the state of a
linear time invariant systems is proposed, with asynchronous
measurements and a constant output error injection gain. In
the same context [23] proposes a hybrid observer for linear
systems producing an estimate that converges to the plant
state in finite time. These concepts have also been applied
to distributed systems such as in [24], where the problem
of estimating the state of a linear time-invariant plant is
addressed in a distributed fashion over networks allowing only
intermittent transmission of information.

In this paper we address the presence of asynchronous
sampled measurements for continuous-time plants using a
hybrid formalism. Differently from the other papers presented
in the literature, a design procedure based on a constructive
solution to an infinite-dimensional LMI is given, leading to
a time-varying observer gain. In particular some theoretical
tools are provided, in terms of LMIs, certifying asymptotic
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stability of a certain compact set where the estimation error is
zero. Moreover, necessary conditions for the existence of the
proposed observer are also given. Since the proposed hybrid
time-varying observer is based on a solution to an infinite-
dimensional LMI, a solution algorithm is proposed, which is
proven to find a solution to the infinite-dimensional problem
in a finite number of iterations, whenever the problem admits
one.

Preliminary results in the directions of this paper have been
presented in [25]. Here, as compared to [25], we provide
proofs, prove an insightful necessary condition, which is
also sufficient in some special cases. We also reformulate
completely the numerical algorithm, which is here proven to
always lead to a solution, whenever the (infinite-dimensional)
observer design conditions are feasible.

The paper is organized as follows. In Section II the problem
statement is formalized by fitting our problem in the hybrid
systems framework. Then in Section III an analysis result is
presented certifying asymptotic stability of a certain compact
set where the estimation error is zero. Subsequently two
possible time-varying gain selections are proposed, one under
the restrictive assumption that the output matrix is invertible,
and one for the more general case of a detectable pair, under
the assumption that some LMI conditions hold. Moreover, nec-
essary conditions for the existence of the proposed observer are
given establishing an interesting link between the feasibility of
the proposed construction and the detectability of the sampled
plant. In Section IV a numerical algorithm is proposed in order
to solve the infinite-dimensional LMIs given in Section III in
a finite number of steps. In Section V a numerical example
is given in order to show the effectiveness of the proposed
approach. Finally the conclusion are given in Section VI.

II. PROBLEM STATEMENT

In this work we consider a class of systems described by
the following equation:

ẋ = Ax+Bu, (1)

where x ∈ Rn is the state of the system, u : [0,∞) → Rq

is a known input that belongs to the class of locally bounded
measurable functions, A ∈ Rn×n, and B ∈ Rn×q . Let us
assume that an output of system (1) is accessible at discrete
instants of time, resulting in a sequence of m dimensional
vectors yk, k ∈ Z≥1 defined as:

yk := Cx(tk), (2)

where C ∈ Rm×n is full row rank and tk, k ∈ Z≥1, is a
sequence of increasing non-negative real numbers that satisfies
the following sssumption:

Assumption 1: There exist scalars Tm and TM , with 0 <
Tm ≤ TM , such that:

Tm ≤ |tk+1 − tk| ≤ TM , ∀ k ∈ Z≥1. (3)

Assumption 1 requires that we are considering the case of
asynchronous discrete-time measurements with a sampling
interval lower and upper bounded by two known positive con-
stants Tm and TM . Note that Tm must be strictly greater than

zero to avoid Zeno behaviors in the hybrid model developed
below.

Taking inspiration from the hybrid systems formalism of
[20], it is possible to represent the sampled-data system
associated with this setting as follows:{

ẋ = Ax+Bu,

τ̇ = 1,
(x, τ) ∈ Cx := Rn × [0, TM ], (4a){

x+ = x,

τ+ = 0,
(x̂, τ) ∈ Dx := Rn × [Tm, TM ], (4b)

y = Cx, (4c)

where the variable τ is a timer keeping track of the elapsed
time since the last sample, and the impulsive nature of the
available measurement is represented by the extra property
that output y is only available at jump times. With model (4),
one readily sees that for any sequence yk in (2), satisfying (3),
there exists a solution to (4) such that yk = y(tk, k), k ∈ Z≥1.

Constraining the jump set to be included in the set where
τ ∈ [Tm, TM ] ensures that Assumption 1 is verified as clarified
in the next statement, which is a corollary of [26, Props 1.1
& 1.2, page 747].

Proposition 1: Consider any solution to (4) and denote by
tk, k ∈ Z≥1, its jump times. Then the sequence tk satisfies
Assumption 1. Moreover, consider any sequence tk, k ∈ Z≥1,
satisfying Assumption 1. For each x0 ∈ Rn there exists τ0 ∈
[0, TM ] such that a solution φ to (4) with φ(0, 0) = (x0, τ0)
has jump times coinciding with tk, k ∈ Z≥1.

In this paper we propose an observer whose structure im-
plicitly complies with the restriction specified in Assumption 1
on the available output. Our observer is capable of providing
an asymptotic estimate of the plant state, regardless of the
sequence of times tk at which the sampled output is available.
The hybrid structure of the proposed observer is the following:{

˙̂x = Ax̂+Bu, (x̂, x, τ) ∈ Rn × Cx,
x̂+ = x̂+K(τ)

(
y − Cx̂

)
, (x̂, x, τ) ∈ Rn ×Dx,

(5)

where the matrix function K : [Tm, TM ] → Rn×m corre-
sponds to the time-varying gain of the observer responsible
for the discrete output injection term. It is clear that with
dynamics (5) and due to Proposition 1 output y is only used
at the sampling instants tk compliant with Assumption 1.

