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We show that a properly dc-biased Josephson junction in series with two microwave resonators of
different frequencies emits photon pairs in the resonators. By measuring auto- and inter-correlations
of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the
classical limit. This non-classical microwave light emission is found to be in quantitative agreement
with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.

PACS numbers: 74.50+r, 73.23Hk, 85.25Cp

Microwave radiation is usually produced by ac-driving
a conductor like a wire antenna. The radiated field is
then a so-called coherent state [1] which closely resem-
bles a classical state. On the other hand, a simply dc-
biased quantum conductor can also generate microwave
radiation, owing to the probabilistic nature of the dis-
crete charge transfer through the conductor which cause
quantum fluctuations of the current [2–4]. In this latter
situation, it is expected that the quantum character of
the charge transfer may imprint in the properties of the
emitted radiation, possibly leading to nonclassical radi-
ation, such as e.g. antibunched photons [5–11]. More
broadly, one may wonder what other types of interest-
ing or useful nonclassical states of light can be generated
with such a simple method. In this Letter, we investigate
the properties of photons pairs emitted by a dc voltage-
biased Josephson junction. In such a junction, at bias
voltage less than the gap voltage 2∆/e, no quasiparticle
excitation can be created in the superconducting elec-
trodes. Thus, a DC current can only flow through the
junction when the electrostatic energy 2eV associated to
transfer of the charge of a Cooper pair through the circuit
is absorbed by modes of the surrounding circuit [12–17].

In order to obtain a situation in which the quantum
nature of the emitted radiation can be probed quanti-
tatively, we place such a dc-biased Josephson junction
in an engineered environment made of two series res-
onators with different frequencies νa, νb, as shown in
Fig. 1a. We consider in particular the resonance con-
dition 2eV = h(νa + νb), at which the transfer of a single
Cooper pair is expected to create one photon in each res-
onator, leaking afterwards in two microwave lines. By
measuring both photon emission rates as well as the
power-power auto and intercorrelations, we prove that
these correlations violate a Cauchy-Schwartz inequality
obeyed by classical light, meaning that the relative fluc-
tuations of the outgoing modes are suppressed below the
classical limit. This two-mode amplitude squeezing is ob-
served for emission rates as high as 2× 109 photon pairs

per second, making our setup a particularly bright (and
simple) source of nonclassical radiation.

Our experimental setup is shown in Fig. 1b: a small
superconducting quantum interference device (SQUID)
acts as a tunable Josephson junction with Josephson
energy EJ = EJ0| cos(2eΦ/~)| adjustable via the mag-
netic flux Φ threading its loop. The two resonators con-
nected to either side of the SQUID are made of three
cascaded quarter-wave transformers. Their expected fun-
damental modes have frequencies νa,b ' 5.1, 7.0 GHz
and characteristic impedances Za,b ' 140 Ω. The res-
onators are connected to two separate bias tees mak-
ing it possible to dc voltage bias the SQUID while col-
lecting radiation on two separate microwave lines with
wave impedance 50Ω. The resonator quality factors
Qa,b ' 25, 35 are thus determined by the energy leak-
ing rate κa,b ' 1.3 109 s−1 into each microwave line.
The expected total series impedance Z(ν) seen by the
SQUID thus reaches ' 3.2, 4.9 kΩ for modes a and b.
The two measurement lines are arranged in a Hanbury-
Brown and Twiss (HBT) microwave-setup to probe the
quantum fluctuations of the emitted radiation without
being blinded by the noise of the amplification chains:
they are connected through two isolators to a 90◦ hy-
brid coupler acting as a microwave beam splitter. The
two lines after the coupler (hereafter called 1 and 2) thus
propagate half of the powers leaking from resonators a
and b. The two outputs of the beam splitter are sent
through two additional isolators and filters to two mi-
crowave high-electron-mobility transistor (HEMT) am-
plifiers placed at 4.2 K. These isolators and filters pro-
tect the sample from the amplifiers’ back-action noise
and ensure thermalization of its environment during the
experiment. They also attenuate the signals by about
3 dB. After further amplification at room temperature
(not shown in Fig. 1-b), the signals are filtered either
by a heterodyne technique implementing a 12 MHz-wide
band pass filter at tunable frequency or by adjustable
bandpass cavity filters covering only one of the resonator
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FIG. 1: Principle and setup of the experiment. (a)
a Josephson junction in series with two resonators with fre-
quencies νa,b emits a photon pair in the resonators each time
a Cooper pair tunnels through it at a dc bias voltage V such
that 2eV = hνa + hνb. Microwave radiations leaking out of
the resonators at rates κa,b should present strong quantum
correlations. (b) Setup: The sample consists of a SQUID
working as a magnetically tunable Josephson junction, in se-
ries with two 3-quarterwave transformer resonators. Two bias
tees make possible to dc voltage bias the SQUID while col-
lecting radiation from the resonators. A Hanbury-Brown and
Twiss setup with a hybrid coupler, isolators, amplifiers, fil-
ters, and power detectors is used to measure all powers and
power-power correlations (see text).

lines. In both cases, the filtered signal is detected by a
quadratic detector, whose output voltage is proportional
to its input ac power P1,2(t). In order to extract the small
average contribution

〈
PS1,2

〉
of the sample from the large

background noise of the cryogenic amplifiers, we apply a
0 to V square-wave modulation at 113 Hz to the sample
bias and perform a lock-in detection of the square-wave
response of the quadratic detectors.

