
HAL Id: hal-01488396
https://hal.science/hal-01488396v1

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Derivation of a poroelastic elliptic membrane shell model
Andro Mikelic, Josip Tambača

To cite this version:
Andro Mikelic, Josip Tambača. Derivation of a poroelastic elliptic membrane shell model. Applicable
Analysis, 2019, 98 (1-2), pp.136-161. �10.1080/00036811.2018.1430784�. �hal-01488396�

https://hal.science/hal-01488396v1
https://hal.archives-ouvertes.fr


Derivation of a poroelastic elliptic membrane shell model

Andro Mikelić∗
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Abstract

A derivation of the model for a poroelastic elliptic membrane shell is undertaken. The flow and
deformation in a three-dimensional shell domain is described by the quasi-static Biot equations
of linear poroelasticity. We consider the limit when the shell thickness goes to zero and look
for the limit equations. Using the technique developed in the seminal articles by Ciarlet, Lods,
Miara et al and the recent results on the rigorous derivation of the equations for poroelastic
plates and flexural poroelastic shells by Marciniak-Czochra, Mikelić and Tambača, we present a
rigorous derivation of the linear poroelastic elliptic membrane shell model. After rescaling, the
corresponding velocity and the pressure field are close in the C([0, T ]; (H1

x)
2 × (L2

x)
2) norm and

the stresses in C([0, T ]; (L2
x)

9) norm. In the case of a spherical membrane shell we confirm the
results by Taber from the literature.
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1 Introduction

The present work is devoted to the derivation of a model of the poroelastic elliptic membrane shell.
We follow the standpoint of Ciarlet et al, who derived the Kirchhoff-Love models for thin elastic

bodies in the zero thickness limit (see [6, 7, 8]).
While this approach to the effective behavior of three-dimensional linearized elastic bodies is

well-established, much less attention has been paid to the poroelastic thin bodies. As the recent
example of the special issue of the journal Transport in Porous Media [34, 19] shows, this is likely to
change. Also there is a related experimental work, see [17].

The poroelastic bodies are characterized by the simultaneous presence of the deformation and
the filtration (flow). They are described by the quasi-static Biot’s system of PDE’s. It couples the
Navier equations of linearized elasticity, containing the pressure gradient, with the mass conservation
equation involving the fluid content change and divergence of the filtration velocity. The filtration
velocity is the relative velocity for the upscaled fluid-structure problem and obeys Darcy’s law. The
fluid content change is proportional to the pressure and the elastic body compression. In the quasi-
static Biot’s system the mechanical part is elliptic in the displacement and the flow equation has a
parabolic operator for the pressure. For more modeling details we refer to [10], [21] and [33] and for
the mathematical theory to [28], [26] and [23].

The simplest relevant two dimensional poroelastic thin body is a poroelastic plate. A physically
relevant choice of the time scale and the related coefficient size was set up by Marciniak-Czochra
and Mikelić in [20]. They rigorously derived the effective equations for the Kirchhoff-Love-Biot
poroelastic plate in the zero thickness limit of the 3D quasi-static Biot equations. The limiting zero
thickness procedure is seriously affected by the presence of coupling structure-flow. As in the purely
elastic case, the specificity of the poroelastic plate model from [20] is that the limit model contains
simultaneously both flexural and membrane equations. This remarkable property does not transfer
to the shells.

Following both Ciarlet et al zero thickness limit approach to flexural linearized shells and handling
of the Biot quasi-static equations in a thin domain by Marciniak-Czochra and Mikelić, Mikelić and
Tambača have undertaken the derivation of the equation for a linear flexural poroelastic shell in
[22]. In this article we undertake derivation of a model for linear elliptic membrane poroelastic shell
through the same type of the limit procedure.

The coupling elastic structure - flow is scaled as in [20]. It corresponds to the physical parameters
leading to the quasi-static diphasic Biot’s equations for the displacement and the pressure. As in [30]
and [31], it means that the characteristic time scale is of Taber and Terzaghi and in the dimensionless
form there will be the ratio between the width and length squared, multiplying Laplacean of the
pressure. The flexural and the membrane poroelastic shells correspond to different regimes of the
filtration, different sizes of the applied contact forces, different geometries of the shell and different
boundary conditions. In our case they are applied at the top and the bottom boundaries. For the
membrane shell case, we impose a given inflow/outflow velocity of order of the characteristic filtration
velocity through a shell of width ℓ. The applied contact forces at the same top/bottom boundaries
should be of order of the pressure drop between these boundaries. We recall that in the case of the
flexural poroelastic shell, studied in [22], the contact forces at the top/bottom boundaries are an
order of magnitude smaller and even smaller than the related inflow/outflow velocities.

2



The motivation for studying the flexural poroelastic shells comes from the industrial filters mod-
eling. For instance, the results from [20] and [22] can be applied to the modeling of the air filters for
the cars, while some oil car filters can be modeled as membrane poroelastic shells.

The motivation for studying the membrane poroelastic shells also comes from the biomechanics.
An important example is the study of the mechanical behavior of fluid-saturated large living bone
tissues. We recall that the bulk modulus of the bone is much larger than the bulk moduli of the soft
tissues and the bone deformation is small. A full physiological understanding of the bone modeling
would provide insight to important clinical problems which concern bones. For detailed review we
refer to [27] and [11]. Many other living structures are fluid-saturated membrane shells, see e.g. [13].

Another modeling question, raised in [11], is of the modeling of the elastic wave propagation in
a bone. As the Biot theory was originally developed to describe the wave propagation, the subject
attracted attention. The reader can consult [3], [15] and [32] and references therein. With our scaling,
our spatial operators do not coincide with models from these references, but rather with Taber’s works
[30] and [31]. Furthermore, the dynamic models of the diphasic Biot equations for a viscous fluid
exhibit memory effects, as proposed by Biot through the introduction of the viscodynamic operator
(see [33]). The homogenization derivation of the dynamic diphasic Biot’s equations gives the memory
terms (see [9]) for a viscous fluid. If the pores are filled by an ideal fluid, there are no memory effects
(see [16]). The analysis of the relationship between the dynamic and the quasi-static diphasic Biot
equation was undertaken in [24] and there are scalings when the memory effects are not important.
But in general it is not possible just to add the acceleration to the quasi-static Biot system. Hence
modeling of the elastic waves propagation in poroelastic plates/shell requires some future research.

Since in [23], the quasi-static Biot equations are obtained by homogenization of a pore scale fluid-
structure problem, one can raise question why we do not study simultaneously homogenization of the
fluid-structure problem and the zero thickness limit. In the applications we have in mind (industrial
filters, living tissues. . . ) the thickness is much bigger than the RVE size and such approach does
not make much sense. For some other problems like the study of the overall behavior of curved
layers of living cells, having a thickness of one cell, the simultaneous homogenization and singular
perturbation would give new models.

The flexural shell model is formulated on a subspace of infinitesimally inextensional displacements
involving boundary conditions, usually denoted by VF . However this function space for some geome-
tries and boundary conditions turns to be trivial. In this case a model for extensional displacements
is necessary. In this paper we focus on the shells with elliptic surfaces which are clamped at the
whole boundary. The model in this case is called elliptic membrane shell model. In the case of the
classical elasticity the membrane effects are measured by the change of the metric of the shell. This
is different with the case of the flexural shell model where the potential energy is measured by the
change in the curvature tensor. This difference results in a simpler model for the membrane case and
lower order derivatives involved in the formulation. Remaining cases in which VF = {0} as well are
covered by the generalized membrane shell model (an example is a tube clamped at ends). However,
the formulation is given in abstract spaces, see [5].

Derivation of the present model is more difficult than the derivation of the classical elliptic
membrane shell model starting from the three-dimensional linearized [7]. Namely, we are dealing
with an additional equation for the additional unknown (pressure). We use the results derived in the
classical static case, see [5], as much as possible, but Biot’s equations are quasi-static and, therefore,
time dependent. Presence of the additional independent variable (time) requires special attention and
careful analysis. Note also that in some parts this derivation is more demanding than the derivation
of the poroelastic flexural shell model from [22] since here we have weaker a priori estimates in strains
and we have to obtain the same convergences of the tangential displacements as in the flexural case.
Finally, we recall that the flexural shell models are characterized by the presence of the 4th order
differential operators and for the membrane shell models the differential operators are of the 2nd
order.
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2 Geometry of Shells and Setting of the Problem

We are starting by recalling the basic facts of geometry of shells. The text follows [22], but it is
shorter since some terms are not needed in the membrane model. Namely, lower order derivatives
are sufficient to express the membrane effects.

Throughout this paper we use boldfaced letters for vectors or matrices. The only exceptions are
points in the Euclidean spaces (e.g., x, y, ). Rn×m denotes the space of all n by m matrices and the
subscript sym denotes its subspace of symmetric matrices. By L2 we denote the Lebesgue space of
the square integrable functions, while H1 stands for the Sobolev space.

Let the surface S is given as S = X(ωL), where ω ⊂ R2 be an open bounded and simply connected
set with Lipschitz-continuous boundary ∂ωL and X : ωL → R3 is a smooth injective immersion (that
is X ∈ C3 and 3 × 2 matrix ∇X is of rank two). Thus the vectors aα(y) = ∂αX(y), α = 1, 2,
are linearly independent for all y ∈ ωL and form the covariant basis of the tangent plane to the
2-surface S. Let Ωℓ

L = ωL × (−ℓ/2, ℓ/2). In this paper we study the deformation and the flow in a
three-dimensional poroelastic shell Ω̃ℓ

L = r(Ωℓ
L), L, ℓ > 0, where the injective mapping r is given by

r = r(y, x3) = X(y) + x3a3(y), a3(y) =
a1(y)× a2(y)

|a1(y)× a2(y)|
, (2.1)

for x3 ∈ (−ℓ/2, ℓ/2) and (y1, y2) ∈ ωL, diam (ωL) = L. The contravariant basis of the plane spanned
by a1(y),a2(y) is given by the vectors aα(y) defined by aα(y) · aβ(y) = δαβ . We extend these bases to

the basis of the whole space R3 by the vector a3(y) given in (2.1) (a3(y) = a3(y)). Now we collect
the local contravariant and covariant bases into the matrix functions

Q =
[
a1 a2 a3

]
, Q−1 =

 aT1
aT2
aT3

. (2.2)

The first fundamental form of the surface S, or the metric tensor, in covariant Ac = (aαβ) or
contravariant Ac = (aαβ) components are given respectively by

aαβ = aα · aβ, aαβ = aα · aβ, α, β = 1, 2.