The design of the time-varying gain K(·) will be performed
in the next section. Note that as compared to a standard
LTI Luenberger architecture (such as the one used in [21]),
observer (5) is based on an injection term that depends on the
elapsed time since the last measurement. Such an elapsed time
is known to the observer by way of state τ in (4).

III. STABILITY CONDITIONS GAIN SELECTION

One of the main goals of this work is to give design rules
to select the gain function K(·) in (5) such that the estimation
error e := x − x̂ converges asymptotically to zero. Such a
property is well characterized in terms of the stability of the
following error dynamics, issued from (4)-(5):{

ė = Ae,

τ̇ = 1,
(e, τ) ∈ C := Rn × [0, TM ], (6a)
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{
e+ =

(
I −K(τ)C

)
e,

τ+ = 0,
(e, τ) ∈ D := Rn × [Tm, TM ].

(6b)
We first present an analysis result certifying asymptotic

stability of the compact set:

A :=
{

(e, τ) : e = 0, τ ∈ [0, TM ]
}
, (7)

corresponding to the set where the estimation error is zero.
Note that Lemma 1 below is an extension of Theorem 1 in

[21] to the case of time-varying injection gain K(·).
Lemma 1: Assume that there exists a matrix P = P> > 0,

and a continuous matrix function τ → K(τ) such that:[
e(−A>τ)P e(−Aτ) P

P P

]
>

[
0 ?

PK(τ)C 0

]
, ∀τ ∈ [Tm, TM ].

(8)
Then set A in (7) is uniformly globally asymptotically stable 1

(UGAS) for the error dynamics in (6).
Proof: Consider the Lyapunov function:

V (e, τ) = e>e(−A>τ)P e(−Aτ)e, (9)

and observe that there exist positive scalars c1 and c2 satisfy-
ing:

c1|e|2 ≤ V (e, τ) ≤ c2|e|2, ∀e ∈ Rn, τ ∈ [0, TM ], (10)

where, denoting by λm(S) and λM (S) the minimum and the
maximum eigenvalues of symmetric matrix S, respectively, we
selected:

c1 := min
τ∈[0,TM ]

λm

(
e(−A>τ)P e(−Aτ)

)
, (11a)

c2 := max
τ∈[0,TM ]

λM

(
e(−A>τ)P e(−Aτ)

)
, (11b)

which are well defined and positive, from positive definitive-
ness of P and invertibility of e(−Aτ).

The variation of V along flowing solutions of (6) is:

V̇ (e, τ) :=

2e>e(−A>τ)P e(−Aτ)ė+ e>(−A>)e(−A>τ)P e(−Aτ)e

+ e>e(−A>τ)P e(−Aτ)(−A)e =

e>e(−A>τ)P e(−Aτ)
(
2Ae−Ae−Ae

)
= 0,

∀(e, τ) ∈ Rn × [0, TM ]. (12)

The variation of V across jumping solutions of (6) is:

∆V (e, τ) := V (e+, τ+)− V (e, τ) =

e>
(
I −K(τ)C

)>
P
(
I −K(τ)C

)
e− e>e(−A>τ)P e(−Aτ)e =

− e>
(

e(−A>τ)P e(−Aτ) −
(
I −K(τ)C

)>
P
(
I −K(τ)C

))
︸ ︷︷ ︸

M(τ):=

e,

∀(e, τ) ∈ Rn × [Tm, TM ], (13)

1For a definition of uniform global asymptotic stability of a compact
attractor for a hybrid system, see [20, Ch 3].

where we recall that τ ∈ [Tm, TM ] for all (e, τ) ∈ D. Consider
now (8), which implies:[

e(−A>τ)P e(−Aτ) ?

P
(
I −K(τ)C

)
P

]
> 0 ∀τ ∈ [Tm, TM ], (14)

and after a Schur-complement:

e(−A>τ)P e(−Aτ) −
(
I −K(τ)C

)>
P
(
I −K(τ)C

)
> 0,

namely M(τ) > 0, ∀τ ∈ [Tm, TM ]. Define the positive scalar
c3 as follows:

c3 := min
τ∈[Tm,TM ]

λm

(
M(τ)

)
. (15)

Then one gets from (13):

∆V (e, τ) ≤ −c3|e|2, ∀(e, τ) ∈ D. (16)

The proof is completed by first noting that, for attractor A in
(7), |(e, τ)|A = |e|, and then exploiting the fact that solutions
to (6) are persistently jumping at least every TM ordinary time.
Indeed, for each solution φ and for each (t, j) ∈ domφ, it is
immediate to check that j ≥ t

TM
− 1.

Then uniform global asymptotic stability of A follows from
(10), (12), (16) and [20, Proposition 3.24] with Nr = 1 and
γr(t) = t

TM
. �

Based on the analysis result of Lemma 1, we can now prove
a few relevant constructions for the gain K(·), corresponding
to a few special cases. The first case is relatively straightfoward
and corresponds to the case where C is invertible (namely
the state is completely accessible at the sampling instants).
This case is somewhat interesting because it corresponds to
the source of inspiration of the subsequent construction, and
has been used in a dedicated application by the first author in
[27]. It is reported below.