The sample is cooled to 15 mK in a dilution refriger-
ator. We first characterize in-situ our sample and detec-
tion chain using the quasi-particle shot noise as a cal-
ibrated source [16]: We measure the power emitted by
the SQUID at bias voltage V ' 0.975 mV, well above the
gap voltage 2∆/e ' 0.4 mV. Under these conditions, the
voltage derivative of the measured power spectral density
reads 2eReZ(ν)Rn/|Rn + Z(ν)|2 ×G with Rn = 8.0 kΩ
the tunnel resistance of the SQUID in the normal state,
and G the total gain of the setup. The measured fre-
quency dependence is in good agreement with the above
formula, using our design of Z(ν). This measurement

thus provides an in-situ determination of gain G. More
information on the design and comparison with the high
bias data can be found in the supplementary material
[18].

We then measure the photon emission rate as a func-
tion of frequency and bias voltage for the single photon
(left side of fig. 2) and two photon emission processes
(right side of fig. 2). To do so, we ensure a maximum
population of the resonators of order unity by setting
EJ at a sufficiently small value [19]. The single pho-
ton processes occur along the 2eV = hν line, with an
intensity modulated by ReZ(ν). At fixed bias voltage,
the 12 MHz spectral width of the detected radiation co-
incides with our detection bandwidth, proving that our
bias line is well filtered and adds to the Josephson fre-
quency 2eV/h an incertitude negligible compared with
the width of the resonators κa,b/2π. Fainter lines ap-
pear at 2eV = h(νa,b ± mνP ), with νP = 35 MHz and
m an integer. We attribute these satellite peaks to the
existence of a parasitic resonance at frequency νP , allow-
ing for multi-photon processes with one photon emitted
at high frequency νa or νb and m photons emitted into
or absorbed from the parasitic mode. From the relative
weight of the peaks (data not shown here), we estimate
the impedance of this parasitic mode to ZP = 204 Ω, with
a thermal population of np ∼ 8 photons corresponding
to a 14.5 mK temperature for the νP mode. This is in
good agreement with the measured fridge temperature of
15 mK ± 1mK.

At higher bias voltages (right side of Fig. 2) we detect
processes for which the tunneling of a Cooper pair is as-
sociated to the emission of two photons: At V = 20.2 µV
(resp. 27.9 µV), we detect radiation around the frequency
of resonator a (resp. b) due to the simultaneous emission
of two photons into this resonator for each Cooper pair
tunneling through the junction. At an intermediate volt-
age V = 24.1 µV, we detect radiation at both frequencies
νa and νb, due to the simultaneous emission of a pho-
ton in each resonator for each Cooper pair transferred.
The rightmost panel of Fig. 2 shows the corresponding
power spectral density of the emitted radiation. Inte-
grating this spectral power over a 500 MHz bandwidth
centered around νa and νb indeed shows that the photon
emission rates into resonators a and b coincide (within
10% due to calibration uncertainties). At fixed bias volt-
age V the spectral width of the emitted radiation from
any two photon process is comparable with the width of
the resonators: Due to energy conservation, the sum of
the frequencies of the two emitted photons is equal to the
Josephson frequency νJ = 2eV/h. As a consequence, if
one of the photons is emitted at frequency ν, the other is
emitted at frequency νJ − ν. The corresponding weight
is given by the product of the environment’s impedances
Re[Z(ν)]Re[Z(νJ − ν)]/R2

Q, resulting in a width of the
emitted radiation of the order of half of the resonator’s
width [16].
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FIG. 2: Detected power spectral density as a function of frequency ν and dc bias voltage V , re-expressed in terms of photon
rate per unit bandwidth 〈n〉 at the output of the resonators. Emission occurs at one photon per Cooper pair along the line
2eV = hν (see left 2D map), and at two identical photons per Cooper pair along the 2eV = 2hν line and one pair of photons
in modes a, b along the vertical line 2eV = hνa + hνb. (see right 2D map). The leftmost panel is a cut along the 2ev = hν line
showing that the emitted power (blue bold line) follows the ReZ(ν)/ν prediction (red thin line) of the P (E)-theory with EJ

being the only adjustable parameter. The rightmost panel is a cut at V = 24.1µV = h(νa + νb)/(2e). Occupation numbers for
the two photons processes have been multiplied by 100 for clarity.

It is quite intuitive that a common excitation pro-
cess that creates one photon in each resonator for each
Cooper pair tunneling through the junction yields strong
non-classical correlations of the resonators’ occupation
numbers na = a†a and nb = b†b. This effect is quan-
tified by the so-called noise reduction factor NRF =
Var(na − nb)/ 〈na + nb〉, i.e. the variance of the occupa-
tion difference, normalized to the average total number of
photons, yielding 1 in the case of two independent coher-
ent states. With photon pair creation in non-leaking res-
onators, na and nb would remain equal and NRF would
be reduced to zero. In reality, due to the uncorrelated
energy decays of the two resonators, na and nb do not
remain equal, even for perfectly symmetric modes, and
NRF is expected to increase from 0 to 1/2 [20, 21].