Note here that because of continuity of Ac and compactness of ωL, there are constants M
c ≥ mc > 0

such that
mcx · x ≤ Ac(y)x · x ≤ M cx · x, x ∈ R3, y ∈ ωL. (2.3)

These estimates, with different constants, hold for Ac as well, as it is the inverse of Ac. The second
fundamental form of the surface S, also known as the curvature tensor, in covariant Bc = (bαβ) or

mixed components B = (bβα) are given respectively by

bαβ = a3 · ∂βaα = −∂βa
3 · aα, bβα =

2∑
κ=1

aβκbκα, α, β = 1, 2.

The Christoffel symbols Γκ are defined by

Γκ
αβ = aκ · ∂βaα = −∂βa

κ · aα, α, β, κ = 1, 2.

We will sometime use Γ3
αβ for bαβ . The area element along S is

√
ady, where a := detAc. By (2.3)

it is uniformly positive, i.e., there is ma > 0 such that

0 < ma ≤ a(y), y ∈ ωL. (2.4)
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In order to describe our results we also need the following differential operators:

γαβ(v) =
1

2
(∂αvβ + ∂βvα)−

2∑
κ=1

Γκ
αβvκ − bαβv3, α, β = 1, 2, (2.5)

nαβ|β = ∂βnαβ +

2∑
κ=1

Γα
βκnβκ +

2∑
κ=1

Γβ
βκnακ, α, β = 1, 2,

defined for smooth vector fields v and tensor fields n.

The upper face (respectively lower face) of the shell Ω̃ℓ
L is Σ̃ℓ

L = r(ωL × {x3 = ℓ/2}) = r(Σℓ
L)

(respectively Σ̃−ℓ
L = r(ωL × {x3 = −ℓ/2}) = r(Σ−ℓ

L )). Γ̃ℓ
L is the lateral boundary, Γ̃ℓ

L = r(∂ωL ×
(−ℓ/2, ℓ/2)) = r(Γℓ

L). The small parameter ε in the problem is the ratio between the shell thickness
and the characteristic horizontal length ε = ℓ/L ≪ 1.

Table 1: Parameter and unknowns description

SYMBOL QUANTITY

µ shear modulus (Lamé’s second parameter)

λ Lamé’s first parameter

βG inverse of Biot’s modulus

α effective stress coefficient

k permeability

η viscosity

L and ℓ midsurface length and shell width, respectively

ε = ℓ/L small parameter

T = ηL2
c/(kµ) characteristic Terzaghi’s time

U characteristic displacement

P = Uµ/L characteristic fluid pressure

u = (u1, u2, u3) solid phase displacement

p pressure

We note that Biot’s diphasic equations describe behavior of the system at so called Terzaghi’s time
scale T = ηL2

c/(kµ), where Lc is the characteristic domain size, η is dynamic viscosity, k is perme-
ability and µ is the shear modulus. For the list of all parameters see Table 1.

Similarly as in [20], we chose as the characteristic length Lc = ℓ, which leads to the Taber-Terzaghi
transversal time Ttab = ηℓ2/(kµ). Another possibility was to choose the longitudinal time scaling
with Tlong = ηL2/(kµ). It would lead to different scaling in (2.8) and the dimensionless permeability
coefficient in (3.3) would not be ε2 but 1. In the context of thermoelasticity, one has the same
equations and Blanchard and Francfort rigorously derived in [2] the corresponding thermoelastic
plate equations. We note that considering the longitudinal time scale yields the effective model
where the pressure (i.e. the temperature in thermoelasticity) is decoupled from the flexion.

Then the quasi-static Biot equations for the poroelastic body Ω̃ℓ
L take the following dimensional

form:

σ̃ = 2µe(ũ) + (λ div ũ− αp̃)I in Ω̃ℓ
L, (2.6)

− div σ̃ = −µ△ ũ− (λ+ µ)▽ div ũ+ α▽ p̃ = 0 in Ω̃ℓ
L, (2.7)

∂

∂t
(βGp̃+ α div ũ)− k

η
△ p̃ = 0 in Ω̃ℓ

L. (2.8)
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Note that e(u) = sym▽u and σ̃ is the stress tensor. All other quantities are defined in Table 1.

We impose a given contact force σ̃ν = P̃±ℓ
L and a given normal flux −k

η

∂p̃

∂x3
= ṼL at x3 = ±ℓ/2.

At the lateral boundary Γ̃ℓ we impose a zero displacement and a zero normal flux. Here ν is the
outer unit normal at the boundary. At initial time t = 0 we prescribe the initial pressure p̃ℓL,in.

Our goal is to extend the elliptic membrane shell justification by Ciarlet, Lods et al and by
Dauge et al to the poroelastic case. Thus in the sequel we assume that the middle surface is elliptic
(Gaussian curvature (product of principal curvatures) is positive at all points) and that the shell is
clamped at its entire boundary.

We announce briefly the differential equations of the membrane poroelastic shell in dimensional
form.

Effective dimensional equations:

The model is given in terms of ueff : ωL → R3 which is the vector of components of the displace-
ment of the middle surface of the shell in the contravariant basis and peff : Ωℓ

L → R which is the
pressure in the 3D shell. Let us denote the stress tensor due to the variation in pore pressure across
the shell thickness by

n = ℓC̃c(Acγ(ueff))Ac − 2µα

λ+ 2µ

∫ ℓ/2

−ℓ/2
peffdy3A

c, (2.9)

where γ(·) is given by (2.5) and C̃c is the elasticity tensor, usually appearing in the classical shell
theories, given by

C̃cE = 2µ
λ

λ+ 2µ
tr (E)I+ 2µE, E ∈ R2×2

sym.

Then the model in the differential formulation reads as follows:

−
2∑

β=1

nαβ |β = (P+ℓ
L )α + (P−ℓ

L )α in ωL, α = 1, 2,

−
2∑

α,β=1

bαβnαβ = (P+ℓ
L )3 + (P−ℓ

L )3 in ωL,

ueffα = 0, α = 1, 2, on ∂ωL, for every t ∈ (0, T ),

(2.10)

(
βG +

α2

λ+ 2µ

)
∂peff

∂t
+ α

2µ

λ+ 2µ
Ac : γ(

∂ueff

∂t
)− k

η

∂2peff

∂(y3)2
= 0

in (0, T )× ωL × (−ℓ/2, ℓ/2),

k

η

∂peff

∂y3
= −VL, on (0, T ) × ωL × ({−ℓ/2} ∪ {ℓ/2}),

peff = pℓL,in given at t = 0.

(2.11)

Here (P±ℓ
L )i, i = 1, 2, 3 are components of the contact force P̃±ℓ

L ◦ r at Σ±ℓ
L in the covariant basis,

VL = ṼL ◦X, pℓL,in = p̃ℓL,in ◦r. Thus, the poroelastic elliptic membrane shell model in the differential

formulation is given for unknowns {n,ueff , peff} and by equations (2.9), (2.10) and (2.11). The
components of n are the contact forces. The first two equations in (2.10) can be found in the
differential equation of the elliptic membrane shell model (see [5, Theorem 4.5-1]). The first equation
in (2.11) is the evolution equation for the effective pressure with associated boundary and initial
conditions in the remaining part of (2.11).
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In the case of the classical theory of the purely elastic shell, we recall that, in addition to already
quoted articles and books by Ciarlet and al, there is a huge literature, with both mathematical and
engineering approaches (see e.g. [1], [12], [18], [25] and references therein).

In Section 3 we present the dimensionless form of the problem, then recall existence and uniqueness
result of the smooth solution for the starting problem, rewrite the problem in curvilinear coordinates
and rescale the problem on the domain Ω = ω × (−1/2, 1/2). At the end of this section the main
convergence results are formulated. In Section 4 we study the a priori estimates for the family of
solutions. Then in Section 5 the convergence (including strong) of the solutions to the rescaled
problem, is studied as ε → 0. In Appendix we give the limit model written for a part of the spherical
surface. Finally, the radially symmetric effective equations the problem on the whole sphere are
derived and the result is compared with the one in [31].

3 Problem setting in curvilinear coordinates and the main results

3.1 Dimensionless equations

We introduce the dimensionless unknowns and variable by setting

β = βGµ; P =
µU

L
; U ũε = ũ; T =

ηℓ2

kµ
; λ̃ =

λ

µ
;

P p̃ε = p̃; ỹL = y; x̃3L = x3; r̃L = r; X̃L = X; t̃T = t; σ̃εµU

L
= σ̃.

After dropping wiggles in the coordinates and in the time, the system (2.6)–(2.8) becomes

− div σ̃ε = −△ ũε − λ̃▽ div ũε + α▽ p̃ε = 0 in (0, T )× Ω̃ε, (3.1)

σ̃ε = 2e(ũε) + (λ̃ div ũε − αp̃ε)I in (0, T )× Ω̃ε, (3.2)

∂

∂t
(βp̃ε + α div ũε)− ε2△p̃ε = 0 in (0, T )× Ω̃ε, (3.3)

where ũε = (ũε1, ũ
ε
2, ũ

ε
3) denotes the dimensionless displacement field and p̃ε the dimensionless pres-

sure. We study a shell Ω̃ε with thickness ε = ℓ/L and section ω = ωL/L. It is described by

Ω̃ε =
1

L
r({(x1, x2, x3)/L ∈ ω × (−ε/2, ε/2)}) = r(Ωℓ

L) = Ω̃ℓ
L/L,

Σ̃ε
+ (respectively Σ̃ε

−) is the upper face (respectively the lower face) of the shell Ω̃ε. Γ̃ε is the lateral

boundary, Γ̃ε = Γ̃ℓ
L/L.