Theorem 1: If C is invertible, then for any P = P> > 0
and any λ ∈ [0, 1), inequality (8) is satisfied with:

K(τ) =
(
I − λe(−Aτ)

)
C−1, (17)

which then guarantees UGAS of A for system (6).
Proof: By virtue of selection (17), we have

P (τ)K(τ)C = P (I − λe(−Aτ)). (18)

Then condition (8) in Lemma 1, becomes:[
e(−A>τ)P e(−Aτ) λe(−A>τ)P

λP e(−Aτ) P

]
> 0⇐⇒

[
P λP
λP P

]
> 0.

(19)
The last one is always verified for 0 ≤ λ < 1, and for any
positive definite matrix P . �

Remark 1: The effect of selection (17) in Theorem 1 on the
jump equation (6b) of the error dynamics is insightful in terms
of the selection of constant λ in (17). In particular, using (17)
in (6b), we obtain:

e+ = λe(−Aτ)e, (20)

which clearly reveals that the choice λ = 0 leads to a dead-beat
controller, while the choice λ = 1 leads to a nontrivial reset
that resets back the estimation error to the value that it had
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immediately after the previous sample (this fact is evident by
keeping in mind the explicit expression of the error e(t, k) =
e(Aτ)e(tk, k) for all t ∈ [tk, tk+1]). Clearly, the choice λ = 1
is not allowed in our result because it leads to a bounded, but
non converging, response. y

The solution of Theorem 1 is only viable under demanding
conditions on the available measurements, that are only seldom
verified. Due to this reason, one of the main contributions
of this paper is the result given next, which provides a
construction for the gain K(·) as long as one can find a
constant matrix P satisfying the following infinite set of matrix
inequalities:

ΞP (τ) :=

[(
C⊥
)>

e(−A>τ)P e(−Aτ)C⊥ ?
PC⊥ P

]
> 0,

∀τ ∈ [Tm, TM ], (21)

where C⊥ denotes the orthogonal complement of C>, namely
a matrix such that [C⊥ C>] is square and nonsingular, and
such that CC⊥ = 0.

Matrix inequality (21) is not easy to solve, but we discuss
in Section IV a numerical algorithm that is able to perform
this task. We report below the explicit expression of K(·),
which induces UGAS of attractor A for the observation error
dynamics, as long as (21) is satisfied.

Theorem 2: Assume C is full row rank and denote by C⊥

a basis of the orthogonal complement of C>. If there exists
P = P> > 0 satisfying (21), then selection:

K(τ) :=
(
C> − C⊥

(
(C⊥)>e(−A>τ)P e(−Aτ)C⊥

)−1

(
C e(−A>τ)P e(−Aτ)C⊥

)> )
(CC>)−1, (22)

guarantees UGAS of A for system (6).
Proof: The proof is divided into two parts. In the first part

we show that condition (21) is enough to ensure the existence
of a gain K(·) such that (8) is satisfied. In the second part
we show that given a matrix P satisfying condition (21), then
(8) is satisfied for the gain K(·) selected as in (22). Then the
result follows from Lemma 1.

Part 1 (Proof of the existence): In this first part we have to
show that if (21) holds, then there exists K(·) (equivalently
Y (·)) such that following inequality holds:[

Ψ(τ) ?
P + Y (τ)C P

]
:=

[
e(−A>τ)P e(−Aτ) ?
P − PK(τ)C P

]
> 0, (23)

where we introduced Ψ(τ) := e(−A>τ)P e(−Aτ) and Y (τ) :=
−PK(τ). Equation (23) can be written as:[

Ψ(τ) ?
P P

]
︸ ︷︷ ︸

Q(τ)

+

[
0
I

]
︸︷︷︸
H

Y (τ)
[
C 0

]︸ ︷︷ ︸
G>

+

[
C>

0

]
Y (τ)

[
0 I

]
> 0.

(24)
Applying the elimination lemma (see, e.g. [28, Equations
(2.27)-(2.28)]) for each τ there exists a matrix Y (τ) such that
(24) is satisfied if and only if the following relations hold:(

H⊥
)>
Q(τ)

(
H⊥

)
> 0,

(
G⊥
)>
Q(τ)

(
G⊥
)
> 0, (25)

where H⊥ =

[
I
0

]
is a basis of the Kernel of H>, and

G⊥ =

[
C⊥ 0
0 I

]
is a basis of the Kernel of G>.

Using the above relations, the left equation in (25) becomes:

[
I 0

] [Ψ(τ) ?
P P

] [
I
0

]
= Ψ(τ) = e(−A>τ)P e(−Aτ) > 0,

(26)
which is always satisfied because P > 0. Regarding the right
equation in (25) we have:[ (

C⊥
)>

0
0 I

] [
Ψ(τ) ?
P P

] [
C⊥ 0
0 I

]
=[(

C⊥
)>

Ψ(τ)C⊥ ?
PC⊥ P

]
> 0, (27)

which is satisfied by hypothesis (21). This means that if condi-
tion (21) is satisfied, then there exists Y (τ) (and consequently
a matrix gain K(τ) = −P−1Y (τ)) such that (24) (therefore
(8)) is satisfied.