The NRF can be linked to the zero-delay value of sec-
ond order coherence functions

g
(2)
α,β(τ) =

〈
α†(τ)β†(0)α(τ)β(0)

〉
〈α†(τ)α(τ)〉 〈β†(0)β(0)〉

with α, β ∈ {a, b}. We get

NRF = 1 +
〈na〉2 g(2)

a,a(0) + 〈nb〉2 g(2)
b,b (0)− 2 〈na〉 〈nb〉 g(2)

a,b(0)

〈na + nb〉

= 1 + 〈n〉
g

(2)
a,a(0) + g

(2)
b,b (0)− 2g

(2)
a,b(0)

2
(1)

for 〈na〉 = 〈nb〉 = 〈n〉. A classical bound NRF ≥ 1
follows from the Cauchy-Schwarz inequality

g
(2)
a,b(0) ≤

g
(2)
a,a(0) + g

(2)
b,b (0)

2
, (2)

valid for two classical fields, i.e. for a two-mode den-
sity operator corresponding to any statistical mixture of
coherent states. It is easy to explain why the above in-
equality must be violated in our situation, with hence
a NRF below 1: for low Cooper pair tunneling rates,
photons have time to leak out of the resonators between
each a†b† photon pair creation events. The probabilities
to simultaneously find two photons in the same mode, as

measured by the auto-correlation g
(2)
αα(0) is then close to

zero while the cross-correlation g
(2)
ab (0) giving the prob-

ability to find simultaneously one photon in each mode
is high [22]. This situation corresponds to a squeezing
of the relative amplitudes of the two modes below the
classical limit [23–26].

To experimentally probe this violation, we collect the
photons leaking out into the measurement lines. At

the resonator outputs, the three functions g
(2)
αL,βL

, where
αL =

√
καα and βL =

√
κββ are the propagating field

operators, are simply equal to g
(2)
α,β inside the resonators.

Both propagating fields aL and bL are then beam-splitted
and sent to lines 1 and 2, which include ' 650 MHz-wide
filters centered around να and νβ to select the desired res-
onator contributions. Measuring the output powers P1(t)
and P2(t) using two Herotek DTM 180AA fast quadratic
detectors with a 0.42 ± 0.02 ns response time [27], we
obtain the correlation functions

g
(2)
α,β(τ) = 1 +

〈δP1(t+ τ)δP2(t)〉〈
PS1
〉 〈
PS2
〉 , (3)

where
〈
PS1,2

〉
= 〈P1,2(V, t)〉 − 〈P1,2(0, t)〉 are the aver-

age sample contributions and δP1,2(t) = P1,2(V, t) −
〈P1,2(V, t)〉 are the power fluctuations. The advantage
of this strategy is that it gives access to the fluctuations
of the power emitted by the sample avoiding parasitic
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FIG. 3: Non classicality of the emitted radiation at
bias V = 24.1µV, as a function of the photon pair emission
rate. Left scale: Zero delay power-power correlation functions

g
(2)
aa (0) (red open squares), g

(2)
ab (0) (magenta open squares)

and g
(2)
bb (0) (blue open squares). Right scale: the correspond-

ing NRF (green open squares) extracted from Eq. 1 does not
reach the ideal value of 0.5 (horizontal dashed line), but re-
mains well below 1, which demonstrates two-mode amplitude

squeezing. Inset: Time dependence of g
(2)
ab (τ). The solid lines

are theoretical predictions without adjustable parameters. In
the inset, the magenta curve includes the effect of the detector
finite response time, while the dark blue dashed corresponds
to the prediction for infinitely fast detectors.

terms due to the much higher noise power of the HEMT
amplifiers [28–30]. Figure 3 shows the three coherence

functions g
(2)
α,β at zero delay τ as well as the noise re-

duction factor NRF, as a function of the photon pair
emission rate Γ, the later being varied by scanning the
flux threading the SQUID loop. The figure shows that
inequality (2) is indeed violated for photon emission rates
up to 2×109 photon pairs per second, the NRF remaining

close to 0.7. The decay of g
(2)
a,b(τ) due to the independent

resonator leakage is shown in the inset.
To compare our measurements with theory, we com-

pute the g
(2)
α,β(τ) functions. This task goes beyond the

framework of the standard Dynamical Coulomb Block-
ade theory, which assumes that the electromagnetic en-
vironment of the junction remains in equilibrium. Here
instead we need to predict how the presence of photons
already emitted in the resonators modifies the next emis-
sion process. To do so, one can develop an input-output
approach [22, 31]. Equivalently, we use here a Lindblad
master equation approach, starting from the Hamiltonian

H =hνaa
†a+ hνbb

†b

− EJ cos
[
2eV t/~ + ∆a

(
a† + a

)
+ ∆b

(
b† + b

)]
(4)

modeling the two resonators coupled to the volt-
age biased-junction V [10, 20, 21], with ∆a,b =
(πZa,b/RQ)1/2 and RQ = h/4e2. Assuming 2eV =
h(νa + νb) and moving to the frame rotating at ωJ =
2eV/~, the Hamiltonian in the rotating wave approxima-
tion then reads

