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Weakly Supervised Learning of Deformable
Part-Based Models for Object Detection via Region

Proposals
Yuxing Tang, Xiaofang Wang, Emmanuel Dellandréa, and Liming Chen Senior IEEE Member

Abstract—Successful deformable part-based models (DPM)
for visual object detection relies on training images with fully
annotated object bounding boxes. In the context of lack of object
level annotations, our goal is to propose a model enhancing
the weakly supervised DPM by emphasizing the importance
of location and size of the initial class specific root filter. To
adaptively select a discriminative set of candidate bounding boxes
as this root filter estimate, first, we explore the generic objectness
measurement to combine the most salient regions and “good”
region proposals. Second, we propose the learning of the latent
class label of each candidate window as a binary classification
problem, by training category specific classifiers used to coarsely
classify a candidate window into either target object or non-target
class. Finally, we design a flexible enlarging-and-shrinking post-
processing procedure to modify the output of DPM, which can
effectively fit it to the approximative aspect ratio of the object and
further improve the final accuracy. Extensive experimental results
on the challenging PASCAL Visual Object Class (VOC) 2007
dataset demonstrate that our proposed framework is effective for
initialization of the DPM root filter, and it also shows competitive
final localization performance with the state-of-the-art weakly
supervised object detection methods.

Index Terms—Object detection, deformable part-based models,
region proposals, weakly supervised learning.

I. INTRODUCTION

OBJECT detection/localization in images is one of the
most widely studied problems in computer vision. This

task remains challenging mainly due to scale and viewpoint
variation, deformation, occlusion, background clutter, intra-
class variations and inter-class similarities for the objects in
real world images. For most of the existing methods, a fully
supervised learning (FSL) approach is adopted [1], [2], [3],
[4], where positive training images are manually annotated
with bounding boxes encompassing the objects of interest.
This manual annotation of object location for large-scale
image database is extremely laborious and unreliable thought
extremely valuable. However, it is usually much easier to
obtain weakly labeled data, where image level labels (e.g., user
generated image tags on Internet) are presented. As a result, in
this paper, in contrast to the traditional FSL, we are interested
in weakly supervised learning (WSL) for object detection,
where the exact object locations in positive training examples
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are not provided, given only the binary labels indicating the
presence or absence of the objects of interest.

A. Related work

In recent years, there has been a substantial amount of
work in weakly supervised object detection. From weakly
annotated examples, the common practice is to jointly learn
an appearance model together with the latent object location.
The majority of related work treats WSL for object detection
as an MIL (Multiple Instance Learning) [5] problem. In the
MIL framework, one has some positive and negative bags. A
bag is positive when it has at least one positive instance, while
it is negative if all the instances are negative. The objective
of MIL is to train a classifier which can correctly classify
a test instance as either positive or negative. MIL problems
are usually solved by finding a local minimum of non-convex
objective function (e.g., MI-SVM [6]). Galleguillos et al. [7]
first use the MIL model to recognize and localize objects
based on multiple stable segmentations. [8], [9] use variants of
MIL to learn object detectors from weakly labeled images and
videos. Cinbis et al. [10] use multi-fold training procedure for
MIL to avoid rapid convergence to poor local optima. Also
in order to get rid of bad local minimum, Song et al. [11]
initialize the object locations via a discriminative submodular
covering method.

Another main strategy for WSL detection is to utilize a
category-independent saliency measure to predict whether a
given image region belongs to an object or not. For example,
Deselaers et al. [12] propose a fully connected CRF (Condi-
tional Random Field) [13] which aims to select a candidate
window with the highest objectness score [14] in each positive
training image.

Some work cast the WSL problem as a transfer learning
(TL) problem. For example, Shi et al. [15] formulate a TL
based on learning to rank, which effectively transfers a model
for predicting object location from an auxiliary dataset to
a target dataset with completely unrelated object categories.
Hoffman et al. [16] propose an algorithm which can learn the
difference between the image classifier and the object detector,
and transfers this knowledge to classifiers for categories with-
out bounding box annotated data, turning them into detectors.
However, for both of these methods, auxiliary object level
annotations for part of the dataset are required.

In addition, Pandey et al. [17] modify the fully supervised
DPM to a weakly supervised manner without object level
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annotations, which learns structural object detectors based on
randomly initialized windows in the positive training images.
Shi et al. [18] propose a WSL framework based on Bayesian
joint topic modelling which localizes object across different
classes concurrently. Recently, Wang et al. [19] propose to
learn the latent categories using probabilistic Latent Semantic
Analysis (pLSA), and select the target object category by
evaluating each latent category’s discrimination. Bilen [20]
et al. propose to couple a smooth discriminative learning
procedure with a convex clustering algorithm, by imposing
the similarity among objects of the same class.

B. Motivation and Contribution

Deformable Part-based Models (DPM) [2] and its variants
[21], [22], [23] have been dominant in supervised object
detection on challenging PASCAL VOC datasets [24] for a
long period. The DPM represents an object with a holistic
root filter that approximately covers an entire object and
several higher resolution part filters that capture smaller
local appearances (parts) of the object. It also characterizes
the deformations by links connecting different parts. In the
standard (fully supervised) DPM framework, the root filter is
initialized with the positive ground-truth object bounding box,
and it is allowed to move around in its small neighborhood
to maximize the filter score. The locations of object parts are
always treated as latent information due to the unavailability
of object parts annotations upon most occasions. A latent
SVM (LSVM) is adopted to learn the deformation of the
objects, which can alternate between fixing latent values (part
locations) for positive examples and optimizing its objective
function.

Pandey et al. [17] modify the fully supervised DPM to a
weakly supervised manner without object level annotations,
which treats the location of root filter and part filters full
latent, and learns structural object detectors based on the
entire image. Its root filter’s location is initialized randomly
based on a window which has at least 40% overlap with
the positive training image, and its aspect ratio is initialized
roughly to the average of the aspect ratios of positive training
examples. However, the specific size and location of the initial
root filter, as well as their aspect ratio are indicated to have
a significant impact on the final localization result [1], [2],
[17]. By randomly initialization, the object detector tends to
learn spurious models of other classes or background regions,
leading to lower accuracy during testing. And to our best
knowledge, method for initializing the root filter based on
theoretical deduction in weakly supervised DPM, as well as
the definition of the aspect ratio of the objects, have not been
well studied in [17].

