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We introduce a novel method revealing hidden bifurcations in the multispiral Chua attractor
in the case where the parameter of bifurcation c which determines the number of spiral is
discrete. This method is based on the core idea of the genuine Leonov and Kuznetsov method
for searching hidden attractors (i.e. applying homotopy and numerical continuation) but used in
a very different way. Such hidden bifurcations are governed by a homotopy parameter ε whereas
c is maintained constant. This additional parameter which is absent from the initial problem is
perfectly fitted to unfold the actual structure of the multispiral attractor. We study completely
the multispiral Chua attractor, generated via sine function, and check numerically our method
for odd and even values of c from 1 to 12. In addition, we compare the shape of the attractors
obtained for the same value of parameter ε while varying the parameter c.

Keywords : Chua circuit; multispiral attractors; hidden bifurcations.

1. Introduction

The study of changes in the qualitative or topolog-
ical structure of a given family of solutions of dif-
ferential equations which depends on a continuous
parameter is known as bifurcation theory [Sat-
tinger, 1973; Lozi, 1975]. Initially the name “point
of bifurcation” was defined as the value of the
parameter for which the number of solutions of such
a family of differential equations is increased from
one to two, like the bifurcation of a branch of a
tree, or when a road divides suddenly in two dif-
ferent ways. Nowadays bifurcation is understood
as a small smooth change made to the parameter
values (the bifurcation parameters) of a system of

differential equations which causes a sudden “qual-
itative” or topological change in its behavior.
However, when a system depends on a discrete
parameter, no bifurcation can occur. In this article
we overcome this dilemma by, showing that in some
cases, “hidden bifurcation” instead of conventional
bifurcation arises from a discrete parameter.

1.1. The Chua attractor

Fifty years ago, the discovery of the first chaotic
strange attractor by E. N. Lorenz [Lorenz, 1963],
introduced a drastic change in the mathematical
study of oscillations. Fifty years after, only few
chaotic attractors involving differential equations
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remain actively explored. Among them Chua
attractor is nowadays incredibly used, because of
both its realizations: electronic circuit or system
of differential equations can be combined for mul-
tiple purposes [Duan et al., 2004]. Chua attractor
is the asymptotic attractor of solutions of the sys-
tem of differential equations modeling the dynam-
ics of the Chua circuit. The Chua circuit is the
simplest electronic circuit exhibiting chaos, and
moreover possesses a very rich dynamical behav-
ior which was verified from numerous laboratory
experiments [Zhong & Ayrom, 1985], computer sim-
ulations [Matsumoto, 1984], and rigorous mathe-
matical analysis [Chua et al., 1986; Lozi & Ushiki,
1993]. L. Chua invented it in the fall of 1983
[Chua, 1992] when he was visiting T. Matsumoto
at Waseda University (Tokyo, Japan). This elec-
tronic circuit was mimicking directly on an oscillo-
scope screen a chaotic signal. Its invention was due
in response to the search of two unfulfilled quests
among many researchers on chaos concerning two
wanting aspects of the Lorenz equations. The first
quest was to demonstrate chaos as a robust physi-
cal phenomenon, and not merely an artifact of com-
puter round-off errors. The second one was to prove
that a strange attractor, which was obtained by
computer simulation, is indeed chaotic in a rigorous
mathematical sense. This circuit was the first real
(concrete) example of a physical device exhibiting
nonperiodic oscillations.

Since that discovery the Chua circuit has been
generalized to several versions. One generalization
substitutes the continuous piecewise-linear function
by a smooth function, such as a cubic polynomial
[Khibnik et al., 1993; Shilnikov, 1994; Huang et al.,
1996; Hirsch et al., 2003], etc.