HRW =
E∗J
2

:
J1(2∆a

√
a†a)J1(2∆b

√
b†b)√

a†a
√
b†b

(
a†b† + ab

)
:

(5)

with E∗J = EJe−(∆2
a+∆2

b)/2 the Josephson energy renor-
malized by the zero-point fluctuations of the two modes,
and the colons characters meaning normal ordering of
the operators. The Bessel functions of the first kind J1

”dress” the elementary photon pair creation process a†b†

by higher-order corrections in na,b. Note that for low
photon numbers na,b and for low impedances Za,b � RQ,

HRW reduces to H ′RW '
E∗

J∆a∆b

2

(
a†b† + ab

)
, which suf-

fices to qualitatively explain the experimental data. Pho-
ton leakage from the resonators can be accounted for by
including damping rates κα of standard quantum-optical
form (in the T = 0 limit) in the quantum master equation
of the system,

ρ̇ = − i
~

[HRW , ρ] +
∑
α=a,b

κα
(
2αρα† − α†αρ− ρα†α

)
.

(6)
Additional incoherent dynamics of the a and b modes is
caused by the parasitic low frequency mode νP [10] and
broadens the one-photon resonances. However, we find
that it has little impact on the two photon a-b resonance.

Simulating (6) yields ρ(t) and hence all g
(2)
αβ (τ) func-

tions. These functions, convoluted with the 0.42±0.02 ns
detector response mentioned above, are plotted as lines
in Fig. 3. They are found in agreement with the experi-
mental results. Note that the deviation from NRF=1/2
seen in Fig. 3 is almost only due to this finite response
time.

In conclusion we have shown that a DC-biased Joseph-
son junction in series with two resonators provides a sim-
ple and bright source of non-classical radiation, display-
ing relative fluctuations of the populations of the two
modes below the classical limit. We have also presented a
theory which quantitatively accounts for our experimen-
tal findings. While the present experiment is performed
at microwave frequencies using Aluminum Josephson
junctions, the physics involved here can be transposed
to higher gap superconductors, such as NbTiN or even
YBaCuO, opening the possibility of creating non classical
THz radiations. We gratefully acknowledge partial sup-
port from Investissements dAvenir LabEx PALM (ANR-
10-LABX-0039-PALM), ANR contracts ANPhoTeQ and
GEARED, and from the ERC through the NSECPROBE
grant.
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Emission of non classical radiation by inelastic Cooper pair tunneling:
Supplemental material

General predictions for g(2)

Choosing a particular dc-bias voltage applied to the
Josephson junction, we picked out that resonance, where
each tunneling Cooper pair excites two photons, one in
each resonator. In the steady state this common excita-
tion process is balanced by the decay of photons from the
cavity, so that the rate of excitation by tunneling Cooper
pairs, Idc/2e, and the photon leakage rates match

Idc

2e
= κa〈na〉 = κb〈nb〉 . (S1)

For equal cavity damping the mean occupations, 〈nα〉,
are thus identical.

This can be exploited to derive a relation [20] between
cross- and autocorrelations for arbitrary driving strength,

g
(2)
ab (0) =

1

2n
+

1

2

[
g(2)
aa (0) + g

(2)
bb (0)

]
. (S2)

It implies a violation of the classical Cauchy-Schwarz in-
equality and predicts a noise reduction factor NRF ≡ 1

2 ,
independent of the driving strength and the impedance
parameters. In the weak driving regime one furthermore

finds g
(2)
ab (τ = 0) ≈ 1/(2〈nα〉), while g

(2)
αα(0) = 2.

For asymmetric cavity damping, κa/κb = r2 6= 1, we
instead find

g
(2)
ab (0) =

r

1 + r2

[
1√

〈na〉〈nb〉
+

1

r
g(2)
aa (0) + rg

(2)
bb (0)

]
,

(S3)
resulting in

NRF =
1 + r4

(1 + r2)2
(S4)

in the weak driving limit. For our experiment, where
the decay rates are found to be identical within about
10%, the maximal deviation of the NRF from the value
of 1/2 taken for perfectly symmetric rates is well below
a percent.

Basic rate-equation model

To pinpoint the physical ingredients necessary for un-
derstanding and explaining the essential results presented
in this paper, we set up a simple rate equation model. It
allows to reproduce most of the important results in the
weak-driving limit of the full theory and qualitatively de-
scribes the experimental data in that regime.

In the weak driving limit, the results for the cross-
correlations and NRF can be found from a simple 4-state

FIG. S1: Sketch of a a simple 4-state rate model, which cap-
tures essentials of our results for cross-correlations and NRF.

rate model, see Fig. S1. A common two-photon process
excites the system from the empty state |na = 0, nb =
0〉 to state |na = 1, nb = 1〉 with some excitation rate
Γexc ∝ E2

J . Leakage of photon a (b) with rate κa(b) from
the excited state leads to an intermediate state, where
cavity a(b) is empty, and finally back to the ground state
|na = 0, nb = 0〉. Solving for the stationary state of the
resulting rate equation, we find that for weak driving,
Γexc � κα the probability to stay in the ground state
remains close to one and all other occupations are of order
E2
J , namely P11 = Γexc/(κa + κb) = r2P10 = P01/r

2.
Occupations of higher states are of higher order in EJ ,
which justifies disregarding them in the 4-state model.

Cross-correlation and NRF in the weak-driving limit
can then be evaluated from these probabilities:

g
(2)
ab (0) =

〈nanb〉
〈na〉〈nb〉

=
P11

(P11 + P10)(P11 + P01)

=
r

1 + r2

1√
〈na〉〈nb〉

.
(S5)

The noise reduction factor reduces to

NRF =
〈(na − nb)2〉 − 〈na − nb〉2

〈nanb〉

≈ P10 + P01

P10 + P01 + 2P11
=

1 + r4

(1 + r2)2

(S6)

as found above.