We suppose that a given dimensionless traction force is applied on Σ̃ε
+ ∪ Σ̃ε

− and impose the shell

is clamped on Γ̃ε:

σ̃εν = (2e(ũε)− αp̃εI + λ̃(div ũε)I)ν = εP̃± on Σ̃ε
±, (3.4)

ũε = 0, on Γ̃ε. (3.5)

For the pressure p̃ε, at the lateral boundary Γ̃ε the zero inflow/outflow flux is imposed:

−▽ p̃ε · ν = 0. (3.6)

and at Σ̃ε
±, we set

−ε2 ▽ p̃ε · ν = ±εṼ . (3.7)

Finally, we need an initial condition for p̃ε at t = 0,

p̃ε(x1, x2, x3, 0) = p̃in(x1, x2) in Ω̃ε. (3.8)

The difference here, with respect to flexural shell case ([22]), is that the contact loads in (3.4) and
filtration velocity in (3.7) are differently scaled.
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Remark 1. We recall that in the flexural shell case contact loads were assumed to behave like ε3P̃±
and the normal boundary filtration velocity by −ε2 ▽ p̃ε · ν = ±ε2Ṽ .

Let V(Ω̃ε) = {ṽ ∈ H1(Ω̃ε;R3) : ṽ|Γ̃ε = 0}. Then the weak formulation corresponding to (3.1)–
(3.8) is given by

Find ũε ∈ H1(0, T,V(Ω̃ε)), p̃ε ∈ H1(0, T ;H1(Ω̃ε)) such that it holds∫
Ω̃ε

2 e(ũε) : e(ṽ) dx+ λ̃

∫
Ω̃ε

div ũε div ṽ dx− α

∫
Ω̃ε

p̃ε div ṽ dx

=

∫
Σ̃ε

+

εP̃+ · ṽ ds+

∫
Σ̃ε

−

εP̃− · ṽ ds, for every ṽ ∈ V(Ω̃ε) and t ∈ (0, T ), (3.9)

β

∫
Ω̃ε

∂tp̃
εq̃ dx+

∫
Ω̃ε

α div ∂tũ
εq̃ dx+ ε2

∫
Ω̃ε

∇p̃ε · ∇q̃ dx

= ε

∫
Σ̃ε

−

Ṽ q̃ ds− ε

∫
Σ̃ε

+

Ṽ q̃ ds, for every q̃ ∈ H1(Ω̃ε) and t ∈ (0, T ), (3.10)

p̃ε|{t=0} = p̃in, in Ω̃ε. (3.11)

Note that for two 3 × 3 matrices A and B the Frobenius scalar product is denoted by A : B =
tr (ABT ).

3.2 Existence and uniqueness for the ε-problem

In this subsection the existence and uniqueness of a solution {ũε, p̃ε} ∈H1(0, T ;V(Ω̃ε))×H1(0, T ;H1(Ω̃ε))
to problem (3.9)-(3.11) is recalled. We follow [20] and get

Proposition 2. Let us suppose

p̃in ∈ H2
0 (Ω̃

ε), P± ∈ H2(0, T ;L2(ω;R3)) and Ṽ ∈ H1(0, T ;L2(ω)), Ṽ |{t=0} = 0. (3.12)

Then problem (3.9)–(3.11) has a unique solution {ũε, p̃ε} ∈ H1(0, T ;V(Ω̃ε)))×H1(0, T ;H1(Ω̃ε)).

3.3 Problem in Curvilinear Coordinates and the Scaled Problem

In this section we introduce the formulation of the problem in curvilinear coordinates. The formula-
tion is the same as in Subsection 3.3 in [22, pages 371–374] without the rescaled problem in (3.18).
For completeness and for the comfort of the reader we repeat it here.

Our goal is to find the limits of the solutions of problem (3.9)–(3.11) when ε tends to zero.
It is known from similar considerations made for classical shells that asymptotic behavior of the
longitudinal and transverse displacements of the elastic body is different. The same effect is expected
in the present setting. Therefore we need to consider asymptotic behavior of the local components of
the displacement ũε. It can be done in many ways, but in order to preserve some important properties
of bilinear forms, such as positive definiteness and symmetry, we rewrite the three-dimensional
equations in curvilinear coordinates defined by r. Then we formulate equivalent problems posed on
the domain independent of ε. We essentially follow the analogous section from [22]. Nevertheless, it
should be noted that the pressure scaling is different.

Let r̃(x/L) = r(x)/L, x ∈ Ωℓ
L. The covariant basis of the shell Ω̃

ε, which is the three-dimensional
manifold parameterized by r, is defined by

gε
i = ∂ir : Ωε → R3, i = 1, 2, 3.

8



Vectors {gε
1,g

ε
2,g

ε
3} are given by

gε
1 = a1(y) + x3∂y1a3(y),

gε
2 = a2(y) + x3∂y2a3(y),

gε
3 = a3(y).

Vectors
{
g1,ε,g2,ε,g3,ε

}
satisfying

gj,ε · gε
i = δij on Ω

ε
, i, j = 1, 2, 3,

where δij is the Kronecker symbol, form the contravariant basis on Ω̃
ε
. The contravariant metric

tensor Gc,ε = (gij,ε), the covariant metric tensor Gε
c = (gεij) and the Christoffel symbols Γi,ε

jk of the

shell Ω̃
ε
are defined by

gij,ε = gi,ε · gj,ε, gεij = gε
i · gε

j , Γi,ε
jk = gi,ε · ∂jgε

k on Ω
ε
, i, j, k = 1, 2, 3.

We set

Γi,ε = (Γi,ε
jk )j,k=1,...,3 and γ̃ε(v) =

1

2
(∇v +∇vT )−

3∑
i=1

viΓ
i,ε. (3.13)

Let gε = detGε
c. Until now we were using the canonical basis {e1, e2, e3}, for R3. Now the displace-

ment is rewritten in the contravariant basis,

ũε ◦ r(y1, y2, x3) =
3∑

i=1

ũεi ◦ r(y1, y2, x3)ei =
3∑

i=1

uεi (y1, y2, x3)g
i,ε(y1, y2, x3), ṽ ◦ r =

3∑
i=1

vig
i,ε,

while for scalar fields we just change the coordinates

p̃ε ◦ r = pε, q̃ ◦ r = q, Ṽ ◦ r = V, p̃in ◦ r = pin,

on Ω
ε
. The contact forces are rewritten in the covariant basis of the shell

P̃± ◦ r =
3∑

i=1

(P±)ig
ε
i on Σε

±.

New vector functions are defined by

uε = uεiei, v = viei, P± = (P±)iei.

Note that uεi are not components of the physical displacement. They are just intermediate functions
which will be used to reconstruct ũε. The corresponding function space to V(Ω̃ε) is the space

V(Ωε) = {v ∈ H1(Ωε)3 : v|Γε = 0}.
Let Qε = (∇r)−T= (gε1 gε2 gε3)

−T =
(
g1,ε g2,ε g3,ε

)
and let

CE = λ̃(trE)I+ 2E, for all E ∈ R3×3
sym. (3.14)

Then the problem (3.9)–(3.11) can be written as∫
Ωε

C
(
Qεγ̃ε(u

ε)(Qε)T
)
:
(
Qεγ̃ε(v)(Q

ε)T
)√

gεdy − α

∫
Ωε

pεtr
(
Qεγ̃ε(v)(Q

ε)T
)√

gεdy

= ε

∫
Σε

+

P+ · v
√
gεds+ ε

∫
Σε

−

P− · v
√
gεds, v ∈ V(Ωε), a.e. t ∈ [0, T ],∫

Ωε

β
∂pε

∂t
q
√
gεdy +

∫
Ωε

α
∂

∂t
tr
(
Qεγ̃ε(u

ε)(Qε)T
)
q
√
gεdy

+ ε2
∫
Ωε

Qε∇pε ·Qε∇q
√
gεdy = ε

∫
Σε

−

V q
√
gεds− ε

∫
Σε

+

V q
√
gεds,

q ∈ H1(Ωε), a.e. t ∈ [0, T ],

pε = pin, for t = 0.

(3.15)
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This is the problem in curvilinear coordinates.
Problems for all ũε, p̃ε and uε, pε are posed on ε–dependent domains. In the sequel we follow the

idea from Ciarlet, Destuynder [6] and rewrite (3.15) on the canonical domain independent of ε. As
a consequence, the coefficients of the resulting weak formulation will depend on ε explicitly.

Let Ω = ω × (−1/2, 1/2) and let Rε : Ω → Ω
ε
be defined by

Rε(z) = (z1, z2, εz3), z ∈ Ω, ε ∈ (0, ε0).

By Σ± = ω × {±1/2} we denote the upper and lower face of Ω. Let Γ = ∂ω × (−1/2, 1/2). To the
functions uε, pε, gε, gε

i , g
ε,i, Qε, Γi,ε

jk , i, j, k = 1, 2, 3 defined on Ω
ε
we associate the functions u(ε),

p(ε), g(ε), gi(ε), g
i(ε), Q(ε), Γi

ij(ε), i, j, k = 1, 2, 3 defined on Ω by composition with Rε. Let us also
define

V(Ω) = {v = (v1, v2, v3) ∈ H1(Ω;R3) : v|Γ = 0}.