Complex attractors with n-double spirals were
reported in [Suykens & Vandewalle, 1991] by intro-
ducing additional break points in the nonlinear ele-
ment in the Chua circuit, or using cellular neural
networks with a piecewise-linear output function
[Arena et al., 1996]. It is also demonstrated in
[Suykens et al., 1997; Yalçin et al., 1999], that odd
number scrolls can be observed by a similar modi-
fication. In [Tang et al., 2001], it is shown that the
n-spirals attractors can be obtained with a simple
sine or a cosine function.

1.2. Hidden attractors

Recently a new concept concerning the classifica-
tion of attractors has been introduced: periodic or

chaotic attractors belong either to the class of self-
excited attractors or to the class of hidden attrac-
tors [Leonov et al., 2011; Leonov & Kuznetsov,
2011]. The basin of attraction of a self-excited
attractor overlaps with the neighborhood of an equi-
librium point, therefore self-excited attractors are
very easy to be found. On the contrary a hidden
attractor has a basin of attraction that does not
intersect with small neighborhoods of any equi-
librium points thereby making it very difficult to
find; it is why one can call it hidden. Hidden
attractors are important in engineering applications
because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure
like an aircraft’s control systems (windup and anti-
windup), drilling systems and electrical machines
and in secure (chaotic) communications. In [Leonov,
2009b; Leonov et al., 2010], N. V. Kuznetsov and
G. A. Leonov have proposed an effective method
for the numerical localization of hidden attractors in
multidimensional dynamical systems. This method
is based on homotopy and numerical continuation.
They construct a sequence of similar systems such
that for the first (starting) system the initial data
for numerical computation of oscillating solution
(starting oscillation) can be obtained analytically.
Then the transformation of this starting solution
is tracked numerically in passing from one system
to another. The first example of a hidden chaotic
strange attractor was found in the Chua attractor
[Leonov et al., 2012].

1.3. Hidden bifurcations

As mentioned before, because the parameter c gov-
erning the number of spirals in the modified Chua
circuit with sine function [Tang et al., 2001] is an
integer, it is not possible to vary it continuously
and therefore it is not possible to observe bifurca-
tion of attractors from n to n+ 2 spirals when the
parameter c changes. Moreover it is not possible to
use noninteger real values for c. To overcome this
obstacle, we use the core idea of the Leonov and
Kuznetsov method for searching hidden attractors
(i.e. homotopy and numerical continuation) in a dif-
ferent way, in order to uncover hidden bifurcations,
governed by a homotopy parameter ε while keeping
c constant.

This paper is organized as follows: In Sec. 2, we
recall the model of Chua’s system with multiple-
spiral attractors generated via sine function as pro-
posed in [Tang et al., 2001]. In Sec. 3, we present
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the analytical-numerical method for hidden attrac-
tor localization proposed by Leonov [2009a, 2010].
The third section is devoted to the localization of
hidden bifurcation in Chua’s system with multiple-
spiral attractors. In addition, the results of numer-
ical bifurcation of the analysis are given in Sec. 4.
Finally, the conclusion with some discussion is given
in Sec. 5.

2. Chua’s System with
Multiple-Spiral Attractors
Generated via the Sine Function

In recent years, various approaches have been pro-
posed, for generating n-scroll in Chua’s circuit. In
[Tang et al., 2001], a new family of continuous
functions for generating n-scroll attractors is pro-
posed. It is shown that n-scroll attractors can be
obtained with a simple sine or cosine function. Their
approach allows us to design n-scroll attractors by
modifying only two parameters in the function. The
dimensionless state equation of Chua circuit modi-
fied with a sine function is given by:


ẋ = α(y − f(x))

ẏ = x− y + z

ż = βz

(1)

where

f(x) =




bπ

2a
(x− 2ac), if x ≥ 2ac

−b sin
(
πx

2a
+ d

)
, if −2ac < x < 2ac

bπ

2a
(x+ 2ac), if x ≤ −2ac

(2)

where, α, β, a, b and d are parameters belonging to
R to be specified below for different applications,
while c is an integer. In this article, we call n-spirals
such attractors instead of n-scroll, in order to avoid
any confusion with the genuine work of Chua in
which the inner structure of the Chua attractor is
one scroll embedded in another scroll visible in the
Poincaré section. In this article we are not inter-
ested in the fractal structure of the attractors but
only in their general shape described in terms of the
number of spirals.