Part 2 (Selection of K(·)): We show next that for a given
matrix P satisfying condition (21), inequality (8) is satisfied
for the gain K(·) proposed in (22).

Since C is full row rank, then R := [C⊥ C>] ∈ Rn×n is
nonsingular, and inequality (23) holds if and only if:[

R 0
0 I

]> [
Ψ(τ) ?

P + Y (τ)C P

] [
R 0
0 I

]
=

=

 (C⊥)>Ψ(τ)C⊥ ? ?
CΨ(τ)C⊥ CΨ(τ)C> ?
PC⊥ PC> + Y (τ)CC> P

 > 0,

∀τ ∈ [Tm, TM ], (28)

where we used CC⊥ = 0. By applying a Schur-complement,
and using the property (C⊥)>Ψ(τ)C⊥ > 0, ∀τ ∈ [Tm, TM ]
(ensured by the upper left entry of (21)), we obtain that
inequality (28) is equivalent to the following constraint:[

M11(τ) ?
M21(τ) M22(τ)

]
=

[
CΨ(τ)C> ?

PC> + Y (τ)CC> P

]
−
[
CΨ(τ)C⊥

PC⊥

]
︸ ︷︷ ︸

Σ>:=

[
(C⊥)>Ψ(τ)C⊥

]−1

Σ > 0 (29)

Since we already established (in Part 1 of this proof) the
existence of a solution Y (τ) to (29), the diagonal terms
M11(τ) and M22(τ) in (29), which are independent of Y (τ),
must necessarily be positive definite. So in order to ensure
that inequality (29) is satisfied, it is enough to show that
M21(τ) = 0, ∀τ ∈ [Tm, TM ], which is done below. In
particular, noting that expression (22) corresponds to:

Y (τ) = PK(τ) =

P
(
C⊥

(
(C⊥)>Ψ(τ)C⊥

)−1 (
CΨ(τ)C⊥

)>−C>)(CC>)−1.

(30)
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Then simple manipulations are sufficient to show that:

M21(τ) = PC> + Y (τ)CC>

− PC⊥
(
(C⊥)>Ψ(τ)C⊥

)−1 (
CΨ(τ)C⊥

)>
= 0, (31)

Thus completing the proof. �
Remark 2: Selection (22) for gain K(·) can well be

understood as follows:

K(τ) :=
(
PC⊥

(
(C⊥)>Ψ(τ)C⊥

)−1 (
C Ψ(τ)C⊥

)>
M21(τ)− PC>

)
(CC>)−1, (32)

where Ψ(τ) := e(−A>τ)P e(−Aτ), and where any matrix
M12(τ) can be selected, as long as it guarantees inequality
(23). Part 1 of the proof of the theorem guarantees that
both M11(τ) and M22(τ) are uniformly positive definite
in [Tm, TM ]. We may then get inspired by the parametric
selection (17) of Theorem 1 and pick:

M21(τ) = λ
(
M

1
2

22(τ)
)>

M
1
2

11(τ), λ ∈ [0, 1), (33)

where M
1
2

11(τ) and M
1
2

22(τ) are the Cholesky’s factorizations of
the positive definite matrices M11(τ) and M22(τ) respectively.
With selection (33), we always satisfy (29) because a Schur-
complement ensures (29) as long as:

M11(τ)−M>21(τ)M−1
22 (τ)M21(τ) = (1− λ2)M11(τ) > 0,

(34)
which holds true as long as λ ∈ [0, 1). For any λ 6= 0, se-
lection (33) makes the observer heavy from the computational
point of view, because M11(τ) and M22(τ) are time-varying
matrices, so the Cholesky’s factorization must be performed
at each sampling time in order to determine M21(τ) in (33),
and consequently the gain K(τ) in (32).

This computational aspect motivated us to present an effi-
cient solution corresponding to λ = 0 in Theorem 2. However,
based on similar arguments to those presented in Remark 1,
it might be desirable to pick larger values of λ to reduce the
aggressiveness of the output error injection and increasing the
filtering action of the sampled data observer. y

The next result shows an interesting link between the
feasibility of construction in Theorem 2 and the detectability
of the sampled plant when Tm = TM , thereby giving some
insight about the conservativeness of the design conditions.

Proposition 2: Consider any positive value of T = Tm =
TM . LMI (21) is feasible if and only if pair (C, eAT ) is
detectable, i.e. if the minimum singular value of the matrix
O(T ) defined as:

O(T ) =

[
C Ce(−A>T) · · · C

(
e(−A>T)

)n−1
]>
(35)

is greater than zero.
Proof: The first implication, i.e. if LMI (21) is feasible,

then the pair (C, eAT ) is detectable, is trivial, because in the
case T = Tm = TM only periodic sampling (with period T )
is allowed by the observer dynamics. Then the definition of
detectability implies that there does not exist an asymptotic
state observer and condition (21) cannot be feasible.