To make up the performance gap between weakly and
fully supervised DPM, in this paper, we are motivated to
propose a model that enhancing the weakly supervised DPM
by emphasizing the importance of location and size of the
initial class specific root filter. To be precise, our goal is
to discover a reliable initial set of image windows that are
probably going to contain the target objects in the positive
training images with only category level annotations, so as

to represent the object instances. Hence, our WSL framework
incorporates adaptive window selection from class indepen-
dent object proposals and training of deformable part-based
models. In particular, we explore the “objectness” approaches
[14], [25], which generate class independent object proposals
with corresponding scores indicate their probabilities of being
object instances, then we adaptively select a reliable set of
windows from the derived object proposals for each image
as initialization, by fusing visual saliency and “objectness”
scores. Two different initialization schemes are developed:
single region and multiple regions initilization. The former
tends to select one relative larger bounding box which may
contain the most salient part in the image, while the latter
is much more generalized, which selects a small number of
object estimations that can also capture smaller and scattered
objects. For multiple regions initialization, the labels of the
regions are latent information. We learn the latent class label
by framing it as a classification problem, which tries to
coarsely classify each region into target object class or non-
target class by some class specific classifiers. The generated
object estimations are treated as the initial root filter estimates
for training DPM detector.

The main contributions in this work are four-fold:

1) We propose a selection model based on generic “ob-
jectness” and visual saliency to adaptively select a
discriminative set of candidate windows which tend to
represent the object instances in the image.

2) We frame the learning of the latent class label of each
candidate window as a binary classification problem,
by training category specific classifiers which tries to
coarsely classify a candidate window into either target
object or non-target class.

3) We propose to use a flexible enlarging-and-shrinking
post-processing procedure to modify the predicted out-
put of DPM detector, which can effectively generate
more accurate bounding box by better conserving fore-
ground and cropping out plain background regions, to
approximatively fit for the aspect ratio of the object.

4) Extensive experiments are carried out on two subsets and
the whole set of the challenging PASCAL VOC 2007
database [24] with different criteria, namely annotation
accuracy in terms of correct localization on training set,
and detection accuracy in terms of average precision
on test set. Experimental results demonstrate that our
proposed framework is effective for initialization of
DPM root filter, and shows competitive final localization
performance with the state-of-the-art weakly supervised
object detection methods.

A preliminary version of this work appeared in [26], which
fuses the generic ”objectness” with deformable part-based
models for WSL detection. This paper includes that work
but significantly extends it in the following ways. Firstly, we
explore a much more generalized model M-WDPM (multiple
regions initialization for weakly supervised deformable part-
based models) which tries to select multiple regions, and we
learn the latent label information of these regions in an effec-
tive way. This model shows its superiority in discovering not
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(a) Original image (b) Object proposals 
with scores 

(c) Saliency map 

(e) Thresholding 

(d) Reference region 

(f) Candidate windows (g) Initial object estimations 
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Fig. 1. Illustration of our proposed method to extract the initial object estimations: for an input image (a), object proposals (b) are sampled with corresponding
scores to their probability to have object inside by object proposal generating method. (c) is the saliency map derived from (b), and (d) is the reference region
obtained by thresholding (c). A coarse set of candidate windows (f) are selected on the sorted proposals (e) by non-maximum suppression (NMS). In the
upper image of (g), which indicates the single region selection scheme, the blue window is our initial object estimation obtained by optimizing the overlap
between (d) and (f). The bottom image of (g) indicates the multiple regions selection scheme, its color windows with solid lines are multiple finer regions
which are assumed to represent the objects in original image. For both images of (g), the green dot line windows are ground-truth bounding boxes for person
and horse, respectively.

only salient objects but also smaller and scattered objects to S-
WDPM (multiple regions initialization for weakly supervised
DPM) in [26]. Secondly, we experiment with advanced region
proposals generated by Selective Search [25], and we also
adopt the latest deep features to represent the image content.
Thirdly, we evaluate our framework on the entire PASCAL
VOC 2007 dataset, and compare it with state-of-the-arts. We
also analyze the types of error that our detection framework
inclines to make.

C. The Organization of the Paper

The rest of the paper is organized as follows: we present
our weakly supervised DPM framework in details in Section
II, and in Section III we present our experimental results and
the comparison with other methods on PASCAL VOC 2007
datasets. In Section IV, we conclude our work.

II. FUSING GENERIC OBJECTNESS AND DEFORMABLE
PART-BASED MODELS FOR WEAKLY SUPERVISED OBJECT

DETECTION

In this section, we detail our approach of the weakly
supervised DPM for object detection. Firstly, we introduce our
approach to adaptively select the representative and discrimi-
native regions from the category-independent object proposals.
Secondly, we elaborate how to learn the latent class infor-
mation when multiple regions are selected. Then we briefly
describe the weakly supervised learning procedures using the
selected regions with DPM and detection rescoring algorith-
m for testing. Finally we propose our new post-processing
method to further refine the predicted object bounding box
obtained by weak DPM detector, so as to cover the object
more precisely.

A. Object Estimations: Initialization

In the weakly supervised DPM training procedure, a good
initialization of the root filter is crucial. Hence, our goal is
to discover a reliable initial set of image windows that are
probably going to contain the target objects in the positive
training images with only category level annotations, in order
to represent the object instances.

1) Region extraction: Two general approaches have been
proposed for generating class-independent object proposals
in recent years: window scoring methods such as Objectness
[14], BING [27], EdgeBoxes [28] and grouping methods such
as Selective Search [25], Constrained Parametric Min-Cuts
(CPMC) [29], Multiscale Combinatorial Grouping (MCG)
[30]). We use Selective Search since it has been used as the
proposal generating method by state-of-the-art supervised R-
CNN detector [4]. We also report results using objectness
method [14] to make comparison with prior detection work
[14], [26].

Given an input image I (shown in Fig.1(a)), we first select
top n scored windows W= {w1,w2, . . . ,wn} and corresponding
scores, denoted as S= {s1,s2, . . . ,sn}, which indicate the prob-
abilities to cover objects within them, generated by Selective
Search (shown in Fig.1 (b)). To balance a high recall (i.e.,
covering more objects) and computation efficiency (i.e., small
number of region proposals), we set n = min(1000,N) accord-
ing to [31], where N is the number of proposals generated by
Selective Search.

Based on the fact that the region proposal method is
designed to capture all possible objects within an image, we
assume that it has the reliability for providing a set of good
candidate windows W∗⊆W which covers the object of interest.
However, the windows with the higher scores are not always
the effective choices [15], which usually encompass other
noisy background, or locate poorly on object targets (e.g., they
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may cover only the object parts). To extract a reliable set of
object estimations from the pool of n windows, we design a
recursive selection scheme shown in Fig.1 (c)-(g).

2) Salient reference region: For weakly supervised learn-
ing, it is obvious the initialization of DPM root filter is
significant. It will hurt the detector gravely if it shoots on the
background region. Consequently, starting from visually mean-
ingful regions (foreground objects) is imperatively necessary.
Inspired by the success of visual saliency applied in salient
object recognition, we compute the reference region R (shown
in Fig.1 (d)) by thresholding and merging the saliency map
(or heat map) M (shown in Fig.1 (c)). The value of saliency
map M at pixel I(i, j) is obtained by summing up the scores
of the windows that cover this pixel:

M(i, j) =
n

∑
k=1

Mk(i, j) (1)

where,

Mk(i, j) =
{

sk, if I(i, j) ∈ wk,∀wk ∈W,
0, otherwise. (2)

The reference region R can be one connected (continuous)
region or several discrete regions in the image according to
the score range and threshold value.