An n-spirals attractor is generated when

n = c+ 1, (3)

where c and n ∈ N and

d =

{
π, if n is odd

0, if n is even.
(4)

It can be easily verified that c governs the num-
ber of periods existing in the function, and hence-
forth the number of equilibrium points of (1). The
equilibrium points are (xeq, 0,−xeq) with xeq = 2ak
and k = 0,±1, . . . ,±c [Tang et al., 2001].

When α = 10.814, β = 14.0, a = 1.3, b = 0.11;
2-spirals, 4-spirals, 6-spirals, 8-spirals, 10-spirals
and 12-spirals attractors are generated by Eqs. (1)
and (2) for odd values of parameter c: c = 1, c = 3,
c = 5, c = 7, c = 9 and c = 11, respectively.
In the case of even values of c: c = 2, c = 4,
c = 6, c = 8, c = 10 and c = 12, respectively,
one obtains odd number of spirals: 3-spirals, 5-
spirals, 7-spirals, 9-spirals, 11-spirals and 13-spirals
attractors, as depicted in Figs. 1(a)–1(f) and in
Figs. 2(a)–2(f).

3. Analytical-Numerical Method for
Localization of Hidden Attractors

In their articles [Leonov, 2009b; Leonov et al., 2010],
N. V. Kuznetsov and G. A. Leonov have proposed
an effective method for the numerical localization
of hidden attractors in multidimensional dynamical
systems. This method is based on homotopy and
numerical continuation. They construct a sequence
of similar systems such that for the first (start-
ing) system the initial data for numerical computa-
tion of an oscillating solution (starting oscillation)
can be obtained analytically. Then the transforma-
tion of this starting solution is tracked numerically
in passing from one system to another. This pro-
posed approach is generalized in the work [Leonov &
Kuznetsov, 2011] to the systems of the form

dX

dt
= PX + ψ(X), (5)

where P is a constant n×n-matrix, ψ(X) is a con-
tinuous vector-function, and ψ(0) = 0.

In the case where there is only one scalar non-
linearity in the system, it takes the following form

dX

dt
= PX + qψ(rtX), X ∈ R

n. (6)

Here q, r are constant n-dimensional vectors, t is
a transposition operation, ψ(σ) is a continuous
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piecewise-differentiable scalar function satisfying
the condition ψ(0) = 0. Now let us define a coef-
ficient of harmonic linearization k in such a way
that the matrix

P0 = P + kqrt, (7)

has a pair of purely imaginary eigenvalues ±iω0,
(ω0 > 0) and the rest of its eigenvalues have neg-
ative real parts. We assume that such k exists and
we rewrite the system (6) as

dX

dt
= P0X + qϕ(rtX), (8)

where ϕ(τ) = ψ(τ) − kτ.
Now we introduce a finite sequence of functions

ϕ0(τ), ϕ1(τ), . . . , ϕm(τ) such that the graph of the
functions ϕj(τ) and ϕj+1(τ), (j = 0, . . . ,m − 1),
differ slightly from one another, where the function
ϕ0(τ) is small and ϕm(τ) = ϕ(τ). Using a smallness
of function, we can apply the method of harmonic
linearization (describing function method) for the
system

dX

dt
= P0X + qϕ0(rtX), (9)

in order to determine the nontrivial stable periodic
solution X0(t). For the localization of the attractor
of the original system (8), we will follow numer-
ically the transformation of this periodic solution
(a starting oscillating attractor, not including equi-
libria, denoted further by A0 with increasing j. To
determine the initial condition X0(0) of the peri-
odic solution, system (9) can be transformed by a
linear nonsingular transformation S (X = SY ) to
the form:


ẏ1 = −ω0y2 + b1ϕ

0(y1 + ct3Y3)

ẏ2 = ω0y1 + b2ϕ
0(y1 + ct3Y3)

Ẏ3 = A3Y3 +B3ϕ
0(y1 + ct3Y3)

Here y1, y2 are scalar values, Y3 is an (n − 2)-
dimensional vector; B3 and c3 are (n − 2)-
dimensional vectors, b1 and b2 are real numbers;
A3 is an (n − 2) × (n − 2) matrix, where all of its
eigenvalues have negative real parts. Without loss
of generality, it can be assumed that for the matrix
A3 there exists a positive number d1 > 0 such that

Y t
3(A3 +At

3)Y3 ≤ −2d1|Y 2
3|, ∀Y3 ∈ R

n−2.

(10)

In the scalar case, let us define the following describ-
ing function Φ of a real variable τ , and assume the
existence of its derivative:

Φ(τ) =
∫ 2π/ω0

0
ϕ(cos(ω0t)τ) cos(ω0t)dt. (11)

Theorem 1 [Leonov et al., 2010]. If a positive τ0 can
be found such that

Φ(τ0) = 0, b1
dΦ(τ)
dτ

∣∣∣∣
τ=τ0

< 0, (12)

then for the initial condition of the periodic solu-
tion X0(0) = S(y1(0), y2(0), Y3(0))T at the first step
of algorithm we have y1(0) = τ0 + O(ε), y2(0) =
0, Y3(0) = On−2(ε), where On−2(ε) is an (n − 2)-
dimensional vector such that all its components
are O(ε).

For the stability of x0(t) (where stability is
defined in the sense that for all solutions with the
initial data sufficiently close to x0(0) the modulus
of their difference with x0(t) is uniformly bounded
for all t > 0), it is sufficient to require the following
condition is true

b1
dΦ(τ)
dτ

∣∣∣∣
τ=τ0

< 0.

In practice, to determine k and ω0 one uses the
transfer function W (p) of system (8)

W (p) = r(P − pI)−1q (13)

where p is a complex variable. The number ω0

is determined from the equation ImW (iω0) = 0
and k is calculated then by the formula k =
−ReW (iω0)−1.

4. Localization of Hidden
Bifurcation in Chua’s System
with Multiple Spiral Attractors
Generated via the Sine Function

Theorem 1 can be used for the search of hidden
attractors in Chua’s system with multiple spiral
attractors generated via the sine function. Consider
the given Chua’s system (1) and (2). For this pur-
pose, we rewrite system (1)–(2) into the form (5)

dX

dt
= PX + qψ(rtX), X ∈ R

3, (14)
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where

P =




0 α 0

1 −1 1

0 −β 0


 , q =



α

0

0


 and r =




1

0

0




ψ(σ) = f(σ).

Introducing the coefficient k and a small parameter
ε, system (14) can be transformed into the form of
system (9) as follows:

dX

dt
= P0X + qεϕ0(rtX), X ∈ R

3 (15)

where

P0 = P + kqrt =



−αk α 0

1 −1 1

0 −β 0




ϕ(σ) = ψ(σ) − kτ = −αf(σ) − kτ

The transfer function WP0(p) of the system (15) is
given by

WP0(p) = rt(P − pI)−1

= α
p2 + p+ β

p3 + p2 + (β − α)p
.

For the parameter value α = 10.814, β = 14,
using the formulas ImW (iω0) = 0 and k =
−(ReW (iω0))−1, we calculated ω0 = 1.8766 and
k = 0.031084. Via the nonsingular linear transfor-
mation X = SY the system (15) is reduced to the
form

dY

dt
= AY +Bεϕ(CtY ), (16)

where

A = S−1P0S, B = S−1q and Ct = rtS.