The success of the simple rate model highlights the
fact, that it is the mere existence of a dominant two-
photon excitation process which is at the heart of the
observed non-classicality. The actual rate drops out of
the final results, so that the impedance parameters do
not influence the NRF. This also already suggests, that
the coherence properties of the process are not relevant
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and, in fact, we found numerically nearly no impact of
low-frequency noise.

Note, that a proper description of auto-correlations
necessarily includes higher occupations and is, hence, be-
yond the 4-state model. The simplest intuitive result

for g
(2)
αα(0) is available in the parametric oscillator limit,

∆α � 1, where the enhanced g
(2)
αα(0) ≈ 2 can be traced

backed to an increased probability for excitation from a
state, where there is already some occupation. Techni-
cally, this stimulated-emission like enhancement is caused
by the corresponding transition-matrix elements entering
the tunneling rates.

Dynamics of the correlation functions

The dependence of the second-order coherence func-

tions, g
(2)
αβ (τ), on the delay time τ is relevant for the

results of this paper in order to understand the effects
of the detector response on the quantity measured as

g
(2)
αβ (τ = 0). We find, that convoluting the theoretically

calculated g
(2)
αβ (τ) with the detector response yields a

substantial reduction of the cross-correlations, while the
auto-correlations are less affected. As a consequence, the
so-predicted reduction of the noise is less pronounced and
nicely matches the measurement results of NRF ≈ 0.7.

For some intuitive insights, we again consider weak
driving, so that the individual two-photon creation pro-
cesses are well separated in time. The effective time-
averaging caused by the detector affects the NRF only
because the origin of auto- and cross-correlations differ,
and consequently so do their time-dependences.

Cross-correlations at τ = 0 stem from a single two-
photon creation process. The resulting 1/(2n) contribu-
tion decays with the typical lifetime of such an excitation
as exp (−κατ).

Auto-correlations in contrast, do not get a direct con-

tribution from a single tunneling event. In fact, g
(2)
αα(τ =

0) , i.e. the detection of two-photons at once necessarily
involves double occupation of cavity α. (As explained

above, g
(2)
αα(τ = 0) ≈ 2 is enhanced nonetheless, due to

a stimulated emission effect, which ultimately also origi-
nates in the existence of two-photon excitations.)

Considering now times, κατ ∼ 1, there will be con-
tributions to the autocorrelation from an original state
(before the first detection) with double occupation of cav-
ity α which decay. However, contributions can also stem
from observation of a first decay from a single-occupied
cavity α, followed by refilling of the cavity and a consec-
utive second decay. These grow with time, as the refill-
ing process takes some time. On short times, κατ . 1,
theory finds that the different time dependences of the
two contributions tend to cancel each other, so that the

autocorrelation remains roughly constant before finally
exponential decay sets in.

This difference in time-dependence causes the detector-
induced averaging to rather strongly suppress the cross-
correlation, while it has a smaller effect on autocorrela-
tions and thus moves the NRF away from 1/2.

Microwave chain

The purpose of this section is to describe in detail, first,
the basic functionality of our correlation setup which we
use to directly measure the quantities

〈
PS1
〉
,
〈
PS2
〉

and
the correlator 〈δP1(t+ τ)δP2(t)〉 to construct Eq. (3) of
the main text without for every frequency combination
(’aa’, ’bb’ and ’ab’). The basic idea is to assume that
the noise of the cryogenic amplifiers can be described as
a thermal noise characterized by a constant noise temper-
ature, uniform over modes a and b, used as a reference
to calculate the gains of the various elements of the de-
tection chain.

The power emitted by the sample is split in equal
parts between the 3 dB hybrid coupler outputs shown in
Fig. 1(b) of the main text. Hence, the output of each of
the two branches of the beam splitter contains half of the
power peaking at the two different frequencies ' 4.9 and
' 6.7 GHz of our resonators attached to the Josephson
junction. The signals at the two outputs of the hybrid
coupler is then fed into two cryogenic amplifiers sitting at
4.2K, as discussed in the main text and shown in figure
1-b. As shown by Fig. S2, the output signals of each of
the cryogenic amplifiers goes through isolator after which
it is post-amplified with a conventional low-noise room-
temperature amplifier, filtered through a 4-8 GHz band-
pass filter and then, subsequently, it is once more ampli-
fied. We further narrow the bandwidth of the detected
signal with passive bandpass filters (labeled (∗)) centered
around νa and νb, for subsequent correlation measure-
ments: In order to measure the second order coherence
function g

(2)
aa (τ) we use passive bandpass filters in each

of the two measurement lines centered around 5 GHz
with a bandwidth of 700 MHz in line ’1’ and 655 MHz in
line ’2’ and for the measurement of g

(2)
bb (τ) we use band-

pass filters centered around 6.8 GHz with a bandwidth
of 650 MHz in line ’1’ and 660 MHz in line ’2’. For the
measurement of g

(2)
ab (τ) we use a bandpass filter centered

around 6.8 GHz with a bandwidth of 650 MHz build into
line ’1’ and a bandpass filter centered around 5 GHz with
a bandwidth of 655 MHz build into line ’2’ (note that our
results for the second order coherence functions are in-
variant against changing the filtering from one line to the
other which we verified in an extra measurement run).