Then the problem (3.15) can be written as

ε

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

− εα

∫
Ω
p(ε)tr

(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

= ε

∫
Σ±

P± · v
√
g(ε)ds, v ∈ V(Ω), a.e. t ∈ [0, T ],

ε

∫
Ω
β
∂p(ε)

∂t
q
√
g(ε)dz + ε

∫
Ω
α
∂

∂t
tr
(
Q(ε)γε(u(ε))Q(ε)T

)
q
√

g(ε)dz

+ ε3
∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εq

√
g(ε)dz

= ∓ε

∫
Σ±

V q
√

g(ε)ds, q ∈ H1(Ω), a.e. t ∈ [0, T ],

p(ε) = pin, for t = 0.

(3.16)

Here

γε(v) =
1

ε
γz(v) + γy(v)−

3∑
i=1

viΓ
i(ε), (3.17)

γz(v) =

 0 0 1
2∂3v1

0 0 1
2∂3v2

1
2∂3v1

1
2∂3v2 ∂3v3

, γy(v) =

 ∂1v1
1
2(∂2v1 + ∂1v2)

1
2∂1v3

1
2(∂2v1 + ∂1v2) ∂2v2

1
2∂2v3

1
2∂1v3

1
2∂2v3 0

,
∇εq =

1

ε
∇zq +∇yq, ∇zq =

[
0 0 ∂3q

]
, ∇yq =

[
∂1q ∂2q 0

]
and we have also used the notation

∓
∫
Σ±

V q
√

g(ε)ds =

∫
Σ−

V q
√

g(ε)ds−
∫
Σ+

V q
√

g(ε)ds,∫
Σ±

P± · v
√

g(ε)ds =

∫
Σ+

P+ · v
√
g(ε)ds+

∫
Σ−

P− · v
√

g(ε)ds.

Remark 3. Existence and uniqueness of a smooth solution to problem (3.16) follows from Proposition
2 and the smoothness of the curvilinear coordinates transformation.

Also notice that in the present (elliptic membrane) case there is no rescaling of the pressure. It
will appear to be of order one which is in contrast to the flexural shell case where it was of order ε.

10



3.4 Convergence results

In the remainder of the paper we make the following assumptions

Assumption 4. For simplicity, we assume that pin = 0, that V ∈ H1(0, T ;L2(ω)), V |{t=0} = 0 and
that P± ∈ H2(0, T ;L2(ω;R3)), with P±|{t=0} = 0.

To describe the limit problem we introduce the function space VM (ω) = H1
0 (ω)×H1

0 (ω)×L2(ω).
Contrary to VF (ω), which is the function space for the flexural shell model, it is always non-trivial.
The boundary value problem in Ω = ω × (−1/2, 1/2) for the effective displacement and the effective
pressure is given by:

find {u, p0} ∈ C([0, T ];VM (ω)× L2(Ω)), ∂z3p
0 ∈ L2((0, T )× Ω) satisfying the system∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 −

2α

λ̃+ 2

∫
ω

∫ 1/2

−1/2
p0dz3A

c : γ(v)
√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2., v ∈ VM (ω),

(3.18)

∫
Ω

(
β +

α2

λ̃+ 2

)
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t

(
2

λ̃+ 2
Ac : γ(u)

)
q
√
adz +

∫
Ω

∂p0

∂z3

∂q

∂z3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(3.19)

p0 = 0 at t = 0, (3.20)

where γ(·) is given by (2.5) and

C̃E = 2
λ̃

λ̃+ 2
tr (E)I+ 2E, E ∈ R2×2

sym. (3.21)

Remark 5. We observe that, contrary to the effective flexural shell system from [22], problem
(3.18)–(3.20) is of the second order.

Fundamental for the analysis of this model is the inequality of Korn’s type on an elliptic surface,
see [5, Theorem 2.7-3] or [7, Theorem 4.2].

Lemma 6. Let ω be a domain in R2 and let X ∈ C2,1(ω;R3) be an injective mapping such that the
two vectors aα = ∂αX are linearly independent at all points of ω and such that the surface X(ω) is
elliptic. Then there is CM > 0 such that

∥v1∥2H1(ω) + ∥v2∥2H1(ω) + ∥v3∥2L2(ω) ≤ CM∥γ(v)∥2L2(ω;R3×3), v ∈ VM (ω).

Proposition 7. Under Assumption 4, problem (3.18)–(3.20) has a unique solution {u, p0} in the
space C([0, T ];VM (ω) × L2(Ω)), ∂z3p

0 ∈ L2((0, T ) × Ω) Furthermore, ∂tp
0 ∈ L2((0, T ) × Ω) and

∂tu ∈ L2(0, T ;VM (ω)).

Proof. We follow the proof of Proposition 4 from [22] and first prove that {u, p0} ∈ C([0, T ];VM (ω)×
L2(Ω)) and ∂z3p

0 ∈ L2((0, T )×Ω) imply a higher regularity in time. Ideas are analogous but details
of the calculations are different.

Next we take q = q(z1, z2), q ∈ C∞(ω) as a test function in (3.19). The time continuity and
(3.19) yield (

β +
α2

λ̃+ 2

)∫ 1/2

−1/2
p0 dz3 +

2α

λ̃+ 2
Ac : γ(u) = 0. (3.22)
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After inserting (3.22) into (3.18), it takes the form∫
ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 +

4α2

(λ̃+ 2)
(
β(λ̃+ 2) + α2

) ∫
ω
Ac : γ(u)Ac : γ(v)

√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2, v ∈ VM (ω).

(3.23)

The H2-regularity in time of P± allows taking time derivatives of equation (3.23) up to order 2. It
yields ∂tu ∈ L2(0, T ;VM (ω)) and ∂ttu ∈ L2(0, T ;VM (ω)). Hence ∂tu ∈ H1(0, T ;VM (ω)). Note that
contrary to the flexural case from the proof of Proposition 4 from [22], the equation for u is now of
the 2nd order. For such u classical regularity theory for the second order linear parabolic equations
applied at (3.19) implies ∂tp

0 ∈ L2((0, T )× Ω).

The existence and the uniqueness are based on the energy estimate. If we choose v =
∂u

∂t
as a

test function in (3.18) and p0 as a test function in (3.19) and sum up the equations we obtain the
equality

1

2

d

dt

{∫
ω
C̃(Acγ(u)) : γ(u)Ac√adz1dz2 +

∫
Ω

(
β +

α2

λ̃+ 2

)
(p0)2

√
adz

− 2

∫
ω
(P+ + P−) · u

√
adz1dz2

}
+

∫
Ω

(
∂p0

∂z3

)2√
adzdt

= −
∫
ω
∂t(P+ + P−) · u

√
adz1dz2 ∓

∫
Σ±

V p0
√
a dz1dz2.

(3.24)

Equality (3.24) implies uniqueness of solutions to problem (3.18)–(3.20). Concerning existence, equal-
ity (3.24) allows to obtain the uniform bounds for γ(u) in L∞(0, T ;VM (ω)), for p0 in L∞(0, T ;L2(Ω))
and for ∂z3p

0 in L2(0, T ;L2(Ω)). Using Lemma 6 and the classical weak compactness reasoning, we
conclude the existence of at least one solution.

Remark 8. Note that the equation (3.23) can be used to decouple the problem. Thus we first
can solve the membrane problem with slightly changed coefficients and with time as a parameter in
the equation. In the second step we plug this solution into (3.19). This approach can also lead to
alternative existence proof. Namely, standard existence theory for membrane shell model applied on
(3.23) yields that there is a unique u ∈ H2(0, T ;VM (ω)) solving (3.23). Then the standard parabolic
theory for (3.19) implies the existence of p0 in C([0, T ];L2(Ω)) and such ∂z3p

0 in L2(0, T ;L2(Ω)).
Further regularity is standard.

Standards computations give

p0 −
∫ 1/2

−1/2
p0dz3 = −V (t)y3 +

4β

π2

∞∑
m=0

∫ t

0
e
− (2m+1)2π2

β
(t−s)

∂tV ds
(−1)m

(2m+ 1)2
sin
(
(2m+ 1)πy3

)
, (3.25)

with β = β +
α2

λ̃+ 2
. After inserting (3.22) into (3.18) for displacement we get a standard elastic

membrane shell equations with modified coefficients. Then we use (3.22) to compute the mean
pressure and finally (3.25) to reconstruct the pressure fluctuation.

The main result of the paper is the following theorem.

Theorem 9. Let us suppose Assumption 4. Let {u(ε), p(ε)} ∈ H1(0, T ;V(Ω))×H1(0, T ;H1(Ω)) be
the unique solution of (3.16) and let {u, p0} be the unique solution for (3.18)–(3.20). Then we obtain

u(ε) → u strongly in C([0, T ];H1(Ω)×H1(Ω)× L2(Ω)),

γε(u(ε)) → γ0 strongly in C([0, T ];L2(Ω;R3×3)),

p(ε) → p0 strongly in C([0, T ];L2(Ω)),

∂p(ε)

∂z3
→ ∂p0

∂z3
strongly in L2(0, T ;L2(Ω)),
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where

γ0 =

 γ(u)
0
0

0 0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

 . (3.26)

Remark 10. We observe differences between convergence theorem (Theorem 6) from [22] and this
result. The most notable difference is in the structure of γ0.

As a consequence of the convergence of the term γε(u(ε)), we obtain the convergence of the scaled
stress tensor.

Corollary 11. For the stress tensor σ(ε) = C(Q(ε)γε(u(ε))Q(ε)T )− αp(ε)I one has

1

ε
σ(ε) → σ = C(Qγ0QT )− αp0I strongly in C([0, T ];L2(Ω;R3×3)). (3.27)

The limit stress in the local contravariant basis Q = (a1 a2 a3) is given by

QTσQ =


(
− 2α

λ̃+ 2
p0I+

2λ̃

λ̃+ 2
(Ac : γ(u))I+ 2Acγ(u)

)
Ac 0

0 0

 .