This implies

A =




0 −ω0 0

ω0 0 0

0 0 −d


, B =



b1

b2

1


,

C =




1

0

−h


 and S =



S11 S12 S13

S21 S22 S23

S31 S32 S33


.

The transfer function WA(p) of system (16) can be
represented as

WA(p) =
−b1p+ b2ω0

p2 + ω2
0

+
h

p+ d

= α
p2 + p+ β

pβ− pα+ p2 + p3 + kpα+ kαβ+ kαp2
.

Further, using the equality of transfer functions of
systems (15) and (16), we obtain

k =
α+ ω2

0 − β

α
, d = α+ ω2

0 − β + 1,

h =
α(β − d+ d2)

ω2
0 + d2

, b1 =
α(β − ω2

0 − d)
ω2

0 + d2
,

b2 =
α(1 − d)(ω0 + βd)

ω2
0(ω

2
0 + d2)

.

When the parameters of system (14) are fixed at,
α = 10.814, β = 14.0, a = 1.3, b = 0.11, we obtain

k = 0.031071, d = 1.336, h = 29.443,

b1 = 18.629, b2 = −0.36483,

S =




1 0 −29.443

0.031084 0.17354 2.7223

−1.2946 0.23188 34.917


.

Via Theorem 1, for ε small enough, we calculate
the following initial condition for the first step of
the multistage localization procedure

X(0) = SY (0) = S



τ0

0

0


 =



τ0S11

τ0S21

τ0S31


. (17)

For the Chua multispiral model, the number
of spirals is an integer determined uniquely by the
value of parameter c, this number is c+1. Therefore
c being an integer it is not possible to do a continu-
ous variation of this parameter in order to observe
bifurcations from p to p + 2 spirals. The main idea
of this article to overcome such obstacle is to intro-
duce a continuous additional parameter ε in order
to uncover hidden bifurcations. We call such bifur-
cations hidden bifurcations because an additional
parameter is needed to unfold the structure of the
multispiral attractor.
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5. Numerical Results

Consider the system (1) and (2) with parameter
values

α = 10.814, β = 14.0, a = 1.3, b = 0.11. (18)

Now we apply the localization procedure described
above to Chua’s system (14) with multiple spiral
attractors. For this purpose, we compute the follow-
ing starting frequency ω0 and a coefficient of har-
monic linearization k:

ω0 = 1.8767 and k = 0.031084.

Then, we compute the solutions of system (15) with
the nonlinearity εϕ(x) = ε(ψ(x) − kx), by increas-
ing sequentially ε from the value ε = 0.1 to ε = 1
by starting at the beginning with the step 0.1, and
decreasing it down to 0.001 between ε = 0.8 and
ε = 1. Using (17), we obtain the initial conditions,
for each integer value of c (Tables 1 and 2), for the
first step of our multistage procedure for construct-
ing the solutions.

If the stable periodic solution X0(t) (corre-
sponding to a very small ε) near the harmonic one
is determined, all the points of the stable peri-
odic solution X0(t) are located in the domain of
attraction of the stable periodic solution X1(t) of
the system. The solutionX1(t) can be found numer-
ically by searching one trajectory of system (5) with
ε = 0.1 from the initial point X0(0). For the value

Table 1. Initial condition as a function of odd integer c.

Parameter c x0 y0 z0

1 4.22 0.13117 −5.4632
3 12.09 0.37581 −15.652
5 20.02 0.6223 −25.918
7 28 0.87035 −36.249
9 36 1.119 −46.606

11 43.95 1.3661 −56.898

Table 2. Initial condition as a function of even integer c.

Parameter c x0 y0 z0

2 8.13 0.25271 −10.525
4 16.05 0.49890 −20.778
6 24 0.74602 −31.07
8 31.99 0.99438 −41.414

10 39.97 1.2424 −51.745
12 47.95 1.4905 −62.076

of the parameter ε = 0.1, after a transient process,
the computational procedure reaches the starting
oscillation X1(t).