A power divider (-3dB splitter) distributes half of the
bandpass filtered power into a measurement circuit which
measures the mean power associated with the outgoing
photon mode 〈PS1 〉 or 〈PS2 〉, measured by the respec-
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FIG. S2: Circuit scheme of our room-temperature power correlation measurement chain detailing the 300 K part of our
experiment shown in Fig. 1(b) of the main text. The chain consists of two equal measurement lines ’1’ and ’2’ permitting us
to perform cross-correlation measurements of the power emitted by the sample, entering the two individual lines.

tive measurement line ’1’ and ’2’. The other half of
the power is send into a different circuit which mea-
sures the power fluctuations around the mean value of
the total power coming from the cryogenic amplifiers,
i.e. δP1,2(t) = P1,2(t)− 〈P1,2〉.

Mean power measurements

The measurement of the mean output power of each
microwave chain is made using a ’slow’ quadratic detec-
tor (with a response time in the µs range), whose out-
put voltage is proportional to the microwave power at
its input. We use a double lock-in technique to measure
both the average power emitter by the sample 〈PS1,2〉 and
the total power 〈P1,2〉 of our measurement chain, mainly
dominated by the noise of the cryogenic amplifiers at
4.2 K. This last point will allow us to compensate for
slow fluctuations of the gain of the chain, still assuming
that the noise temperature of the cryogenic amplifiers is
constant.

Measurement of the total average power 〈P1,2〉:
The modulation is performed with a mixer circuit which
we use as a switch, the switching is performed via the
intermediate frequency (IF) port of the mixer using an
attached square wave generator operating between 0V
(no power transmitted through the mixer) and 1.1 V
(power transmitted through the mixer) at 113 Hz, and

we detect the resulting square wave modulation of the
output voltage of the quadratic detector by a standard
Lock-in technique, after a final low-frequency amplifica-
tion. The in- and output of the mixer (’switch’) circuit
is connected through DC-blocks (straight vertical lines
in Fig. S2) to the measurement chain to prevent possible
near-DC noise from the modulation sources to disturb
our low-noise measurements. Furthermore, at each con-
nection between microwave components we add attenua-
tors (wiggly vertical lines) to flatten out standing waves
due to possible imperfect SMA connections and to ensure
a linear response of the complete measurement chain.

Measurement of the power emitted by the sam-
ple 〈P1,2〉: Second, the excess power emitted by the sam-
ple when a voltage bias is applied appears on top of the
noise floor of our measurement chain, described previ-
ously, and is measured in the following way. By perform-
ing simultaneous to the signal modulation for the total
power measurement, a modulation of the sample bias
voltage at a different reference frequency, we can sepa-
rately measure the excess power 〈dP 〉 coming exclusively
from the sample by performing an additional lock-in de-
tection of the power at the frequency of the bias voltage
modulation. This measurement is performed on the same
measurement branch which we use to measure the total
power 〈P 〉 of our measurement chains.

The mean power associated with the outgoing photon
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mode is then given by the following equation

〈PS1,2〉 =
〈dP1,2〉
〈P1,2〉

kBTN1,N2∆ν1,2 , (S7)

where 〈dP1,2〉 indicates the mean of the excess power
emitted by the sample into the measurement chains ’1’
and ’2’, respectively. Furthermore, TN1,N2 are the noise
temperatures of the cryogenic microwave amplifiers ref-
ered to the output of the sample (their values depend on
whether line ’1’ or ’2’ is read out and on the detected
mode ’a’ or ’b’) and ∆ν1,2 is the bandwidth of our pas-
sive filtering to select the power emerging from modes ’a’
and ’b’.

Characterization of the two microwave resonators

The resonators are patterned in a Niobium layer of
d = 150 nm sputtered on a Silicon wafer covered by a
520 nm oxide layer. Both resonators consist of three
quarter wavelength sections, one with an impedance
slightly higher than 50 Ω, to increase the impedance
above 50 Ω, the second with a low impedance to reach
an impedance of a few Ohms, and a last section with an
impedance above 100 Ω, to reach an impedance in the
kilo-Ohms range. Table I contains the measured dimen-
sions, where adopt the usual notations: W stands for the
width of the inner conductor, W for the gap between the
inner conductor and the ground plane of the CPW and L
is the length of the quarter wavelength section. Note that
all sections are not designed exactly of identical length,
in order to compensate for finite thickness effects of the
Nb layer and of the oxide layer, and get the fundamen-
tal frequencies of the three sections stacked on one side
of the junction identical. However, as shown later, we
mistakenly neglected the kinetic inductance of the Nb,
which made the resonant frequency of the last quarter
wavelength section (i.e. the closest to the junction) sig-
nificantly lower than the two other ones.