3) Coarse candidate windows pool: It is known that the
score given by Selective Search (i.e., objectness score) cor-
responds with the probability to have target object inside its
window to some extent. To take advantage of this auxiliary
information, we concurrently select 200 out of n windows that
with higher scores as candidates, according to the histogram
of n scored windows (shown in Fig.1(e)). In order to avoid
near duplicate candidate windows, we further perform non-
maximum suppression (NMS) to get a finer set of candidates.
Contrary to the common practice, which starts the suppression
procedure from highest scored window, we randomly choose
one, because we observed that the window with the highest
score is not necessarily the best. Fig.1 (f) illustrates the derived
smaller set of l confident candidates Ŵ= {ŵ1, ŵ2, . . . , ŵl}, and
their corresponding scores denoted as Ŝ = {ŝ1, ŝ2, . . . , ŝl}.

4) Object invariant estimations: Given the reference region
R which implies the most salient region (or regions) within an
image, and confident candidate windows Ŵ with scores Ŝ, the
overlap between them provides valuable information to find
the locations of target objects. We will propose two differ-
ent schemes to fuse the salient region(s) with the extracted
candidate windows.

a) Single region initialization: In [17], the root filter
of the DPM is randomly initialized from a single window
which covers at least 40% overlap with the original image. To
demonstrate our selection scheme is superior than the random-
ly chosen window, we also filter out only one single window
w∗ from the candidates pool Ŵ. Intuitively, we expect this
window estimation to cover as much as the salient reference
region R and to have a relative higher objectness score as well.
Hence forth, the estimation of the initial object bounding box
with objectness score (w∗,s∗) (Fig.1(g), upper image) can be

determined by optimizing the following function:

(w∗,s∗) = argmax
ŵi∈Ŵ,ŝi∈Ŝ

[α ŝi +(1−α)
area(R∩ ŵi)

area(R∪ ŵi)
], i ∈ [1, l]

(3)
where α is a parameter used to control the influence of the
objectness score si. In practice, α = 0.2, was selected by a
grid search over {0.1,0.2,0.3,0.4} on a validation set, for
the purpose of emphasizing the priority of the intersection
over union (IoU) overlap between the candidate window and
merged salient reference region.

The single region initialization scheme prefer to select a
relative large region which may contain the most salient part
in the image. It can produce good DPM object detectors in a
weakly supervised manner, when very few objects gathering
together in an image. For example, by adopting the single
region scheme, the blue window in Fig.1(g) upper image,
is used as a positive training example (i.e. DPM root filter
initialization) for both horse and person category.

b) Multiple regions initialization: In fact, multiple ob-
jects (e.g., 2.5 objects in average for PASCAL VOC2007
trainval dataset) can be scattered anywhere in an image. We
can therefore further improve DPM detectors by providing
more object estimations as root filter initiliazations, instead
of training the object detectors with a single window for each
image. For each image, we are motivated to select a small
number of object estimations that can also capture smaller
and scattered objects, which can better represent the original
image. We adopt the similar criteria as the score function Eq.
(3). To alleviate the influence of the area of R, we set α to be
0.3. Instead only selecting the maximal scoring window in Eq.
(3), we pick out top Q scored windows W ∗ for each image.

After generating several object estimations from each im-
age, the next step is to approximately identify the class label of
each estimation given only the labels of the whole image. For
example, in Fig. 1(g) bottom image, the color windows with
solid lines are associated with the horse and person labels.
However, so far we have no idea which object(s) (or even
background) is/are inside each bounding box. We will commit
ourselves to solve this problem in the next subsection.

B. Learning Latent Object Classes via Region Classification

For each positive training image, we have generated Q
object invariant estimations with the multiple regions ini-
tialization scheme. Consider an object category, e.g., horse,
which has P positive training images, we can totally obtain
z = P∗Q object estimations. Obviously, some of these object
estimations come from other categories (e.g., person, sheep,
object parts or the background regions as well), where the class
labels are latent information. In this paper, we frame the latent
class learning problem as a classification problem by coarsely
classifying these object estimations into either target object
category or non-target category (i.e., other classes, object parts
or background).

1) Region representation: We use the deep convolution-
al neural networks (CNN) features to represent the regions
(object estimations). Firstly, we pre-train an eight-layer (five
convolutional layers and three fully-connected layers) Alex-Net
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Fig. 2. Illustration of our latent class learning framework for the horse category. For each object category, we train a linear SVM classifier with the CNN
features (output of CNN’s f c6 layer). Object estimations from the positive training images of this category are scored by its SVM. We select the regions with
higher scores by thresholding as the representative objects of this category (horse vs. non horse for this example).

[32] CNN with caffe implementation [33] on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012
classification dataset [34], which contains 1.2 million images
of 1000 categories. Then we warp each region into a required
fixed pixel size of 227× 227, and subtract it with the mean
RGB image, and forward propogate it through the network.
Finally, we take the output of the fist fully-connected layer
(i.e., f c6 layer) to represent the input region. The output of
f c6 layer is a 4096-dimensional feature vector. This feature
extraction process is similar to R-CNN [4], but it is worth
noticing that we do not fine-tune the pre-trained CNN on
target dataset, because the object level annotations are assumed
not to be available in the weakly annotated data. And we
do not pad the region with additional image context around
it, as our region estimation is already expected to have a
significant coverage of the context information due to our
selection schemes in Section II-A3.

2) Region classification: Consider training a horse detector.
For all the P positive training images in the horse category, we
generate z object invariant estimations. Intuitively, only part of
these z regions contain the target horse object, others may have
person, sheep, dog or even background. We learn the latent
categories in these regions via region classification.

We first train a horse linear SVM [35] classifier using the
images labeled with horse as positive training examples and
the ones without horses as negative examples. We compute
the similar 4096-dimensional CNN feature vector as in Section
II-B1 on whole images. We then run the trained horse classifier
on the z object invariant estimations in the positive training
images. By thresholding the SVM scores, finally we obtain a
subset z′ regions from z estimations (z′ < z). These z′ regions
are assumed to represent the target horse category, which can
be treated as positive training examples of the horse detector.

Suppose we have K categories we want to detect. We train
one binary SVM classifier on positive and negative images

of each category, and run these K classifiers on their corre-
sponding object estimations. We select high scoring regions for
each target category so as to represent the objects of interest.
Fig. 2 shows the latent class learning framework using SVM
classification on the horse category.