We continue by increasing the parameter “j”
and using the numerical procedure, we obtain the
sequential transformation Xj(t) for the original
Chua system (1).

Without loss of generality, we illustrate the case
for c = 12 and apply the above procedure to obtain

Fig. 3. Transition from one solution to another, from ε = 0.1 to ε = 1.

Table 3. Initial condition according to the values of ε.

ε x0 y0 z0 ε x0 y0 z0

0.1 47.95 1.4905 −62.076 0.8221 −2.1384 −6.2713 2.6040
0.2 1.2959 0.4052 −1.1970 0.9718 1.6973 0.2080 −2.2365
0.3 −1.0658 0.2227 1.9005 0.9952 2.1948 1.1740 −2.7819
0.4 2.2579 0.2227 −2.7591 0.99 −4.3244 −0.3244 −3.2898
0.5 −1.5593 −0.3827 1.6249 0.995 −0.9327 −0.1236 1.3513
0.6 −2.4320 −0.0300 3.1930 0.998 −10.7179 0.1882 11.5265
0.7 −1.4814 0.3031 2.1874 0.999 −2.6705 0.2845 2.2206
0.8 −2.7063 −0.0658 3.3600 1 −4.2597 −0.1102 3.3563
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Table 4. Values of the parameter ε at the bifurcation points for c = 12 (13 spirals).

ε

0.8221 0.9718 0.9852 0.99 0.995 0.998
3 spirals 5 spirals 7 spirals 9 spirals 11 spirals 13 spirals

Fig. 4. Diagram of bifurcation.

the initial conditions for the solutions for increasing
values of ε, as shown in Fig. 3.

Using this initial condition we get at the points
of bifurcation, where the attractor changes the num-
ber of spirals from one to 13 spirals as shown in
Table 4 and in Figs. 4–6. It should be noted that
the number of bifurcation points is independent of

the parameter ε (it depends only on the parameter
c). So the role of the parameter ε is to increase the
number of spirals of the attractor after the bifur-
cation point. Figure 4 shows the bifurcation dia-
gram (i.e. the change of number of spirals from n
to n+ 2, n = 1, . . . , 11). Table 5 presents the bifur-
cation points for different values of the parameter c

Table 5. Bifurcations points for different values of parameter c.

ε

c 2 Spirals 4 Spirals 6 Spirals 8 Spirals 10 Spirals 12 Spirals

1 0.8535 impossible impossible impossible impossible impossible
3 0.91625 0.9491127 impossible impossible impossible impossible
5 0.9161999 0.94915 0.97979 impossible impossible impossible
7 0.9161999 0.94915 0.9797501 0.9889 impossible impossible
9 0.9161999 0.94915 0.97979 0.9888989 0.99404901 impossible
11 0.9161999 0.9491125 0.9797505 0.9888989 0.99404901 0.998950169

c 3 Spirals 5 Spirals 7 Spirals 9 Spirals 11 Spirals 13 Spirals

2 0.8221 impossible impossible impossible impossible impossible
4 0.8221 0.9718 impossible impossible impossible impossible
6 0.8221 0.9718 0.9852 impossible impossible impossible
8 0.8221 0.9718 0.9852 0.99 impossible impossible
10 0.8221 0.9718 0.9852 0.99 0.999 impossible
12 0.8221 0.9718 0.9852 0.99 0.995 0.998
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(a)

(b)

(c)