Let us prove the converse implication. If the pair (C, eAT )
is detectable, then there exist matrices Q > 0 and L > 0 such
that:

Q−
(
eAT − LC

)>
Q
(
eAT − LC

)
> 0. (36)

Condition (36) is equivalent to the following condition, after
a Schur-complement:[

Q ?(
eAT − LC

)
Q−1

]
> 0. (37)

Since e−AT ∈ Rn×n is nonsingular, inequality (37) holds if
and only if:[

e−AT 0
0 I

]> [
Q ?(

eAT − LC
)

Q−1

] [
e−AT 0

0 I

]
=[

e−A
>TQe−AT ?(

I − LCe−AT
)

Q−1

]
> 0. (38)

Equation (38) can be written as:

[
e−A

>TQe−AT ?
I Q−1

]
︸ ︷︷ ︸

N :=

+He


[

0
−I

]
︸ ︷︷ ︸
E:=

L
[
Ce−AT 0

]︸ ︷︷ ︸
F>:=

 > 0.

(39)
Applying the elimination lemma, as in Theorem 2, there exists
a matrix L such that (39) is satisfied if and only if the following
relations hold:(

E⊥
)>
N
(
E⊥
)
> 0,

(
F⊥
)>
N
(
F⊥
)
> 0, (40)

where E⊥ =

[
I
0

]
is a basis of the Kernel of E>, and

F⊥ =

[
eATC⊥ 0

0 I

]
is a basis of the Kernel of F>.

Using the above relations, the left equation in (40) becomes:[
I 0

] [e−A>TQe−AT ?
I Q−1

] [
I
0

]
= e(−A>T)Q e(−AT ) > 0,

(41)
which is always satisfied because Q > 0. Regarding the right
equation in (40) we have:[ (

C⊥
)>

eA
>T 0

0 I

] [
e−A

>TQe−AT ?
I Q−1

] [
eATC⊥ 0

0 I

]
=

[(
C⊥
)>
QC⊥ ?

eATC⊥ Q−1

]
> 0, (42)

which is equivalent to:(
C⊥
)>
QC⊥ −

(
C⊥
)>

eA
>TQeATC⊥ > 0, (43)

after a Schur-complement. Let us now select P :=
eA
>TQeAT , which is positive definite because Q > 0 and

eA
>

is nonsingular. Then using P = PP−1P , we obtain:(
C⊥
)>

e−A
>TP e−ATC⊥ −

(
C⊥
)>
PP−1PC⊥ > 0, (44)

which implies (21) after a Schur-complement. �
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Algorithm 1 A NUMERICAL PROCEDURE TO SOLVE (47)-(48)

1: β ← such that (46) is satisfied; γ ← root square condition number of Π in (46)
2: T ← {Tm, TM}; µ← 1; P ← sdpvar(n, n); pM ← sdpvar(1, 1) . Initialize variables.
3: constr = set(P ≥ In) + set(P ≤ pMIn) . Define the constraints: positivity of P and P bounded.
4: for i← 1, length(T ) do
5: constr = constr + set

(
ΞP (T (i)) > 2µI2n−m

)
. The other constraints of problem (47) are included.

6: end for
7: while 1 do
8: P ∗T = P ← solvesdp(constr, pM ) . Find a matrix P ∗T solution to the optimization (47).
9: if The problem is not feasible then

10: (45) and (21) not feasible.
11: end if
12: Td = Tm : 2δ∗T : TM . Generate the set Td used in (48).
13: for j ← 1, length(Td) do
14: mineigs(j)← min eig

(
ΞP∗T (Td(j))

)
. Compute the minimum eigenvalues of ΞP∗T (·) ∀τ ∈ Td.

15: end for
16: if mineigs(j) > µ ∀j then
17: break return(P ∗T ) . If all the minimum eigenvalues are larger than µ, then P ∗T is a solution.
18: else
19: τ̄ ← arg minτ∈Td(mineigs)

20: constr = constr + set
(

ΞP (τ̄) > 2µI2n−m

)
. A new constraint is included in (47) by adding τ̄ to set T .

21: end if
22: end while

IV. DESIGN ALGORITHM

We propose here an algorithm to solve the infinite-
dimensional problem (21) in a finite number of steps. To this
end let us introduce the following optimization problem:

(P ∗, p∗) = arg min
P=P>,pM

pM , subject to: (45)

ΞP (τ) > 2µI, ∀τ ∈ [Tm, TM ],

I ≤ P ≤ pMI,

where ΞP (τ) is defined in (21), and µ > 0 is a positive
scalar constant. Problem (45) is again infinite dimensional,
but it avoids numerical problems and solutions that lead to
large values of P because its upper bound is minimized. The
feasibility of problem (45) is equivalent to the feasibility of
problem (21) as established in the following result.

Lemma 2: The optimization problem (45) is feasible if
and only if relation (21) is feasible, moreover any matrix P
solution to (45) is also a solution to (21).
Proof: Any solution to (45) is also a solution of (21), because
(21) has relaxed constraint. Vice versa, consider any P̄ satis-
fying (21) and denote by p̄m, p̄M its minimum and maximum
eigenvalues. Also denote by:

ξm := min
τ∈[Tm,TM ]

λm

(
ΞP̄ (τ)

)
,

where λm(·) denotes the smallest (real) eigenvalue of the
symmetric matrix at argument. Then it is straightforward
to verify that P = max

{
1
p̄m
, 2µξm

}
P̄ satisfies (45) with

p̄M = max
{
p̄M
p̄m
, 2µξmp̄M

}
P̄ . �

Focusing on (45) we introduce now a numerical algorithm,
aiming at finding a matrix P solution of problem (21) ∀τ ∈