Note that the above latent class learning process is only
applied to multiple regions initialization, since for single
region initialization, the unique generated window is used to
initialize the DPM root filter for any categories appeared in
the image.

C. Weakly Supervised DPM Training and Testing Details

We design two different kinds of deformable part based
models for weakly supervised object detection according to
different initialization schemes in Section II-A.

1) Single region initialization for weak DPM (S-WDPM)
detection: Similarly to [2], each root filter hypothesis in a
positive training image is initialized with the corresponding
derived bounding box from the single region initialization
scheme. The size and aspect ratio of the DPM root filter are
decided by the average size and aspect ratio of the object
estimation boxes (ground-truth bounding box and aspect ratio
are used in [2]). The root filter hypothesis is allowed to
move around in a small neighborhood to maximize the filter
score to compensate for imprecise bounding box estimation
from Section II-A4a. As in [17], we represent an image
by a multiscale HOG feature pyramid [1] of 16 levels. For
this DPM model, we use only a single component, since
the multiple components is used for detecting objects with
different views. We set the number of parts in this DPM to 8
as [2]). And for negative training examples, we use random
negatives from other object categories. For testing, sliding
window approach is adopted. This single region initialized
weakly supervised DPM detection model is denoted as S-
WDPM. We refer the reader to [2] for more details concerning



6

the DPM training and detection procedures.
2) Multiple regions initialization for weak DPM (M-

WDPM) detection: For the M-WDPM (multiple regions ini-
tialized weakly supervised DPM), we make it much “deeper”
with the DeepPyramid feature [36], for the reason that the
HOG feature is suboptimal compared to deep features com-
puted by CNN [3], [37], [4], [38], [19]. The feature map is
computed by the fifth convolutional layer (conv5), which has
256 feature channels. We represent each image (or region)
with a feature pyramid of 7 levels (v.s 16 levels for HOG
pyramid). For training, the selected object estimations from
Section II-B2 are treated as positive training examples, and
the random windows from negative images are defined as
negative examples. We use a DPM with 3 components and
8 parts per component according to [36]. The training and
testing procedures are similar to S-WDPM above, but we add
a simple bounding box rescoring stage with the help of a front-
to-end CNN padded with a softmax classifier.

The rescoring function is defined as:

si
det = κsi

M−WDPM +(1−κ)si
cls, i ∈ [1,K] (4)

where, 0 6 si
M−WDPM 6 1 is the normalized DPM detection

score on a sub-window of the i− th detector, and 0 6 si
cls 6 1

is the softmax classification score of the corresponding i− th
category on this sub-window. κ is a hyperparameter used to
levarage the two scores, which ranges from 0.6 to 0.9. The
final predicted windows are obtained by thresholding the Si

det
in Eq. (4).

In order to train this front-to-end CNN classifier described
above, we fine-tune the pre-trained CNN with image level
annotations on our training data. We implement it by removing
the last 1000-way softmax layer while keeping all the other
parameters and adding a new randomly initialized K-way
softmax classification layer, and we then fine-tune the entire
network based on the image-level labels.

In [2], contextual information is exploited to rescore the
bounding boxes. However, it needs object-level annotations
to extract the contextual information. Our detection rescoring
method does not require the object level annotations, and it
leads to a remarkable improvement in the average precision
on several classes in the PASCAL VOC 2007 datasets (see
Section III-B). An example of our bounding box rescoring
procedure is shown in Fig. 3.

D. Bounding Box Post-processing

In many cases, the bounding boxes generated by DPM
detectors are too large (resp. small) when detecting very small
(resp. large) objects due to the restrictions of the size of the
root filter and the scale of the feature pyramid. To improve
the localization and to obtain a more precise prediction of the
bounding box aspect ratio, we post-process each bounding box
by enlarging or shrinking (ES post-processing) it to cover the
object as much as possible. This is done using an improved
version of the method proposed in [39] which measures the
amount of area that the edge energy occupies. In brief, we first
augment the original bounding box w = (xmin,ymin,xmax,ymax)
to 120% of the original width and height (i.e., 144% in total

Algorithm 1 Bounding box post-processing pipeline.
Input:

Original bounding box: w = (xmin,ymin,xmax,ymax);
original image width: wo; original image height: ho;
maximal expanding rate: β = 1.2;
Laplacian filter shape: γ = 0.2.

Output:
Cropped bounding box: w′ = (x′min,y

′
min,x

′
max,y

′
max).

1: centroid: (xc,yc) = ( xmin+xmax
2 , ymin+ymax

2 )
2: augmented width: a = β ∗ (xmax− xmin)
3: augmented height: b = β ∗ (ymax− ymin)
4: if xc− a

2 > 0 then
5: xaug

min = ceil(xc− a
2 )

6: else
7: xaug

min = 1
8: end if
9: if xc +

a
2 < wo then

10: xaug
max = f loor(xc +

a
2 )

11: else
12: xaug

max = wo
13: end if
14: similar for yaug

min and yaug
max;

15: waug = (xaug
min,y

aug
min,x

aug
max,y

aug
max);

16: Lwaug = f ilter(image(waug),′ laplacian′,γ);
17: L′waug = norm(resize(|Lwaug |, [100,100]),1);
18: Lmax = max(L′waug);
19: for i = 1,2, . . . ,100 do
20: for j = 1,2, . . . ,100 do
21: if L′waug(i, j)< 0.1∗Lmax then
22: L′waug(i, j) = 0
23: end if
24: end for
25: end for
26: current centroid: (x′c,y

′
c) ← average energy point of L′waug ;

27: while energy in w′′ < 0.98∗∑(L′waug) do
28: w′′ = (x′′min,y

′′
min,x

′′
max,y

′′
max) ← update by expanding bound-

ing box in four directions (−x,−y,x+,y+) from the current
centroid (x′c,y

′
c).

29: end while
30: project w′′ into original image: w′ = (x′min,y

′
min,x

′
max,y

′
max) ←

w′′ = (x′′min,y
′′
min,x

′′
max,y

′′
max)

area, denoted as waug =(xaug
min,y

aug
min,x

aug
max,y

aug
max). Expanding from

the centroid if applicable. Otherwise, stop when reaching the
border of the image.), and calculate the absolute values of the
gradients Lwaug by applying a 3×3 Laplacian filter with γ = 0.2
over the augmented bounding box. To easily calculate the
edge spatial distribution, we then resize the gradient magnitude
image size to 100× 100 and normalize the image sum to 1,
i.e., L′waug . And we set the values which are less than 10% of
the maximum Lmax to 0. Finally, we expand the bounding box
in four directions from the current centroid (x′c,y

′
c) and stop

until it contains 98% of the total gradient magnitude (edge
energy) in the augmented box. Detailed algorithm is listed in
Algorithm 1.