4 A priori estimates

Fundamental for a priori estimates for elliptic membrane shells (clamped at all lateral surface and
elliptic) is the following three-dimensional inequality of Korn’s type for a family of linearly elastic
elliptic membrane shells.

Theorem 12 ([5, Theorem 4.3-1], [7, Theorem 4.1]). Assume that X ∈ C3(ω;R3) parameterizes an
elliptic surface. Then there exist constants ε0 > 0, C > 0 such that for all ε ∈ (0, ε0) one has

∥v1∥2H1(Ω) + ∥v2∥2H1(Ω) + ∥v3∥2L2(Ω) ≤ C∥γε(v)∥2L2(Ω;R3×3), v ∈ V(Ω).

Remark 13. Note that the above estimate applies to the functions on the three-dimensional domain
Ω and will be the basis for the a priori estimates for the solution of (3.16), while in Lemma 6 the
estimate was for functions on ω ad is the basis for the existence and uniqueness of the solution of
the limit model (3.18)–(3.20).

Next we state the asymptotic properties of the coefficients in the equation (3.16). Direct calcu-
lation shows that there are constants mg, Mg, independent of ε ∈ (0, ε0), such that for all z ∈ Ω,

mg ≤
√

g(ε) ≤ Mg. (4.1)

The functions gi(ε),gi(ε), g
ij(ε), g(ε),Γi

jk(ε),Q(ε) are in C(Ω) by assumptions. Moreover, there is a
constant C > 0 such that for all ε ∈ (0, ε0),

∥gi(ε)− ai∥∞ + ∥gi(ε)− ai∥∞ ≤ Cε,

∥ ∂

∂z3

√
g(ε)∥∞ + ∥

√
g(ε)−

√
a∥∞ ≤ Cε, (4.2)

∥Q(ε)−Q∥∞ ≤ Cε,

∥Γi
jk(ε)− Γi

jk(0)∥∞ ≤ Cε,
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where ∥ · ∥∞ is the norm in C(Ω). For proof see [7, 8]. In addition, in [5, Theorem 3.3-1] and [8,
Lemma 3.1] the asymptotic of the Christoffel symbols is given by

Γκ(ε) =

 Γκ
11 Γκ

12 −bκ1
Γκ
21 Γκ

22 −bκ2
−bκ1 −bκ2 0

+O(ε), (4.3)

where κ = 1, 2 and

Γ3(ε) =

 b11 b12 0
b21 b22 0
0 0 0

+O(ε). (4.4)

In the following two lemmas we derive the a priori estimates in a classical way. The estimates
are similar, but different from the flexural case. Namely, the scaling of γε(u(ε)) is different.

Lemma 14. There is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(u(ε))∥L∞(0,T ;L2(Ω;R3×3)), ∥p(ε)∥L∞(0,T ;L2(Ω;R)), ∥ε∇εp(ε)∥L2(0,T ;L2(Ω;R3)) ≤ C.

Proof. We set v =
∂u(ε)

∂t
and q = p(ε) in (3.16) and sum up the equations. After noticing that the

pressure term from the first equation cancels with the compression term from the second equation
we obtain

1

2
ε
d

dt

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz

+
1

2
βε

d

dt

∫
Ω
p(ε)2

√
g(ε)dz + ε3

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dz

= ε

∫
Σ±

P± · ∂u(ε)
∂t

√
g(ε)ds∓ ε

∫
Σ±

V p(ε)
√

g(ε)ds.

Dividing the equation by ε and using the product rule for derivatives with respect to time on the
right hand side yield

1

2

d

dt

(∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz + β

∫
Ω
p(ε)2

√
g(ε)dz

)
+ ε2

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dz

=
d

dt

∫
Σ±

P± · u(ε)
√

g(ε)ds−
∫
Σ±

∂P±
∂t

· u(ε)
√

g(ε)ds∓
∫
Σ±

V p(ε)
√

g(ε)ds.

Now we use the Newton-Leibnitz formula for the terms on the right hand side and the notation

P = (P+ + P−)z3 +
P+ − P−

2
, V = 2V z3

to obtain

1

2

d

dt

(∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz + β

∫
Ω
p(ε)2

√
g(ε)dz

)
+ ε2

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dz

=
d

dt

∫
Ω

∂

∂z3
(P · u(ε)

√
g(ε))dz −

∫
Ω

∂

∂z3

(
∂P
∂t

· u(ε)
√

g(ε)

)
dz

−
∫
Ω

∂

∂z3

(
Vp(ε)

√
g(ε)

)
dz.
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Next we integrate this inequality over time

1

2

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz +

1

2
β

∫
Ω
p(ε)2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dzdτ

=
1

2

(∫
Ω
C
(
Q(ε)γε(u(ε)|t=0)Q(ε)T

)
:
(
Q(ε)γε(u(ε)|t=0)Q(ε)T

)√
g(ε)dz + β

∫
Ω
p(ε)2|t=0

√
g(ε)dz

)
+

∫
Ω

∂

∂z3
(P · u(ε)

√
g(ε))dz −

∫
Ω

∂

∂z3
(P|t=0 · u(ε)|t=0

√
g(ε))dz −

∫ t

0

∫
Ω

∂

∂z3

(
∂P
∂t

· u(ε)
√

g(ε)

)
dzdτ

+

∫ t

0

∫
Ω

∂

∂z3

(
Vp(ε)

√
g(ε)

)
dzdτ.

(4.5)
Since we have sufficient time regularity for u(ε), we consider (3.16) for t = 0. Then u(ε)|t=0 satisfies:
for all v ∈ V(Ω)∫

Ω
C
(
Q(ε)γε(u(ε)|t=0)Q(ε)T

)
:
(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

− α

∫
Ω
p(ε)|t=0 tr

(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz =

∫
Σ±

P±|t=0 · v
√

g(ε)ds.

Since the initial condition is p(ε)|t=0 = 0 this equation is a classical 3D equation of shell-like body in
curvilinear coordinates rescaled on the canonical domain. Next, P±|t=0 = 0 and the classical theory
(see Ciarlet [5]) yields u(ε)|t=0 = 0. Using Korn’s inequality, positivity of C and uniform positivity
of Q(ε)TQ(ε) and g(ε) in (4.5) yields the estimate

1

2

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz +

1

2
β

∫
Ω
p(ε)2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dzdτ ≤ C.

Since C is positive definite and since g(ε) is uniformly positive definite (see [5, Theorem 3.3-1]) we
obtain the following uniform bounds

∥Q(ε)γε(u(ε))Q(ε)T ∥L∞(0,T ;L2(Ω;R3×3)), ∥p(ε)∥L∞(0,T ;L2(Ω)), ∥εQ(ε)∇εp(ε)∥L2(0,T ;L2(Ω;R3)).

Since Q(ε)TQ(ε) is uniformly positive definite these estimates imply uniform bounds for

∥γε(u(ε))Q(ε)T ∥L∞(0,T ;L2(Ω;R3×3)), ∥p(ε)∥L∞(0,T ;L2(Ω)), ∥ε∇εp(ε)∥L2(0,T ;L2(Ω;R3)).

Applying the uniform bounds for Q(ε)TQ(ε) once again implies the statement of the lemma.

We now first take the time derivative of the first equation in (3.16) and then insert v =
∂u(ε)

∂t
as

a test functions. Then we take q =
∂p(ε)

∂t
as test functions in the second equation in (3.16) and sum

the equations. We obtain∫
Ω
C
(
Q(ε)γε(

∂u(ε)

∂t
)Q(ε)T

)
:

(
Q(ε)γε(

∂u(ε)

∂t
)Q(ε)T

)√
g(ε)dz

+ β

∫
Ω

∂p(ε)

∂t

∂p(ε)

∂t

√
g(ε)dz +

1

2
ε2

d

dt

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dz

=

∫
Σ±

∂P±
∂t

· ∂u(ε)
∂t

√
g(ε)ds∓

∫
Σ±

V
∂p(ε)

∂t

√
g(ε)ds.

(4.6)

Similarly as in Lemma 14 from this equality we obtain
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Lemma 15. There is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(
∂u(ε)

∂t
)∥L2(0,T ;L2(Ω;R3×3)), ∥

∂p(ε)

∂t
∥L2(0,T ;L2(Ω;R)), ∥ε∇εp(ε)∥L∞(0,T ;L2(Ω;R3)) ≤ C.

As a consequence of the scaled Korn’s inequality from Theorem 12 we obtain

Corollary 16. Let us suppose Assumption 4 and let {u(ε), p(ε)} be the solution for problem (3.16).
Then there is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(u(ε))∥H1(0,T ;L2(Ω;R9)), ∥u1(ε)∥H1(0,T ;H1(Ω)), ∥u2(ε)∥H1(0,T ;H1(Ω)), ∥u3(ε)∥H1(0,T ;L2(Ω)),

∥p(ε)∥H1(0,T ;L2(Ω;R)), ∥
∂p(ε)

∂z3
∥L∞(0,T ;L2(Ω;R)) ≤ C.

In addition, there are u1, u2 ∈ H1(0, T ;H1(Ω;R3)), u3 ∈ H1(0, T ;L2(Ω;R3)), p0 ∈ H1(0, T ;L2(Ω;R))
and γ0 ∈ L∞(0, T ;L2(Ω;R3×3)) such that on a subsequence one has

uj(ε) ⇀ uj weakly in H1(0, T ;H1(Ω)), j = 1, 2,

u3(ε) ⇀ u3 weakly in H1(0, T ;L2(Ω)),

p(ε) ⇀ p0 weakly in H1(0, T ;L2(Ω;R)),
∂p(ε)

∂z3
⇀

∂p0

∂z3
weakly in L2(0, T ;L2(Ω;R)) and weak * in L∞(0, T ;L2(Ω;R)),

γε(u(ε)) ⇀ γ0 weakly in H1(0, T ;L2(Ω;R3×3)).