[Tm, TM ]. The scheme of the algorithm is shown at the top
of this page. The algorithm can be roughly divided into three
parts: the initialization, the synthesis, and the analysis phase.
During the initialization we establish an exponential bound on
e−AT by finding a solution Π = Π> > 0 and β ≥ 0 such
that:

(A+ βI)
>

Π + Π (A+ βI) > 0, (46)

and then selecting γ :=
√

λM (Π)
λm(Π) , as established in Lemma 3

below. Then, during the synthesis phase, we solve the finite
dimensional optimization:

(P ∗T , p
∗
T ) = arg min

P=P>, pM
pM,, subject to: (47)

ΞP (τ) > 2µI, ∀τ ∈ T ,
I ≤ P ≤ pMI,

where τ ranges over a finite number of points collected in the
discrete set T (in the first step T = {Tm, TM}). Given an
optimal solution (P ∗T , p

∗
T ) of (47), during the analysis phase

we check the following eigenvalue conditions, relaxing the
constraints in (47) to half of their values:

ΞP∗T (τ) > µI, ∀τ ∈ Td, (48)

where Td ⊂ [Tm, TM ] contains an ordered set of scalars Tm =
τ1 < τ2 < · · · < τν∗ = TM satisfying:

τk+1 − τk ≤ 2δ∗T :=
2µ

p∗T ‖A‖ γeβTM
, ∀k = 1, · · · , ν∗ − 1.

(49)
Finally, if this analysis phase is successful, then the algorithm
stops and returns P ∗T as a solution to (21). Otherwise, a value:

τ̄ ∈ arg min
τ∈Td

(
λm
(
ΞP∗T (τ)

))
(50)
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is added to the set T , and the algorithm restarts from the
synthesis phase.

A useful property of this algorithm is reported below in
Theorem 3, ensuring that if there exists a pair (P ∗, p∗),
solution to (45), then the algorithm terminates successfully
in a finite number of steps, thus providing a solution to (21).

For stating Theorem 3, the following useful results are
presented. The first result is a straightforward consequence
of standard Lyapunov theory applied to the linear time-
invariant systems ẋ = −Ax. The second result is proven after
Theorem 3 to avoid breaking the flow of the exposition.

Lemma 3: For any square matrix A, there exist a symmetric
positive-definite matrix Π > 0 and a scalar β ≥ 0 satisfying
(46). Moreover for any such values of Π and β, the following
holds:∥∥∥e(−Aτ)

∥∥∥ ≤ γeβτ :=

√
λM (Π)

λm(Π)
eβτ , ∀τ ≥ 0. (51)

Lemma 4: Consider a symmetric positive definite matrix
P ≤ pI , a positive constant µ and a value τ̄ ∈ [Tm, TM ] such
that

ΞP (τ̄) > 2µI. (52)

If γ and β are chosen as in Lemma 3, then the following
holds:

ΞP (τ) > µI, ∀τ ∈ [τ̄ − δ, τ̄ + δ], (53)

as long as δ satisfies:

δ ≤ µ
(
p ‖A‖ γeβTM

)−1

. (54)

Now the main theorem can be given. Note that by Lemma
2 assuming the existence of a solution to (45) is equivalent to
assuming the existence of a solution to (21).

Theorem 3: If there exists a solution P ∗ ≤ p∗I to prob-
lem (45), then the proposed algorithm terminates successfully
at line 17, providing an output P ∗T , after a finite number of
iterations N satisfying:

N ≤ (TM − Tm)/δ∗, δ∗ =
µ

p∗ ‖A‖ γeβTM
. (55)

where (γ, β) come from any solution to (46). Moreover
such an output P ∗T is a solution to the infinite-dimensional
problem (21).

Proof:
Consider the solution (P ∗, p∗) to (45). For any finite set

of points T in (47), we have T ⊂ [Tm, TM ], therefore
(P ∗, p∗) is also solution to (47) for any selection of T . As
a consequence, for each T we have that (47) is feasible and
its solution (P ∗T , p

∗
T ) satisfies p∗T ≤ p∗. Then, line 8 of the

algorithm always gives a solution.
Consider now a solution (P ∗T , p

∗
T ) at some step of the

algorithm iteration and note that for each τ ∈ T we have
ΞP∗T (τ) > 2µI . Then from Lemma 4 we have that inequality:

ΞP∗T (τ) > µI, ∀τ ∈ T + δ∗B ⊂ T + δ∗T B, (56)

where δ∗ given in (55), and δ∗T given in (49), satisfy δ∗ ≤ δ∗T
because p∗ ≥ p∗T .

Consider now the case TM −Tm ≤ δ∗. Then {TM , Tm}+
δ∗B contains [TM , Tm] and the theorem is proven with N = 1
iterations. In the less trivial case when TM − Tm > δ∗, either
the analysis step verifying (48) (see line 17 of the algorithm)
is successful, or it identifies a new value τ̄ /∈ T + δ∗B that
is added to T + (the value of T at the next synthesis step).
The previous reasoning (together with TM−Tm > δ∗) implies
that T only contains elements whose mutual distance is larger
than δ∗. Since T increases by one element at each iteration,
the algorithm must terminate successfully when T has at most
TM−Tm

δ∗ + 1 elements. Since T has two elements at the first
iteration, an upper bound on the number of iterations before
termination is given by:

N =

⌈
TM − Tm

δ∗
+ 1− 2

⌉
<
TM − Tm

δ∗
, (57)

where d·e denotes the smallest integer upper bound of its
argument.