This post-processing technique is not only able to crop out
plain background regions, but also can expand to cover the
foreground regions which are not encompassed by the original
box. However, the cropping method in [17] is probably to fail
with the latter. Fig. 4 shows a few examples of our bounding
box post-processing results. It is also worth noticing that this
post-processing technique works efficiently for the objects
with a unique or plain background, but has limited help for
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Fig. 3. Illustration of detection rescoring using M-WDPM and CNN softmax classifier. For a testing image, K (number of classes in target dataset) class-
specific M-WDPMs are applied on it in sliding window manner. For each sub-window detected by M-WDPM, the normalized detection score is rescored by
the softmax classifier of the detected category. In this example, the wrongly detected car and bicycle are finally discarded by the detector after the rescoring
stage.

Fig. 4. Examples of bounding box enlarging and shrinking. Boxes before
(resp. after) post-processing are shown in red (resp. yellow).

those with cluttered or textured background.

III. EXPERIMENTAL EVALUATION

In this section, we present the experimental results of our
proposed framework with two different initialization schemes
(i.e., S-WDPM using single region initialization and M-
WDPM using multiple regions initialization) on the challeng-
ing PASCAL VOC 2007 dataset [24].

A. Experiments with S-WDPM

1) Datasets: Following the protocol of previous works [17],
[12], [40], we evaluate the performance of our proposed S-
WDPM (single region initialized weak DPM) framework on
two subsets from the training and validation set (trainval) of
the PASCAL VOC 2007 dataset (VOC07)[24]: VOC07-6×2
and VOC07-14. The VOC07-6×2 subset contains 6 classes
(aeroplane, bicycle, boat, bus, horse and motorbike) with
Left and Right views (aspects) of each class, resulting in a
total of 12 separating classes. The VOC07-14 subset (same
with PASCAL07-all defined in [17]) consists of 42 class/view
combinations covering 14 classes and 5 views (Left, Right,
Frontal, Rear and Unspecified). Similar to [17], [12], [40], we
remove all the images annotated as difficult or truncated in
both training and evaluation steps.

2) Evaluation protocol: To make fair comparisons, we only
choose the detection window with highest score per image,
although our method can detect multiple instances appeared
in the image using sliding window approach. We also report
both results for initial and refined localization as [17], [40]. A
refined localization is obtained by an iteratively trained DPM
detector for one/sevral iteration(s) to refine the initial detection
using the previous annotations as ground truth. Performance
is evaluated with the percentage of training (train + val)
images in which an object is correctly covered by the window
(i.e. CorLoc [12]), if the strict PASCAL-overlap criterion is
satisfied (intersection-over-union > 0.5).

3) Experimental evaluation: We compare our S-WDPM
with Weak DPM [17], Weak objectness [12] and Joint topic
model [18]. For the Weak objectness approach [12], the region
proposal with the highest “objectnes” score is selected as the
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TABLE I
AVERAGE LOCALIZATION ACCURACY (IN %) OF OUR S-WDPM (SINGLE REGION INITIALIZED WEAK DPM WITH HOG FEATURES) COMPARED WITH

STATE-OF-THE-ART COMPETITORS ON THE TWO VARIATIONS OF THE PASCAL VOC 2007 DATASETS. “CROP” AND “ES” DENOTE THE CROPPING
METHOD FROM [17] AND OUR ENLARGING & SHRINKING POST-PROCESSING. “obj” AND “SS” DENOTE THE OBJECTNESS AND SELECTIVE SEARCH

REGION PROPOSAL GENERATING METHOD. “S” AND “G” DENOTE THE SAMPLING AND GAUSSIAN STRATEGY FROM [18].

no post-processing with post-processing
[17] S-WDPM [17]-crop S-WDPM(crop) S-WDPM(ES) [18]

obj SS obj SS obj SS S G
Dataset VOC07-6×2
Initialization 37.22 38.74 41.52 44.62 47.85 48.40 48.59 51.01 50.8 51.5
Refinement 1 51.63 55.85 63.31 53.11 56.78 64.25 58.02 67.13 65.5 66.1
Refinement 2 56.99 59.82 — 59.31 63.31 — 63.91 — — —
Refinement 3 59.32 — — 61.05 — — — — — —
Result from [12] 50.00
Dataset VOC07-14
Initialization 19.98 21.73 24.87 23.00 24.20 26.30 25.12 31.84 32.2 30.5
Refinement 1 25.11 27.46 31.15 26.38 28.21 33.10 28.94 34.91 33.8 32.5
Refinement 2 27.69 28.95 — 29.39 32.87 — 32.82 — — —
Refinement 3 28.98 — — 30.31 — — — — — —
Result from [12] 26.00

predicted window. As Table I shows, our method outperforms
[12] and our baseline approach [17] on both datasets. Both [17]
and our S-WDPM use the same HOG feature pyramid for the
DPM. We present our results using two kinds of object pro-
posal generating methods: objeness (obj) and Selective Search
(SS). For obj, our average performance of initial detection
before post-processing the bounding boxes on the VOC07-6×2
and VOC07-14 subsets is 38.74% and 21.73% respectively,
versus 37.22% and 19.98% for [17]. These improvements are
due to the initial object estimate of our method described in
Section II-A4a, which gives a better initialization of the root
filter of DPM detectors. We can also observe that both the post-
processing method of cropping [17] (i.e., S-WDPM(crop) in
Table I) and our enlarging-or-shrinking (i.e., S-WDPM(ES))
post-processing method steadily improve the average local-
ization accuracy. In particular, our ES method is superior to
the cropping method of [17], as our cropped bounding box is
not only able to shrink to crop out the background regions,
but also capable of enlarging to cover the whole foreground
object resulted by incomplete coverage of the original window.
An example is shown in the last row of Fig. 5, where the
target object (motorbike) is only partially localized by the
initial detector (shown in red rectangles in the middle and
right images) for both [17] and our method. However, in the
final detection (shown in yellow) after post-processing, our
method is able to enlarge the bounding box to approximately
include the whole object, while [17] tends to crop out both
foreground and background regions.

Additionally, the rows start with “Refinement” in Table
I indicate that localization accuracy can benefit from the
iterative refinement process. It is worth mentioning that with
a better initialization, our models converge to a steady level of
performance after one less round of costly re-training (i.e., 2
iterations for obj vs. 3iterations) than [17], and achieve slightly
better results in the mean time.

The detailed comparisons for our S-WDPM using obj with

TABLE II
CLASS LEVEL LOCALISATION ACCURACY (IN %) FOR THE VOC07-6×2

DATASET FOR OUR S-WDPM(ES) USING objectness PROPOSALS vs. [17],
[12], [40].