The low temperature resistance of the Niobium was

measured to be 3.8 kΩ for a critical temperature of 8 K.
The low temperature resistivity is thus ρ =69 nΩm−1.
The London penetration length is thus

λ =

√
~ρ

µ0π∆
= 120 nm, (S8)

yielding a surface inductance

Ls = µ0λcotanh
d

λ
= 1.8 10−13 H. (S9)

The additional kinetic inductance reads

LK =
Ls

4S(1− k2)K2(k)

[
π + ln

(
4πS

d

)
− k ln

(
1 + k

1− k

)]
,

(S10)

where k =
S

S + 2W
, and K is the complete elliptic in-

tegral of the first kind. One thus obtains a kinetic in-
ductance of LK = 1.44 10−7H m−1 for the narrowest
sections and negligible for the others. This is to be com-
pared with the L0 = 11.0 10−7H m−1 electromagnetic
inductance. This should decrease the resonant frequency
by 6%. In addition, the finite thickness of Niobium (not
taken into account when designing the experiment) in-
creases the wave velocity by 2%, and the lower dielectric
constant of silicon oxide increases the wave velocity and
the impedance by 0.7%. Hence in total we summarize
our results in Table II.

Comparison with high bias shot noise data

We perform the noise temperature calibration by using
our Josephson junction as a shot noise source connected
to a known frequency dependent electromagnetic envi-
ronment of impedance Z(ν), made of coplanar waveguide
(CPW) resonators with known dimensions. The differ-
ence in power which is deposited in the electromagnetic
environment when biasing the Josephson junction at two
different voltages V1 = 0.975 mV and V2 = 0.762 mV has
then to fulfill the following equation:

kBTN
1

B

∫ νmax

νmin

dν

(
〈dP 〉
〈P 〉

(ν)

∣∣∣∣
V1

− 〈dP 〉
〈P 〉

(ν)

∣∣∣∣
V2

)
=
eV1 − eV2

2

1

B

∫ νmax

νmin

dν 4
Re [Z(ν)]RN
|Z(ν) +RN |2

. (S11)

Here, the right-hand side of the equation quantifies
the difference in noise power coupling of the Josephson
junction with normal-state tunnel resistance RN to the
electromagnetic environment having a complex valued

impedance Z(ν) when the two voltages V1 and V2 are ap-
plied. The left-hand side resembles again Eq. (S7), but
this time also for the difference in the power associated
to the outgoing photon modes when the two voltages V1
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TABLE I: Measured CPW dimensions to calculate Z(ν).

Resonator A Resonator B

First Section S = 23.1µm W = 38.5µm L =5.81 mm S = 13µm W = 43.5µm L =4.23 mm

Second Section S = 95µm W = 2.5µm L =5.81 mm S = 95µm W = 2.5µm L =4.23 mm

Third Section S = 1.33µm W = 49.3µm L =5.81 mm S = 1.33µm W = 49.3µm L =4.23 mm

TABLE II: Impedance and fundamental mode of the three quarter wavelength sections of each resonator.

Resonator A Resonator B

First Section Z = 67.5Ω f0 = 5.14 GHz Z = 67.5Ω f0 = 7.05 GHz

Second Section Z = 23.1Ω f0 = 5.18 GHz Z = 23.1Ω f0 = 7.11 GHz

Third Section Z = 142Ω f0 = 4.9 GHz Z = 142Ω f0 = 6.73 GHz

4 , 0 4 , 5 5 , 0 5 , 5 6 , 0 6 , 5 7 , 0 7 , 5 8 , 0
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4

 

 

 

ν [ G H z ]

∆T
sh

ot 
no

ise
 [K

]

FIG. S3: Verification of the signal noise temperature calibra-
tion in the shot noise regime. The black line shows the exper-
imentally determined difference in signal noise temperature
(excess noise) when the sample is biased at V = 0.975 mV
and V = 0.762 mV. The red and blue line is the theoretical
comparison with the same bias parameters as input value and
including the modeling of our electromagnetic environment.
Note that only for the presentation of this figure we averaged
TN for equal modes of the two distinct measurement lines ’1’
and ’2’, justified due to their match with an uncertainty of
only 5% or better.

and V2 are applied. The full equation is evaluated in the
following way to calibrate TN with respect to the out-
put of the two CPW resonators for each measurement
line ’1’ and ’2’ and for each mode ’a’ and ’b’. We eval-
uate the integrals within a bandwidth B = νmax − νmin
which covers the two peaks in Re [Z(ν)] around ' 4.9
and ' 6.7 GHz, whereas B ≈ 700 MHz which is to good
approximation the bandwidth of all four passive band-
pass filters we have employed for the correlation measure-
ments. In this bandwidth we assume that TN does not
change significantly so that we can pull this term out of
the left integral in Eq. (S11). Then we finally obtain four
noise temperatures quantifying TN for each measurement
line and mode. We then verify our calibration by taking

our shot noise data and calculate the signal noise temper-
atures TN 〈dP 〉/〈P 〉 for the same mode but for the two
distinct measurement lines ’1’ and ’2’. We find that the
two calibrations match with an uncertainty of only 5%
or better. Figure S3 finally summarizes our calibration
procedure and shows the non-integrated equation (S11),
suggesting that our assumption of a constant noise tem-
perature within a 700 MHz bandwidth around ' 4.9 and
' 6.7 GHz is well justified.