(4.7)

Proof. Straightforward.
Since γε(u(ε)) depends on u(ε) one expects that the limits u= (u1, u2, u3) and γ0 are related. The

following theorem gives the precise relationship. The following theorem is fundamental for obtaining
the limit model in classical elliptic membrane shell derivation as well as in the present derivation. Its
proof is a collection of particular statements in the proof of Theorem 4.4-1 in [5]. Therefore we just
sketch it here.

Theorem 17. For any v ∈ V(Ω) let γε(v) be given by (3.17) and let the tensor γ(v) be given by
(2.5). Let the family (w(ε))ε>0 ⊂ V(Ω) satisfies

wj(ε) ⇀ wj weakly in H1(Ω), j = 1, 2,

w3(ε) ⇀ w3 weakly in L2(Ω),

γε(w(ε)) ⇀ γ̃0 weakly in L2(Ω;R3×3)

(4.8)

as ε → 0. Then w= (w1, w2, w3) is independent of transverse variable z3, belongs to VM (ω) =
H1

0 (ω)×H1
0 (ω)× L2(ω), and satisfies

γ̃0αβ = γαβ(w), α, β ∈ {1, 2}.

Proof. From γε(w(ε)) ⇀ γ̃0 we obtain that

εγε(w(ε)) = γz(w(ε)) + εγy(w(ε))− ε

3∑
i=1

wi(ε)Γ
i(ε) → 0

strongly in L2(Ω;R3). From the convergences in (4.8) and asymptotics of Γi(ε) given in (4.3) and
(4.4) we have that

ε

3∑
i=1

wi(ε)Γ
i(ε) → 0
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strongly in L2(Ω;R3×3). Also (4.8) implies that εγy(w(ε)) → 0 strongly in H−1(Ω;R3×3). Finally
γz(w(ε)) → 0 strongly in L2(ω;H−1(−1/2, 1/2;R3×3)) and weakly in L2(Ω;R3×3). From the defi-
nition of γz in (3.17) we obtain that ∂3wi(ε) → 0 strongly in H−1(Ω). Therefore w is independent
of the transverse variable z3. Then it is straightforward to conclude that w ∈ VM (ω).

Now, the convergences γεαβ(w(ε)) ⇀ γ̃0αβ , α, β ∈ {1, 2} from (4.8), using the definition of γε from
(3.17), imply

γ̃0αβ = lim
ε→0

(
1

2
(∂αwβ(ε) + ∂βwα(ε))−

3∑
i=1

wi(ε)Γ
i
αβ(ε)

)
.

Using the asymptotics of Γi(ε) from (4.3) and (4.4) together with the remaining convergences in (4.8)
yield

γ̃0αβ =
1

2
(∂αwβ + ∂βwα)−

3∑
i=1

wiΓ
i
αβ(0) = γαβ(w).

Remark 18. In order to apply Theorem 17 we need pointwise convergences for every t ∈ [0, T ]. The
estimates from Corollary 16 (i.e., Lemma 14 and Lemma 15) imply that we are in the same position
as in Remark 14 from [22] for u1(ε), u2(ε), p(ε) and γε(u(ε)), i.e.

uα(ε)(t) ⇀ uα(t) weakly in H1(Ω) for every t ∈ [0, T ], α ∈ {1, 2},
p(ε)(t) ⇀ p0(t) weakly in L2(Ω),

γε(u(ε))(t) ⇀ γ0(t) weakly in L2(Ω;R3×3),

for every t ∈ [0, T ].
In the case of u3(ε) we argue similarly. Corollary 16 implies that u3(ε) is uniformly bounded in

C0,1/2([0, T ], L2(Ω)). Therefore by the Aubin-Lions lemma (see [29]), there is a subsequence such
that the {u3(ε)} converges to u3 also in C([0, T ];H−1(Ω)). Let φ ∈ L2(Ω). Then for every δ > 0,
there exists φδ ∈ C∞

0 (Ω) such that ∥φ− φδ∥L2(Ω) ≤ δ. Then

sup
0≤t≤T

|
∫
Ω
(u3(ε)(t)− u3(t))φ dx|

≤ sup
0≤t≤T

|
∫
Ω
(u3(ε)(t)− u3(t)) (φ− φδ) dx|+ sup

0≤t≤T
|
∫
Ω
φδ (u3(ε)(t)− u3(t)) dx|

≤ δ∥u3(ε)− u3∥C([0,T ];L2(Ω;R3)) + ∥φδ∥H1(Ω)∥u3(ε)− u3∥C([0,T ];H−1(Ω;R3)) ≤ Cδ,

(4.9)

for ε ≤ ε0(δ). Therefore

lim
ε→0

sup
0≤t≤T

|
∫
Ω
(u3(ε)(t)− u3(t))φ dx| ≤ Cδ,

which yields
u3(ε)(t) ⇀ u3(t) weakly in L2(Ω;R3) for every t ∈ [0, T ]. (4.10)

Thus we may apply Theorem 17, with w(ε) = u(ε)(t), for each t ∈ [0, T ] and conclude that the
limit points of {u(ε)(t)} belong to VM (ω).

Moreover we conclude that

γ0αβ = γαβ(u), α, β ∈ {1, 2}.
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5 Derivation of the limit model

In this section we derive the limit model in two steps by taking the limit in (3.16) for two choices
of test functions. Then in the Step 3 we prove the strong convergence of the strain and pressure.
Finally in the Step 4 we prove the strong convergence of displacements.

Step 1 (Identification of γ0i3).We take the limit as ε → 0 in the first equation in (3.16) divided
by ε and obtain∫

Ω
C
(
Q(0)γ0Q(0)T

)
:
(
Q(0)γz(v)Q(0)T

)√
g(0)dz − α

∫
Ω
p0 tr

(
Q(0)γz(v)Q(0)T

)√
g(0)dz = 0,

v ∈ V(Ω), a.e. t ∈ [0, T ].

Using Q(0) = Q and g(0) = a, and the definition of γz and the function space V(Ω) yield(
QT

(
C
(
Qγ0QT

)
− αp0I

)
Q
)
i3
= 0, i = 1, 2, 3.

This implies ((
λ̃ tr

(
Qγ0QT

)
− αp0

)
QTQ+ 2QTQγ0QTQ

)
i3
= 0, i = 1, 2, 3.

Since

QTQ =

[
Ac 0
0 1

]
(5.1)

we obtain expressions of the third column of γ0 in terms of the rest of elements

(QTQγ0)13 = (QTQγ0)23 = λ̃ tr
(
QTQγ0

)
− αp0 + 2γ0

33 = 0. (5.2)

The first two equations imply that

Ac

[
γ013
γ023

]
= 0

and since Ac is positive definite we obtain that γ013 = γ031 = γ023 = γ032 = 0. From the third equation
in (5.2) we get

λ̃Ac :

[
γ011 γ012
γ012 γ022

]
− αp0 + (λ̃+ 2)γ033 = 0.

Thus we have obtained the following result. Up to here we followed pages 382-383 from [22].

Lemma 19.

γ013 = γ031 = γ023 = γ032 = 0, γ033 =
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u).

From this lemma and Theorem 17 we have that γ0 is of the following form

γ0 =

 γ(u)
0
0

0 0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

 . (5.3)

Step 2 (Taking the second limit). Now we take the limit in (3.16), after division of both equations
by ε, for test functions independent of the transversal variable z3, i.e., v ∈ H1

0 (ω;R3), such that

γz(v) = 0.
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Thus γε(v) = γy(v)−
∑3

i=1 viΓ
i(0). The equations are∫

Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

− α

∫
Ω
p(ε) tr

(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz =

∫
Σ±

P± · v
√

g(ε)ds,

v ∈ H1
0 (ω;R3), a.e. t ∈ [0, T ],∫

Ω
β
∂p(ε)

∂t
q
√

g(ε)dz +

∫
Ω
α
∂

∂t
tr
(
Q(ε)γε(u(ε))Q(ε)T

)
q
√

g(ε)dz

+ ε2
∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εq

√
g(ε)dz = ∓

∫
Σ±

V q
√

g(ε)ds, q ∈ H1(Ω).

In the limit when ε → 0 we obtain∫
Ω
C
(
Qγ0QT

)
:

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz

− α

∫
Ω
p0 tr

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz =

∫
Σ±

P± · v
√
ads,

v ∈ H1
0 (ω;R3), a.e. t ∈ [0, T ],∫

Ω
β
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t
tr
(
Qγ0QT

)
q
√
adz +

∫
Ω

∂p0

∂z3
Qe3 ·

∂q

∂z3
Qe3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(5.4)

Note that Qe3 ·Qe3 = 1. Since

γy(v)− viΓ
i(0) =

 γ(v)
1
2∂1v3 +

∑2
σ=1 vσb

σ
1

1
2∂2v3 +

∑2
σ=1 vσb

σ
2

1
2∂1v3 +

∑2
σ=1 vσb

σ
1

1
2∂2v3 +

∑2
σ=1 vσb

σ
2 0


using (5.1) we get

tr (Q(γy(v)−
3∑

i=1

viΓ
i(0))QT ) = tr (QTQ(γy(v)−

3∑
i=1

viΓ
i(0))) = Ac : γ(v). (5.5)

Next, using Lemma 19 yields

tr (Qγ0QT ) = tr (QTQγ0) = Ac : γ(u) + γ033

= Ac : γ(u) +
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u) =

2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0.