Initialisation Refined by detector
ours [17] [40] ours [17] [12]

aero left 65.1 55.8 39.1 69.7 65.1 58.0
aero right 64.1 61.5 50.0 84.6 82.1 59.0
bike left 31.3 31.3 28.4 85.4 87.5 46.0
bike right 42.0 44.0 30.6 54.0 68.0 40.0
boat left 9.1 4.6 15.1 13.6 2.3 9.0
boat right 9.3 9.3 20.7 14.0 7.0 16.0
bus left 23.8 23.8 31.0 42.9 28.6 38.0
bus right 65.2 52.2 35.1 69.6 47.8 74.0
horse left 64.6 60.4 48.5 87.5 83.3 58.0
horse right 73.9 67.4 45.2 76.1 80.4 52.0
mbike left 64.1 48.7 46.3 87.2 92.3 67.0
mbike right 70.6 76.5 55.3 82.4 88.2 76.0
average 48.6 44.6 37.1 63.9 61.1 50.0

the state-of-the-arts on the VOC07-6×2 dataset are listed in
Table II. The results show that our method outperforms [17]
for most of the categories. Especially, our method achieves
the state-of-the-art results in some classes where the target
object possesses the most salient regions in that category (e.g.,
aeroplane, bus, horse). Interestingly, even without refinement
process, the accuracy for our method with certain category
(e.g., aeroplane left) is superior to the competitors with the
time-consuming refinement procedure. Fig. 5 visually com-
pares some of our results with those of [17].

We find that the best detection result using the Selective
Search (63.31%) is 3.49% better than the objectness (59.82%)
within the same S-WDPM detection model without post-
processing, and is 3.22% better (67.13% vs. 63.91%) with
post-processing, on the VOC07-6×2 dataset. This is in accord
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with the conclusion in [31]. Moreover, it achieves comparable
or slightly better results than the sophisticated joint topic
learning models in [18] with running DPM refinement only
once. As shown in Table I, the SS also outperforms obj on the
VOC07-14 dataset. Consequently, we entirely adopt the Selec-
tive Search method (‘fast’ option) for our next experiments.

Ground Truth  Pandey et al. ICCV2011 Our S-WDPM 

Fig. 5. Examples of localization results of our S-WDPM on PASCAL
VOC 2007 images. The left column: ground-truth bounding boxes in green
rectangles. The middle and right columns are detection results with [17] and
our S-WDPM framework, respectively. Initial detections are shown in red
and detections refined by detectors are shown in yellow. Both results are with
individual post-processing approach.

B. Experiments with M-WDPM

1) Dataset and settings: We evaluate our generalized mod-
el: M-WDPM (multiple regions initialized weak DPM) on the
much more challenging dataset: the whole PASCAL VOC
2007 dataset. It contains totally 9963 images of 20 object
categories, which is split into training (2501), validation (2510)
and test (4952) sets. This dataset is challenging because it
has large inter-class similarities, intra-class variances, cluttered
backgrounds, and scale changes. We only use the image
level category labels for this task. And images labeled as
“difficult” ones are discarded as common practice in previous
studies. For the M-WDPM testing, we only run the DPM
once for efficiency, although the iterative detector refinement
can steadily improve the final performance. The annotation
accuracy on the trainval (training + validation) set and average
precision (AP) for detection on the test set are reported.

For the DeepPyramid feature extraction, we use a single
NVIDIA GeForce GTX 780 GPU with 3GB memory. And
we reduce the resized image resolution from 1713× 1713 in
[36] to 1505×1505 to avoid running out of memory.

2) Parameter selection: As discussed in Section II-A4b,
we can generate Q region estimations for each image. Q is a
parameter which impacts the quality of the positive training
examples. If it is too large, there would be an enormous
number of noisy samples for latent class learning. If it is set
to be very small, the instances in the original image would
not able to be comprehensively represented. Therefore, we
experimentally vary Q = {3,5,10,15,20,30} to see which one
performs best on the PASCAL VOC 2007 validation set. We
implement this by directly measuring the average annotation
accuracy for all the classes, on the generated bounding boxes
(Q per image) with the Pascal-overlap criterion. Fig. 6 shows
the annotation accuracy for different Q. We find that Q = 10
obtains the best result (34.5% average accuracy). When it is
very small (e.g., 3), the performance drops dramatically to
27.0%. This is because some of the “good” region proposals
are not selected due to very small Q, while some selected
“bad” regions may harm the model. When it goes up from
10 to 30, the performance declines gradually. One explanation
for this might be that many object parts or background regions
would be included when Q is large. Hence, we set Q= 10 in all
of our experiments. Fig. 7 shows three example images and
their 10 selected regions. The κ in Eq. (4) which leverages
the classification and detection scores is set to 0.7 according
to cross-validation on a subset of the validation data.

Fig. 6. The impact of parameter Q (number of selected regions for each image
in multiple regions initialization scheme). The average annotation accuracy on
PASCAL VOC 2007 validation is evaluated with different Q.

3) Annotation evaluation: We evaluate the same CorLoc
[12] as in Section III-A2 on the PASCAL VOC 2007 trainval
set. Table III reports our experimental results compared with
the state-of-the-art WSL methods for object detection.

For our M-WDPM-HOG baseline which computes the HOG
features and does not make use of auxiliary training data
from ILSVRC 2012 classification task [34] as [20], [19],
it outperforms most of the previous works [8], [41], [9],
[40], [15], [18] (ours: 36.8% vs. best of the previous works
(Joint topic): 36.2%). Our M-WDPM-HOG shows modest
improvement in most of the classes, which proves that our
multiple regions initialization method has very discriminative
power to select the “good” regions in the original image for
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TABLE III
COMPARISONS OF WEAKLY SUPERVISED OBJECT DETECTORS ON PASCAL VOC 2007 TRAINVAL SET IN TERMS OF CORRECT LOCALIZATION (CORLOC

[12], IN %) ON POSITIVE TRAINING IMAGES. († INDICATES METHODS USING AUXILIARY TRAINING DATA FROM ILSVRC 2012.)