When the algorithm stops, it provides a matrix P ∗T satisfying
(48), (49). Then Lemma 4 with δ = δ∗T and (48), (49) imply
that ΞP∗T (τ) > 0 ∀τ ∈ T + δ∗T B ⊂ [Tm, TM ], where the
last inclusion follows from comparing (49) and (54). As a
consequence inequality ΞP∗T (τ) > 0 is satisfied for all τ in
[Tm, TM ], which implies (21) with P = P ∗T . �

Remark 3: If no solution P exists to (21), then either the
algorithm terminates at step 10 with a certified infeasibility
(because infeasibility with τ ∈ [Tm, TM ] implies infeasibility
with [Tm, TM ]), or it runs indefinitely, eventually meeting
numerical problems. A stopping condition could be imposed
by adding an extra well-conditioning constraint P ≤ p̄I to
(21), (45) and (47), for some reasonably large p̄ ∈ R. Then
the algorithm would be guaranteed to terminate successfully
whenever a solution to (21) with P ≤ p̄I exists and to
terminate negatively when such a solution does not exist. y

A. Proof of Lemma 4

Since matrix ΞP (τ̄) is symmetric positive definite, from [29,
Corollary 2.5.11] it is possible to decompose it as:

ΞP (τ̄) = N̄ Λ̄N̄>, N̄>N̄ = I, (58)

where:

Λ̄ = diag(λ̄1, · · · , λ̄n), N̄ = [ν̄1, · · · , ν̄n]. (59)

Thus {λ̄i} and {ν̄i} are, respectively, the eigenvalues and
an orthonormal set of eigenvectors of ΞP (τ̄). Under these
conditions, and based on the fact that the eigenvalues λi(τ)
of ΞP (τ) are continuous functions of τ , in [30, Eq. 1.3] it is
shown that the first order derivatives of the eigenvalues λ̄i are:

∂λi(τ̄)

∂τ
= ν̄>i

∂ΞP (τ̄)

∂τ
ν̄i, (60)

where, in our case,

∂ΞP (τ̄)

∂τ
=[(

C⊥
)>

e(−Ā>τ̄) (−Ā>P − PĀ) e(−Āτ̄)C⊥ 0
0 0

]
. (61)
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Therefore, taking into consideration the fact that {ν̄i} is an
orthonormal set, we obtain from (60):∣∣∣∣∂λi(τ̄)

∂τ

∣∣∣∣ =

∣∣∣∣ν̄>i ∂ΞP (τ̄)

∂τ
ν̄i

∣∣∣∣
≤
∥∥∥e(−A>τ̄)

∥∥∥ ∥∥A>P∥∥+ ‖PA‖
∥∥∥e(−Aτ̄)

∥∥∥
≤ 2 ‖P‖ ‖A‖

∥∥∥e(−Aτ̄)
∥∥∥ , (62)

where we used the sub-multiplicativity of the norm, and the
fact that

∥∥C⊥∥∥ = 1. Based on bounds (46) and (51), and on
the assumption that P ≤ pI , inequality (62) implies:∣∣∣∣∂λi(τ̄)

∂τ

∣∣∣∣ ≤ 2p ‖A‖ γeβτ̄ ≤ 2p ‖A‖ γeβTM . (63)

where we used τ̄ ∈ [Tm, TM ].
If inequality (52) is satisfied, then λm

(
ΞP (τ̄)

)
≥ 2µ.

Therefore, from (63), the minimum eigenvalue of ΞP (τ)
cannot be less than µ as long as:

τ ∈
[
τ̄ − µ

(
p ‖A‖ γeβTM

)−1

, τ̄ + µ
(
p ‖A‖ γeβTM

)−1]
.

V. NUMERICAL EXAMPLE

Let us consider system (1)-(2) with the following unstable
plant:

A =

−0.02 −1.4 9.8
−0.01 −0.4 0

0 1 0

 , B =

9.8
6.3
0

 , C =

1
0
1

> ,
(64)

for which eig(A) = {−0.656, 0.118+0.368i, 0.118−0.368i }. For
the matrix C in (64) we have C⊥ =

[
0 1 0

0.7071 0 −0.7071

]>
.

In this case the proposed algorithm is applied for three
different choices of [Tm, TM ]. In particular for τ ∈ [1, 3],
τ ∈ [3, 4] and τ ∈ [4, 8].

In the first case, τ ∈ [Tm, TM ] = [1, 3], the algorithm finds
a solution with only one iteration. Indeed, at the first iteration,
the algorithm considers only T = {Tm, TM}, and, during the
analysis phase, conditions (48) is satisfied for all τ ∈ Td, as
shown in Figure 1. The obtained matrix P is:

P = 104

 0.8334 −0.0041 0.8333
−0.0041 2.0116 −0.0359
0.8333 −0.0359 0.8341

 , τ ∈ [1, 3].

(65)
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Figure 1. Minimum eigenvalues of matrix ΞP (τ) for τ ∈ [1, 3].