(5.6)

Further, using (5.1) and Lemma 19 we compute

QTQγ0QTQ =

[
Acγ(u)Ac 0

0 γ033

]
=

[
Acγ(u)Ac 0

0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

]
. (5.7)
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Now the main elastic term in the first equation in (5.4) is computed:∫
Ω
C
(
Qγ0QT

)
:

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz

=

∫
Ω
λ̃ tr

(
Qγ0QT

)
tr

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
+ 2Qγ0QT : Q(γy(v)−

3∑
i=1

viΓ
i(0))QT√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)
Ac : γ(v)

√
adz

+

∫
Ω
2QTQγ0QTQ : (γy(v)−

3∑
i=1

viΓ
i(0))

√
adz

=

∫
Ω

2λ̃

λ̃+ 2
(Ac : γ(u))(Ac : γ(v)) +

λ̃α

λ̃+ 2
p0Ac : γ(v)

√
adz +

∫
Ω
2Acγ(u)Ac : γ(v)

√
adz.

Let us define the tensor (it usually appears in plate and shell theories!)

C̃E =
2λ̃

λ̃+ 2
tr (E)I+ 2E, E ∈ R2×2

sym.

The first equation in (5.4) now becomes: for all v ∈ H1
0 (ω;R3) one has∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 +

∫
Ω

λ̃α

λ̃+ 2
p0Ac : γ(v)

√
adz − α

∫
Ω
p0Ac : γ(v)

√
adz

=

∫
ω
(P+ + P−) · v

√
adz1dz2.

By density of H1
0 (ω;R3) in VM (ω) the above equation implies:∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 −

2α

λ̃+ 2

∫
ω

∫ 1/2

−1/2
p0dz3A

c : γ(v)
√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2., v ∈ VM (ω).

(5.8)

Equation (5.8) is the classical equation of the membrane shell model with the addition of the pressure
p0 term.

Using (5.6), the second equation in (5.4) can be now written by∫
Ω

(
β +

α2

λ̃+ 2

)
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t

(
2

λ̃+ 2
Ac : γ(u)

)
q
√
adz +

∫
Ω

∂p0

∂z3

∂q

∂z3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(5.9)

The elliptic membrane poroelastic shell model is given by (5.8), (5.9).

Step 3 (The strong convergences of strain and pressure).
As mentioned in Remark 8 the limit problem can be decoupled and the displacement can be

calculated independently of the pressure, by solving the elliptic membrane shell model with modified
coefficients. However the same decoupling cannot be done for the three-dimensional problem and
thus the result of the strong convergence for the classical elliptic membrane shell derivation, see [5],
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cannot be applied directly to the poroelastic case. Hence we adapt the ideas from [5]. We start
with

Λ(ε)(t) =
1

2

∫
Ω
C
(
Q(ε)

(
γε(u(ε))(t)− γ0(t)

)
Q(ε)T

)
:
(
Q(ε)

(
γε(u(ε))(t)− γ0(t)

)
Q(ε)T

)√
g(ε) +

1

2
β

∫
Ω
(p(ε)(t)− p0(t))2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
(∇εp(ε)−∇εp0)Q(ε)T · (∇εp(ε)−∇εp0)Q(ε)T

√
g(ε)dz.

and we will show that Λ(ε)(t) → Λ(t) as ε tends to zero for all t ∈ [0, T ]. Since Λ(ε) ≥ 0 the Λ ≥ 0 as
well. After some calculation we will show that actually Λ = 0. This will give the strong convergences
in (4.7).

Since we have only weak convergences in (4.7) we first remove quadratic terms in Λ(ε) using

(3.16) for v =
∂u(ε)

∂t
and q = p(ε) divided by ε. Integration of (3.16) over time, using p(ε)|t=0 = 0

and u(ε)|t=0 = 0, implies

1

2

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(u(ε))Q(ε)T

)√
g(ε)dz

+
1

2
β

∫
Ω
p(ε)2

√
g(ε)dz + ε2

∫ t

0

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dzdτ

=

∫ t

0

∫
Σ±

P± · ∂u(ε)
∂t

√
g(ε)dsdτ ∓

∫ t

0

∫
Σ±

V p(ε)
√

g(ε)dsdτ.

Inserting this into the definition of Λ(ε) we obtain

Λ(ε)(t) =

∫ t

0

∫
Σ±

P± · ∂u(ε)
∂t

√
g(ε)dsdτ ∓

∫ t

0

∫
Σ±

V p(ε)
√

g(ε)dsdτ

−
∫
Ω
C
(
Q(ε)γε(u(ε))(t)Q(ε)T

)
:
(
Q(ε)γ0(t)Q(ε)T

)√
g(ε)dz

− β

∫
Ω
p(ε)p0

√
g(ε)dz

− 2ε2
∫ t

0

∫
Ω
Q(ε)∇εp(ε)(t) ·Q(ε)∇εp0(t)

√
g(ε)dzdτ

+
1

2

∫
Ω
C
(
Q(ε)γ0Q(ε)T

)
:
(
Q(ε)γ0Q(ε)T

)√
g(ε)dz +

1

2
β

∫
Ω
(p0)2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
Q(ε)∇εp0 ·Q(ε)∇εp0

√
g(ε)dzdτ.

Now we take the limit as ε tends to zero and obtain that Λ(ε)(t) → Λ(t) ≥ 0, where

Λ(t) =

∫ t

0

∫
ω
(P+ + P−) ·

∂u

∂t

√
adsdτ ∓

∫ t

0

∫
Σ±

V p0
√
adsdτ

− 1

2

∫
Ω
C
(
Qγ0(t)QT

)
:
(
Qγ0(t)QT

)√
adz − 1

2
β

∫
Ω
p0(t)2

√
adz −

∫ t

0

∫
Ω

(
∂p0

∂z3

)2√
adzdτ.

(5.10)

We now insert
∂u

∂t
as a test function in (5.8), p0 in (5.9) and sum up the equations. The anti-

symmetric terms cancel out as before. Then we integrate the equation over time and use the initial
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conditions to obtain

1

2

∫
ω
C̃(Acγ(u(t))) : (γ(u(t))Ac)

√
adz1dz2 +

1

2

∫
Ω

(
β +

α2

λ̃+ 2

)
(p0(t))2

√
adz

+

∫ t

0

∫
Ω

(
∂p0

∂z3

)2√
adzdτ =

∫ t

0

∫
ω
(P+ + P−) ·

∂u

∂t

√
adsdτ ∓

∫ t

0

∫
Σ±

V p0
√
adsdτ.

Inserting the above equation into (5.10) yields

Λ(t) =
1

2

∫
ω
C̃(Acγ(u(t))) : (γ(u(t))Ac)

√
adz1dz2 +

1

2

∫
Ω

α2

λ̃+ 2
(p0(t))2

√
adz

− 1

2

∫
Ω
C
(
Qγ0(t)QT

)
:
(
Qγ0(t)QT

)√
adz.

(5.11)

Next we compute the elastic energy using (5.3), (5.6), (5.7):∫
Ω
C
(
Qγ0QT

)
:
(
Qγ0QT

)√
adz

=

∫
Ω
λ̃(tr

(
Qγ0QT

)
)2 + 2QTQγ0QTQ : γ0√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)2

+ 2

[
Acγ(u)Ac 0

0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

]
: γ0√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)2

+ 2

Acγ(u)Ac : γ(u) +

(
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u)

)2
√

adz

=

∫
Ω

( 4λ̃

(λ̃+ 2)2
(Ac : γ(u))2 +

4λ̃α

(λ̃+ 2)2
Ac : γ(u)p0 +

λ̃α2

(λ̃+ 2)2
(p0)2 + 2Acγ(u)Ac : γ(u)

+
2α2

(λ̃+ 2)2
(p0)2 − 4λ̃α

(λ̃+ 2)2
Ac : γ(u)p0 +

2λ̃2

(λ̃+ 2)2
(Ac : γ(u))2

)√
adz

=

∫
Ω

2λ̃

λ̃+ 2
(Ac : γ(u))2 +

α2

λ̃+ 2
(p0)2 + 2Acγ(u)Ac : γ(u)

√
adz

=

∫
Ω
C̃(Acγ(u)) : γ(u)Ac +

α2

λ̃+ 2
(p0)2

√
adz.

Inserting this into (5.11) we obtain that Λ(t) = 0. We now have Λ(ε)(t) → 0 for every t ∈ [0, T ].
Since Λ(ε) : [0, T ] → R is an equicontinuous family, we conclude strong convergences of the strain
tensor and the pressure

γε(u(ε)) → γ0 strongly in C([0, T ];L2(Ω;R3×3)),

p(ε) → p0 strongly in C([0, T ];L2(Ω)),

∂p(ε)

∂z3
→ ∂p0

∂z3
strongly in L2(0, T ;L2(Ω)).

(5.12)

Step 4 (The strong convergences of the displacements). The setting is more complicated than
in the proof of Theorem 4.4-1 from [5] because the problem is time dependent. The first convergence
in (5.12) implies

γαβ(u(ε)) → γαβ(u) strongly in C([0, T ];L2(Ω)), α, β ∈ {1, 2}. (5.13)
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Let us now denote by · the operator of averaging over z3, i.e.,

v(·) =
∫ 1/2

−1/2
v(·, z3)dz3.

Then from (5.13) we obtain

γαβ(u(ε)) → γαβ(u) strongly in C([0, T ];L2(ω)), α, β ∈ {1, 2}.

Note that u = u since u is independent of z3. The inequality of Korn’s type on an elliptic surface,
see Lemma 6 ([5, Theorem 2.7-3]), for u(ε)− u implies

∥u1(ε)− u1∥2H1(ω) + ∥u2(ε)− u2∥2H1(ω) + ∥u3(ε)− u3∥2L2(ω) ≤ CM∥γ(u(ε))− γ(u)∥2L2(Ω;R3×3).

Application of (5.13) yields

uα(ε) → uα strongly in C([0, T ];H1(ω)), α ∈ {1, 2},
u3(ε) → u3 strongly in C([0, T ];L2(ω)).

(5.14)

Next we prove that
u3(ε) → u3 strongly in C([0, T ];L2(Ω)). (5.15)

From the Poincare type estimate

|u3(ε)(·, z3)− u3(ε)(·)| ≤ C

√∫ 1/2

−1/2
(∂3u3(ε)(·, y3))2dy3

we obtain
∥u3(ε)− u3(ε)∥C([0,T ];L2(Ω)) ≤ C∥∂3u3(ε)∥C([0,T ];L2(Ω)).