method / class aero bike bird boat bottle bus car cat chair cow
our M-WDPM-HOG 67.6 51.7 32.2 20.1 14.7 41.6 58.8 57.1 9.0 41.9
our M-WDPM-deep† 71.2 58.1 37.0 22.4 17.1 44.6 62.4 60.2 17.3 48.8
our M-WDPM-rescore† 82.1 55.1 42.8 35.3 14.8 57.9 66.2 69.8 17.5 51.6
Joint Learning [8] 30.7 16.5 23.0 14.9 4.9 29.6 26.5 35.3 7.2 23.4
MI-SVM [41] 37.8 17.7 26.7 13.8 4.9 34.4 33.7 46.6 5.4 29.8
Model Drift [9] 42.4 46.5 18.2 8.8 2.9 40.9 73.2 44.8 5.4 30.5
MIL-Negative [40] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8
Transfer Learning [15] 54.7 22.7 33.7 24.5 4.6 33.9 42.5 57.0 7.3 39.1
Joint Topic [18] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4
Convex Clustering† [20] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2
LCL-pLSA† [19] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4
method / class table dog horse mbike person plant sheep sofa train tv mean
our M-WDPM-HOG 13.5 37.2 45.6 57.2 18.7 19.9 36.0 22.7 43.7 46.2 36.8
our M-WDPM-deep† 17.2 37.4 52.4 60.5 20.7 28.8 36.9 24.3 50.7 48.6 40.8
our M-WDPM-rescore† 24.4 39.4 55.9 51.0 24.2 22.9 44.2 19.7 52.1 45.2 43.5
Joint Learning [8] 20.5 32.1 24.4 33.1 17.2 12.2 20.8 28.8 40.6 7.0 22.4
MI-SVM [41] 14.5 32.8 34.8 41.6 19.9 11.4 25.0 23.6 45.2 8.6 25.4
Model Drift [9] 19.0 34.0 48.8 65.3 8.2 10.6 16.7 32.3 54.8 5.5 30.4
MIL-Negative [40] 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2
Transfer Learning [15] 24.1 43.3 41.3 51.5 25.3 13.3 28.0 29.5 54.6 11.8 32.1
Joint Topic [18] 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
Convex Clustering† [20] 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
LCL-pLSA† [19] 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

bicycle, person 

car, horse, person 

cow 

Fig. 7. Three example images and their 10 selected regions (resized to same
squared size for regularity).

training the DPM root filters.
It is also observed that, with the help of auxiliary training

data and recently popular deep features, the average accuracy
of our M-WDPM-Deep model increases by 4% over the M-
WDPM-HOG model. And our detection rescoring method

(i.e., M-WDPM-rescore) further improves the performance
for most of the categories. The average improvement for
detection rescoring on all 20 classes is 2.7% (43.5% vs.
40.8%). Our M-WDPM-rescore method is comparable with
the newly invented convex clustering approach [20], but it is
worse than the LCL method [19] on average. Though [19]
achieves the state-of-the-art performance on many classes, it
depends on more sophisticated Super-Vector Coding [44] of
the deep CNN features that tragically increases the feature
dimensionality. And it fails on some categories such as boat
and table. However, our W-SDPM-rescore exhibits steady
agreeable performance on all the categories. Especially, our W-
SDPM-rescore works well on categories where target objects
are relatively salient. (e.g., aeroplane, boat, bus, cat and table.)
Moreover, it achieves the best results for the classes such as
aeroplane, boat, and cat.

4) Detection evaluation: Table IV shows the comparison of
our M-WDPM and other methods for object detection on the
PASCAL VOC 2007 test set. Our M-WDPM-HOG baseline
method achieves an mAP of 22.6%, which outperforms [9]
(13.9%) by a big margin, and is slightly better than [10]
(22.4%). Both [9] and [10] represent the image windows with
SIFT [45] descriptor. [9] uses a Bag-of-Words (BOW) [46] his-
togram of 2000 dimension, while [10] use Fisher Vectors (FV)
encoding [47] to represent the candidate windows. [17] uses
the same HOG pyramid features Among these methods that
adopt low level visual features, our M-WDPM-HOG works
best. Although [11] utilizes powerful deep CNN features
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TABLE IV
COMPARISON OF WEAKLY SUPERVISED OBJECT DETECTORS ON PASCAL VOC 2007 IN TERMS OF AP (AVERAGE PRECISION, IN %) IN THE TEST SET.

(† SUPERVISED METHODS USING OBJECT LEVEL ANNOTATIONS.)

method / class aero bike bird boat bottle bus car cat chair cow
our M-WDPM-HOG 34.1 41.5 15.2 10.0 8.8 36.5 40.8 31.5 4.6 23.1
our M-WDPM-deep 38.2 38.4 17.5 15.8 9.5 38.1 39.4 32.0 3.5 26.4
our M-WDPM-rescore 46.6 40.1 18.5 18.1 10.7 38.9 43.7 38.9 10.8 30.1
Model Drift [9] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3
Multi-fold MIL [10] 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0
Min-Supervision [11] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9
Pattern Config [42] 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5
Posterior Reg. [43] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0
Convex Clustering [20] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3
LCL-pLSA [19] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6
DPM 5.0† [2] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1
DP-DPM conv5† [36] 42.3 65.1 32.2 24.4 36.7 56.8 55.7 38.0 28.2 47.3
R-CNN† [4] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5
method / class table dog horse mbike person plant sheep sofa train tv mean
our M-WDPM-HOG 9.4 24.2 29.8 42.5 9.1 14.5 18.3 11.2 32.1 14.3 22.6
our M-WDPM-deep 11.2 26.1 33.1 43.7 8.8 16.7 20.8 14.5 33.5 18.0 24.3
our M-WDPM-rescore 16.3 26.9 37.4 42.1 12.9 18.9 22.5 16.2 38.1 19.6 27.4
Model Drift [9] 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0 13.9
Multi-fold MIL [10] 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4
Min-Supervision [11] 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7
Pattern Config [42] 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6
Posterior Reg. [43] 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4
Convex Clustering [20] 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7
LCL-pLSA [19] 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
DPM 5.0† [2] 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DP-DPM conv5† [36] 37.1 39.2 61.0 56.4 52.2 26.6 47.0 35.0 51.2 56.1 44.4
R-CNN† [4] 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

to represent the discovered object windows, its performance
(22.7%) is more or less the same with our HOG based
M-WDPM, which proves the stronger discrimination of our
windows selection method. When using the deep features with
additional training data from ImageNet [34], our M-WDPM-
deep can achieve an mAP of 24.3%. The boost (1.7%) is not as
much as that of the annotation task (4%, see Section. III-B3),
it is probably because the use of distinct measuring criteria
(mean average precision v.s percent of correct localization).
Our detection rescoring method M-WDPM-rescore continues
to improve the average precision (mAP = 27.4%) for nearly
all the classes except for the motorbike class. It shows a
better performance when compared with [42], [43], and it
has a competitive performance when compared with [20].
The performance gap (3.5%) between ours and that of [19]
might be partly caused by the use different deep feature
representations as discussed in III-B3. We achieve the best
detection results for the boat, cat, horse and train classes for
this dataset.

In addition, we provide the results obtained by popular
supervised object detection methods [2], [36], [4] in the
bottom lines of Table IV. One can see that there is still a
gap between the weakly supervised detection framework and
supervised ones, although our weakly supervised DPM yields

better results for some classes (e.g., aeroplane, bird, cat, dog,
etc.) to the supervised DPM 5.0 [2].