Fig. 5. The increasing number of spirals of the system (15) according to increasing ε values. (a) 3 spirals for c = 12 and
ε = 0.8221, (b) 5 spirals for c = 12 and ε = 0.9718 and (c) 7 spirals for c = 12 and ε = 0.9852. The range of the x-axis is the
same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 6. The increasing number of spirals of the system (15) according to increasing ε values. (a) 9 spirals for c = 12 and
ε = 0.99, (b) 11 spirals for c = 12 and ε = 0.995 and (c) 13 spirals for c = 12 and ε = 0.998. The range of the x-axis is the
same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 7. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 2. (a) 1 spiral for ε = 0.82,
(b) 3 spirals for ε = 0.8221 and (c) 3 spirals for ε = 0.85. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 8. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 4. (a) 3 spirals for ε = 0.98, (b) 5
spirals for ε = 0.9852 and (c) 5 spirals for ε = 0.986. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 9. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 6. (a) 5 spirals for ε = 0.98, (b) 7
spirals for ε = 0.9852 and (c) 7 spirals for ε = 0.986. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 10. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 8. (a) 7 spirals for ε = 0.989, (b)
9 spirals for ε = 0.99 and (c) 9 spirals for ε = 0.994. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 11. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 10. (a) 9 spirals for ε = 0.994,
(b) 11 spirals for ε = 0.995 and (c) 11 spirals for ε = 0.997. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 12. n-scroll (odd scroll) attractors generated by the hidden bifurcation method for c = 12. (a) 11 spirals for ε = 0.997,
(b) 13 spirals for ε = 0.998 and (c) 13 spirals for ε = 0.999. The range of the x-axis is the same for Figs. 5–12.
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(a)

(b)

(c)

Fig. 13. Comparison between the shape of the attractors for the same value of ε = 0.8221, and various values of parameter
c. (a) c = 2, (b) c = 4, (c) c = 6, (d) c = 8, (e) c = 10 and (f) c = 12.
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(d)

(e)

(f)

Fig. 13. (Continued)
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(a)

(b)

(c)

Fig. 14. Comparison between the shape of the attractors for the same value of ε = 0.9718, and various values of parameter
c. (a) c = 4, (b) c = 6, (c) c = 8, (d) c = 10 and (e) c = 12.
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(d)

(e)

Fig. 14. (Continued)

(a)

Fig. 15. Comparison between the shape of the attractors for the same value of ε = 0.9852, and various values of parameter c.
(a) c = 6, (b) c = 8, (c) c = 10 and (d) c = 12.
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(b)

(c)

(d)

Fig. 15. (Continued)
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(a)

(b)

(c)

Fig. 16. Comparison between the shape of the attractors for the same value of ε = 0.99, and various values of parameter c.
(a) c = 8, (b) c = 10 and (c) c = 12.
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(a)

(b)

Fig. 17. Comparison between the shape of the attractors for the same value of ε = 0.995, and various values of parameter c.
(a) c = 10 and (b) c = 12.

(from c = 1 to c = 12). These results are obtained
integrating the differential equation, using Matlab
over a sufficient period of time.

If the integration process is stopped early, only
a part of spirals are plotted. The knowledge of
this range is obtained numerically by trial–error
method.

Note that during those computations no hidden
attractor was found.

5.1. Comparison

We have made a comparison between the common
branch points of the various values of parameter c
(i.e. where the same number of spirals was obtained
using the same values of the parameter ε). Following

the numerical simulations and the figures obtained,
we note that the attractors are very similar as
shown in Figs. 13–17.

6. Conclusion

In this paper, we have introduced hidden bifur-
cations in order to overcome the problem of the
use of a discrete parameter instead of a continuous
one. Based on the method of Leonov for localiza-
tion of hidden attractors, we have applied a special
analytical-numerical algorithm for hidden bifurca-
tion localization in the Chua multispiral model,
by introducing an additional continuous param-
eter ε in order to find the hidden bifurcations,
points of appearance of new spirals. We have called
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such bifurcations hidden bifurcations because there
is a need for an additional parameter to unfold
the actual structure of the multispiral attractor.
A numerical comparison between common bifurca-
tion points for different values of the parameter c is
made. Our method for finding hidden bifurcations
is very promising. We will soon apply it to two- and
three-dimensional parameters, in the case of Multi-
directional Multiscroll Chaotic Attractors [Lü et al.,
2006].
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