In the second case τ ∈ [Tm, TM ] = [3, 4] the algorithm
does not find a solution because the plant is not observable

	

!∗	

Figure 2. Minimum singular values of the observability matrix O(τ) for the
sampled plant.
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Figure 3. Minimum eigenvalues of matrix ΞP (τ) for τ ∈ [3, 4].

for τ = 3.425 ∈ [3, 4]. This fact is clear looking at Figure 2
where the minimum singular values of the observability matrix
O(τ) are shown, and for τ = 3.425 the minimum singular
value is zero, revealing a rank loss for the observability matrix.
This is confirmed by Figure 3, where it is shown that, after
four iterations, the analysis phase fails in a neighborhood of
τ = 3.425.

Finally, in the last case, τ ∈ [Tm, TM ] = [4, 8], the
algorithm finds a solution with two iterations as shown in
Figure 4. Indeed, during the first iteration the algorithm
considers T = {Tm, TM}, and, during the analysis phase,
conditions (48) is not satisfied for all τ ∈ Td (see the upper
subplot of Figure 4). In particular it results that the minimum
negative eigenvalue is obtained at τ = 4.84, so an additional
constraint is considered evaluating (47) also for τ̄ = 4.84.
Finally, in the second iteration, the algorithm finds a solution
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Figure 4. Minimum eigenvalues of matrix ΞP (τ) for τ ∈ [4, 8].

as it is depicted in the lower subplot of Figure 4. The obtained
matrix P is:

P = 104

 0.9573 −0.0031 0.9571
−0.0031 2.2754 −0.0122
0.9571 −0.0122 0.9573

 τ ∈ [4, 8].

(66)
Initially, the unstable plant (64) has been stabilized by

means of a state feedback using a low gain:

Ku = 10−2[0.16 5.47 − 0.01],

such that:

eig(A+BKu) = {−0.01, −0.02, −0.03}.

The corresponding slow transient ensures that the signals do
not blow up during the simulation, but they are associated to
a sufficiently rich behavior.

The dynamics expressed in (4) has been implemented
together with the observer (5) in the MATLAB R©-Simulink
environment. The gain K(τ) is computed on-line according
to (22) by using matrix P in (65) for τ ∈ [1, 3] and P in (66)
for τ ∈ [4, 8]. Moreover, in order to implement a random
value of the time-instant of the measurements, we implement
the following modified error dynamics, corresponding to (6)
with random selection of the inter-measurement intervals:

ė = Ae,

τ̇ = 1,

τ̇r = −1,

τr ∈ [TM , 0], (67a)


e+ =

(
I −K(τ)C

)
e,

τ+ = 0,

τ+
r = Tm + (TM − Tm)ν+,

τr = 0. (67b)

where ν+is a random variable uniformly distributed in the
interval [0, 1]. This modified dynamics is inspired, with the
same notation, by [31].

In Figure 5 the real and estimated state vector components
xi, x̂i, i = 1, 2, 3, as well as estimation errors ei = xi − x̂i,
i = 1, 2, 3, are shown, during the first test with τ ∈ [1, 3].
Moreover, for the same test, the waveforms of the Lyapunov
function V , of the variables τ and τr and of the output error
y − ŷ are shown in Figure 6.
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Figure 5. Real and estimated state vector components xi, x̂i, i = 1, 2, 3, as
well as estimation errors xi − x̂i, i = 1, 2, 3, during a test with τ ∈ [1, 3].
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Figure 6. Waveforms of the Lyapunov function V , of the variables τ and τr
and of the output error y − ŷ, during a test with τ ∈ [1, 3].

From Figure 5 it is evident that the estimated variables track
very well the corresponding state variables and all the errors
go to zero asymptotically. Moreover, it is possible to note
the impulsive behavior of the estimate especially during the
initial transient. From Figure 6 we note that the Lyapunov
function is constant during flow, and decreases across jumps,
as expected from the theoretical results (Lemma 1). Finally,
from the waveforms of τ and τr we see that the jumps occur
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Figure 7. Real and estimated state vector components xi, x̂i, i = 1, 2, 3, as
well as estimation errors xi − x̂i, i = 1, 2, 3, during a test with τ ∈ [4, 8].
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Figure 8. Waveforms of the Lyapunov function V , of the variables τ and τr
and of the output error y − ŷ, during a test with τ ∈ [4, 8].

randomly in the interval [1, 3] according to the described
dynamics.

Figures 7-8 show the results for the same test described
above, but when the measurements are provided more sporad-
ically, τ ∈ [4, 8]. In this case the same comments given for
the first test can be provided, confirming the effectiveness of
the proposed approach. Obviously, the convergence rate in this
case is slower because the measurements are accessible less

frequently.

VI. CONCLUSION

In this work an observer with a time-varying output error
injection has been proposed for a linear continuous-time
plant with asynchronous sampled measurements. In particular
some theoretical tools have been provided, in terms of LMIs,
certifying asymptotic stability of a certain compact set where
the estimation error is zero. Two solutions have been proposed,
one under the restrictive assumption that the output matrix is
invertible, and one for the more general case of a detectable
pair, under the assumption that some LMI conditions hold.
Moreover, necessary conditions for the feasibility of those
LMI have been established. Since the proposed time-varying
observer is based on a solution to an infinite-dimensional
LMI, a numerical algorithm has been introduced which is
guaranteed to converge after a finite number of iterations to
a solution to the infinite dimensional problem whenever one
exists. The results provided by a numerical example show
the effectiveness of the proposed approach, confirming the
theoretical results and the feasibility of the proposed numerical
solution.
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