5) Error analysis: We present an analysis of the types
of errors that our M-WDPMs make on the PASCAL VOC
2007 test set in Fig. 8. We use the diagnosis tool of [48]
and consider four types of false positive (FP) errors: Loc
(poor localizations), Sim (confusion with similar objects),
Oth (confusion with other objects, e.g., correctly localize an
object but classifying it to a wrong class) and BG (confusion
with background or unlabeled objects). Cor indicates correctly
located true positives (TP). We visually show the fraction of
correct detections (TP) and errors of each kind (FP) among the
top ranking T windows in Fig. 8, where T is the number of
ground-truth object windows in the test set of PASCAL VOC
2007.

We consider the M-WDPM-HOG as our baseline and show
the distribution of TP and each kind of FP in Fig. 8(a). We can
see that the majority errors are due to poor localizations (Loc)
and confusion with background regions (BG). When adopting
the deep features, our M-WDPM-deep encounters less Loc and
Oth, but still it suffers from the Sim and BG error (as shown
in Fig. 8(b)). In contrast, after detection rescoring, our best
performing method M-WDPM-rescore has less error caused by
Loc, BG and Oth (Fig. 8(c)), which validates that our rescoring
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         (a) M-WSDPM-HOG                              (b) M-WSDPM-deep      (c) M-WSDPM-rescore     (d) state-of-the-art supervised: NoC  
                mAP = 22.6%         mAP = 24.3%             mAP = 27.4%        mAP = 68.8% 

Fig. 8. Analysis of top-ranked detections on PASCAL VOC 2007 test set. Pie charts show the distributions of true positive (TP) and false positives (FP)
generated by the detection error analysis tool of [48]. Percentage of top T detections (T is the number of whole objects the test dataset) that are correct (Cor),
or false positives due to poor localization (Loc), confusion with similar objects (Sim), confusion with other objects (Oth), or confusion with background or
unlabeled objects (BG) [48]. The left three charts show the analysis of our methods, the right one is the analysis of the state-of-the-art supervised detection
results obtained by NoC [49].

approach is very efficient in excluding the background regions
and avoiding the misclassification. Fig. 8(d) shows the error
distribution of the state-of-the-art supervised object detection
framework NoC (Networks on Convolutional feature maps)
[49]. NoC adopt even deeper VGG-16 [50] nets with bounding
box fine-tuning on PASCAL VOC 2007+2012 trainval. The
comparison between NoC and our M-WDPM indicates that:
(1) deeper network helps increasing the Cor substantially; (2)
fine-tuning and supervised training with ground-truth bound-
ing boxes yield far less Sim and Oth errors.

IV. CONCLUSION

In this paper, we proposed a model enhancing the weak-
ly supervised learning by emphasizing the importance of
location and size of the initial class specific root filter of
deformable part-based models. We follow the general setup
of [17] and introduce several substantial improvements to the
weakly supervised DPM. The main contributions included a
new selection model based on generic “objectnes” (region
proposals) and visual saliency to adaptively select a reliable
set of candidate windows which tend to represent the object
instances in the image, and a latent class learning process
by coarsely classifying a candidate window into either target
object or non-target class. Furthermore we designed a flexible
enlarging-and-shrinking post-processing procedure to modify
the output bounding boxes of DPM, which can effectively
further improve the final accuracy. Experimental results on
the challenging PASCAL VOC 2007 database according to
various criteria demonstrate that our proposed framework is
efficient and competitive with the state-of-the-arts.

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models,” IEEE
TPAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[3] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in NIPS, 2013.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014.

[5] O. Maron and A. L. Ratan, “Multiple-instance learning for natural scene
classification,” in ICML, 1998.

[6] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector ma-
chines for multiple-instance learning,” in NIPS, 2003.

[7] C. Galleguillos, B. Babenko, A. Rabinovich, and S. Belongie, “Weakly
supervised object recognition and localization with stable segmentation-
s,” in ECCV, 2008.

[8] M. Nguyen, L. Torresani, F. de la Torre, and C. Rother, “Weakly
supervised discriminative localization and classification: a joint learning
process,” in ICCV, 2009.

[9] P. Siva and T. Xiang, “Weakly supervised object detector learning with
model drift detection,” in ICCV, 2011.

[10] R. Cinbis, J. Verbeek, and C. Schmid, “Multi-fold mil training for
weakly supervised object localization,” in CVPR, 2014.

[11] H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and
T. Darrell, “On learning to localize objects with minimal supervision,”
in ICML, 2014.

[12] T. Deselaers, B. Alexe, and V. Ferrari, “Weakly supervised localization
and learning with generic knowledge,” IJCV, vol. 100, no. 3, pp. 275–
293, 2012.

[13] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in ICML, 2001.

[14] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of
image windows,” IEEE TPAMI, vol. 34, no. 11, pp. 2189–2202, 2012.

[15] Z. Shi, P. Siva, and T. Xiang, “Transfer learning by ranking for weakly
supervised object annotation,” in BMVC, 2012.

[16] J. Hoffman, S. Guadarrama, E. Tzeng, R. Hu, J. Donahue, R. Girshick,
T. Darrell, and K. Saenko, “LSDA: Large scale detection through
adaptation,” in NIPS, 2014.

[17] M. Pandey and S. Lazebnik, “Scene recognition and weakly supervised
object localization with deformable part-based models,” in ICCV, 2011.

[18] Z. Shi, T. M. Hospedales, and T. Xiang, “Bayesian joint topic modelling
for weakly supervised object localisation,” in ICCV, 2013.

[19] C. Wang, K. Huang, W. Ren, J. Zhang, and S. Maybank, “Large-scale
weakly supervised object localization via latent category learning,” IEEE
TIP, vol. 24, no. 4, pp. 1371–1385, April 2015.

[20] H. Bilen, M. Pedersoli, and T. Tuytelaars, “Weakly supervised object
detection with convex clustering,” in CVPR, 2015.

[21] R. Girshick, P. Felzenszwalb, and D. McAllester, “Object detection with
grammar models,” in NIPS, 2011.

[22] H. Azizpour and I. Laptev, “Object detection using strongly-supervised
deformable part models,” in ECCV, 2012.

[23] X. Ren and D. Ramanan, “Histograms of sparse codes for object
detection,” in CVPR, 2013.

[24] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” IJCV, vol. 88,
no. 2, 2010.

[25] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective
search for object recognition,” IJCV, 2013.

[26] Y. Tang, X. Wang, E. Dellandrea, S. Masnou, and L. Chen, “Fusing
generic objectness and deformable part-based models for weakly super-
vised object detection,” in ICIP, 2014.



13

[27] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized
normed gradients for objectness estimation at 300fps,” in CVPR, 2014.

[28] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in ECCV, 2014.

[29] J. Carreira and C. Sminchisescu, “Cpmc: Automatic object segmentation
using constrained parametric min-cuts,” IEEE TPAMI, vol. 34, no. 7, pp.
1312–1328, July 2012.
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