Power fluctuations measurement

We first measure the power emitted by the sample
〈PS1,2〉 using a square wave modulation on the voltage
across the Josephson junction, as discussed above. After
a few seconds the measurement of 〈PS1,2〉 is finished and
we measure the correlator 〈δP1(t+ τ)δP2(t)〉 which takes
another few seconds. We verify that within this short
measurement time the output power of the experiment
is stable. For the measurement of the power-power fluc-
tuations correlator we switch off the bias voltage modu-
lation, previously used to measure 〈dP 〉 with the lock-in
amplifier, and bias the Josephson junction now with a
constant voltage.

Power fluctuations are measured by the measurement
circuit behind the -3dB splitter represented in Fig.S2
not used for the average power measurement. This cir-
cuit consists of a fast quadratic detector of type ’Herotek
DTM 180AA’ with a response time of 0.425 ns which we
use to sample the power fluctuations. Its output voltage
is amplified and low-pass filtered by a DC-540 MHz filter
which connects to the input of a SP-Devices ADQ 412
fast acquisition card. In our measurements we use only
two out of four ADCs on the acquisition card which pro-
vide us a maximum bundled sample rate of 2 Gigasam-
ples/s or equivalently a time resolution of 0.5 ns. In this
paper we focus on the zero time second order coherence
functions, i.e. for which τ = 0. First of all our microwave
measurement setup is built in such a way to keep the
physical microwave line length almost equal, having in
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mind that a difference in length of about 10 cm corre-
sponds to a time shift of 0.5 ns. Further balancing of
the physical line length is performed electronically by
shifting the acquired time bins on the acquisition card.
For this calibration we usually conduct a measurement of
the time resolved shot noise correlation at 4.9 or 6.7 GHz
where we determine the exact position of the maximum
of 〈δP1(t+ τ)δP2(t)〉, corresponding to τ = 0 between
the two measurement lines.

Since the acquisition card measures the incoming
power fluctuations in units of square digits, we need to
translate them to a power quantity. To do so, we rely
on the spectral density of the auto-correlated power fluc-
tuations of the thermal noise of the cryogenic amplifiers,
which reads

SPiPi(f) = k2
BT

2
ni∆νi

(
1− f

∆νi

)
for 0 < f ≤ ∆νi

= 0 for f > ∆νi .
(S12)

Integrating over 0 < f < ∆νi, we get the expected auto-
correlated output of chain i of the ADC:

A〉 = G2
i k

2
BT

2
ni∆ν

2
i , (S13)

where Gi is the total gain of chain i, in Digit/Watt.
However, the finite response time of our fast quadratic

detectors introduces a first-order filtering of the de-
tected power fluctuations with a certain cut-off frequency
(2πτdet), where τdet is the characteristic response time of
the detector. We determine this response time we de-
termine experimentally by injecting noise from our am-
plifier chain in a 700 MHz bandwidth into the input of
the quadratic detector and by measuring its noise power
spectral density, shown in Fig. S4. Fitting the experi-
mental spectral density of the output voltage with

SV iV i(f) = A
1− f/∆νi

1 + (2πfτdet)2
for 0 < f ≤ ∆νi

= 0 for f > ∆νi

yields a response time of τdet = 0.40 ns for detector 1
and τdet = 0.44 ns for detector 2. This will reduce the
detected auto-correlated fluctuations of the ADQ

Ai = CiG
2
i k

2
BT

2
ni∆ν

2
i , (S14)

with Ci ranging from 0.72 to 0.74 depending on the
chosen filters and quadractic detectors. This allows
us to determine G − i and to express the correlator
〈δP1(t+ τ)δP2(t)〉 as a function of the cross-correlated
and auto-correlated fluctuations of the output of the
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FIG. S4: Solid lines show the measured normalized noise
power spectral density SV V (f) of the output voltage of our
two ’Herotek DTM 180AA’ fast quadratic detectors (parts la-
beled (∗∗) in Fig. S2). Dotted lines are fit to the behavior
of an ideal detector, followed by a first order filter, yielding
response times τ1=0.40 ns and τ2=0.44 ns.

ADQ:

〈δP1(t+ τ)δP2(t)〉 =
√
C1C2

C√
A1 · A2

k2
BTN1TN2∆ν1∆ν2 .

(S15)
Here, C, A1 and A2 denote the cross-correlation between
lines ’1’ and ’2’ when a bias voltage is applied to the
Josephson junction and the auto-correlations of line ’1’
and ’2’ when zero bias is applied to the Josephson junc-
tion, all three quantities are in units of square digits as
measured directly by the acquisition card.

In total, by substituting Eqs. (S7) and (S15) into
Eq. (3) of the main text the second order coherence func-
tion can be entirely expressed in terms of experimental
quantities as:

g
(2)
α,β(τ) = 1 +

√
C1C2

C√
A1 · A2

〈P1〉〈P2〉
〈dP1〉〈dP2〉

. (S16)