From γε33(u(ε)) =
1
ε∂3u3(ε) → γ033 strongly in C([0, T ];L2(Ω)) we conclude ∂3u3(ε) → 0 strongly in

C([0, T ];L2(Ω)). Together with the last convergence in (5.14) this implies (5.15).
In the remaining part of the proof we prove

uα(ε) → uα strongly in C([0, T ];H1(Ω)), α ∈ {1, 2}. (5.16)

It follows from the Korn inequality and the Lions lemma (see [14]). Let us denote u′(ε) = (u1(ε), u2(ε), 0),
u′ = (u1, u2, 0). Then, using the Korn inequality, the convergence

e(u′(ε)) → e(u′) strongly in C([0, T ];L2(Ω;R3×3)) (5.17)

is equivalent to (5.16) (e(u) denotes the symmetrized gradient). Convergence in (5.17) will be
obtained component by component. Since for α, β ∈ {1, 2}

eαβ(u
′(ε)) = γεαβ(u(ε)) +

3∑
i=1

ui(ε)Γ
i
αβ(ε),

using the first convergence in (5.12) for γεαβ(u(ε)), Remark 18 for u1(ε) and u2(ε), (5.15) for u3(ε)
and (4.3) and (4.4) we obtain

eαβ(u
′(ε)) → γαβ(u) +

3∑
i=1

uiΓ
i
αβ(0) = eαβ(u

′) strongly in C([0, T ];L2(Ω)), α, β = 1, 2. (5.18)

Since e33(u
′(ε)) = e33(u

′) = 0 the convergence of this component is trivial.
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For the convergence of eα3(u
′(ε)) = 1

2∂3uα(ε) we apply the Lions lemma. Thus we first prove
that

∂3uα(ε), ∂13uα(ε), ∂23uα(ε), ∂33uα(ε) → 0 strongly in C([0, T ];H−1(Ω)), α = 1, 2. (5.19)

We start with the expression

1

ε
∂3uα(ε) = 2γεα3(u(ε))− ∂αu3(ε) + 2

3∑
i=1

ui(ε)Γ
i
α3(ε). (5.20)

The first and the third term on the right hand side converge strongly in C([0, T ];L2(Ω)), while the
middle one converges only in C([0, T ];H−1(Ω)) by (5.15). Thus we obtain that ∂3uα(ε) → 0 in
C([0, T ];H−1(Ω)). Differentiating (5.20) with respect to z3 yields

1

ε
∂33uα(ε) = 2∂3γ

ε
α3(u(ε))− ∂α∂3u3(ε) + 2

3∑
i=1

∂3(ui(ε)Γ
i
α3(ε)).

Since ∂3u3(ε) → 0 in C([0, T ];L2(Ω)) the convergence of ∂33uα(ε) in C([0, T ];H−1(Ω)) is obtained.
Differentiating (5.18) with respect to z3 for α = β yields

∂α3uα(ε) = ∂3eαα(u
′(ε)) → ∂3eαα(u

′) = 0 strongly in C([0, T ];H−1(Ω)), α = 1, 2.

Since

∂13u2(ε) = ε∂1γ
ε
23(u(ε))− ε∂2γ

ε
13(u(ε)) + ∂3e12(u

′(ε)) + ε

(
∂1

2∑
τ=1

uτ (ε)Γ
τ
23(ε)− ∂2

2∑
τ=1

uτ (ε)Γ
τ
13(ε)

)

and since all terms on the right hand side strongly converge in C([0, T ];H−1(Ω)) we obtain the strong
convergence of ∂13u2(ε) in the same space. It then implies that the term

∂23u1(ε) = 2∂3γ
ε
12(u(ε))− ∂13u2(ε) + 2∂3

3∑
i=1

ui(ε)Γ
i
12(ε)

converges strongly in C([0, T ];H−1(Ω)). Thus we have proved (5.19). A consequence of Lions lemma
is that the spaces

v ∈ L2(Ω) ↔ (v, ∂1v, ∂2v, ∂3v) ∈ H−1(Ω)4

are isomorphic. Therefore the spaces

v ∈ C([0, T ];L2(Ω)) ↔ (v, ∂1v, ∂2v, ∂3v) ∈ C([0, T ];H−1(Ω))4

are also isomorphic. Therefore (5.19) implies that eα3(u
′(ε)) = 1

2∂3uα(ε) → 0 strongly in C([0, T ];L2(Ω)).
Therefore we have proved (5.17) and then (5.16) follows by the Korn inequality. Thus we have proved
the strong convergence of displacements

u(ε) → u strongly in C([0, T ];H1(Ω)×H1(Ω)× L2(Ω)).

A Spherical surface

Let ω = [0, d1]× [0, d2], where d1 ∈ (0, 2π], d2 ∈ (0, π], with one of the strict inequalities d1 < 2π or
d2 < π holding, and let (φ, θ) denotes the generic point in ω. Let R > 0. We define a spherical shell
by the parametrization

X : ω → R3, X(φ, θ) = (R sin θ cosφ,R sin θ sinφ,R cos θ)T .
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Then the extended covariant basis of the shell S = X(ω) is given by

a1(φ, θ) = ∂φX(φ, θ) = R(− sin θ sinφ, sin θ cosφ, 0)T ,

a2(φ, θ) = ∂θX(φ, θ) = R(cos θ cosφ, cos θ sinφ,− sin θ)T ,

a3(φ, θ) =
a1(φ, θ)× a2(φ, θ)

|a1(φ, θ)× a2(φ, θ)|
= (− sin θ cosφ,− sin θ sinφ,− cos θ)T .

The contravariant basis is biorthogonal and is given by

a1(φ, θ) =
1

R
(− sinφ/ sin θ, cosφ/ sin θ, 0)T ,

a2(φ, θ) =
1

R
(cos θ cosφ, cos θ sinφ,− sin θ)T ,

a3(φ, θ) = (− sin θ cosφ,− sin θ sinφ,− cos θ)T .

The covariant Ac = (aαβ) and contravariant Ac = (aαβ) metric tensors are respectively given by

Ac =

[
R2 sin2 θ 0

0 R2

]
, Ac =

[
1
R2

1
sin2 θ

0

0 1
R2

]
and the area element is now

√
adS =

√
detAcdS = R2 sin θdS. The covariant and mixed components

of the curvature tensor are now given by

b11 = a3 · ∂φa1 = R sin2 θ, b12 = a3 · ∂θa1 = 0,

b21 = a3 · ∂φa2 = 0, b22 = a3 · ∂θa2 = R,

b11 =

2∑
σ=1

a1σbσ1 = a11b11 =
1

R
, b12 =

2∑
σ=1

a1σbσ2 = 0,

b21 =

2∑
σ=1

a2σbσ1 = 0, b22 =

2∑
σ=1

a2σbσ2 = a22b22 =
1

R2
R =

1

R
.

For Christoffel symbols Γσ
αβ = aσ · ∂βaα one has

Γ1 = (Γ1
αβ) =

[
0 ctg θ

ctg θ 0

]
, Γ2 = (Γ2

αβ) =

[
− sin θ cos θ 0

0 0

]
.

Now the displacement vector ṽ in the canonical coordinates is rewritten in the local basis ṽ =
Qv = v1a

1 + v2a
2 + v3a

3. Note that contravariant basis is different than the usual basis associated
with the spherical coordinates. One has

v1 = R sin θvφ, v2 = Rvθ, v3 = −vr.

Similarly, P̃± = Q−TP± = (P±)1a1 + (P±)2a2 + (P±)3a3. Thus

(P±)1 =
1

R sin θ
(P±)φ, (P±)2 =

1

R
(P±)θ, (P±)3 = −(P±)r

and
P± · v = (P±)1v1 + (P±)2v2 + (P±)3v3 = (P±)φvφ + (P±)θvθ + (P±)rvr.

Inserting the geometry coefficients into the strain γ we obtain

γ(v) =

[
∂1v1 −

∑2
κ=1 Γ

κ
11vκ − b11v3

1
2(∂1v2 + ∂2v1)−

∑2
κ=1 Γ

κ
12vκ − b12v3

1
2(∂2v1 + ∂1v2)−

∑2
κ=1 Γ

κ
21vκ − b21v3 ∂2v2 −

∑2
κ=1 Γ

κ
22vκ − b22v3

]
= R

[
sin θ∂φvφ + sin θ cos θvθ + sin2 θvr

1
2(∂φvθ + sin θ∂θvφ)− cos θvφ

1
2(sin θ∂θvφ + ∂φvθ)− cos θvφ ∂θvθ + vr

]
.
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Next

C̃(Acγ(u)) : γ(v)Ac =
2λ̃

λ̃+ 2
tr (Acγ(u)) tr (Acγ(v)) + 2Acγ(u) : γ(v)Ac

=
2λ̃

λ̃+ 2

1

R2

(
1

sin2 θ
(sin θ∂φuφ + sin θ cos θuθ + sin2 θur) + (∂θuθ + ur)

)
(

1

sin2 θ
(sin θ∂φvφ + sin θ cos θvθ + sin2 θvr) + (∂θvθ + vr)

)
+ 2

1

R2

(
1

sin4 θ
(sin θ∂φuφ + sin θ cos θuθ + sin2 θur)(sin θ∂φvφ + sin θ cos θvθ + sin2 θvr)

+
2

sin2 θ
(
1

2
(∂φuθ + sin θ∂θuφ)− cos θuφ)(

1

2
(∂φvθ + sin θ∂θvφ)− cos θvφ)

+ (∂θuθ + ur)(∂θvθ + vr)

)
=

2λ̃

λ̃+ 2

1

R2

(
1

sin θ
(∂φuφ + cos θuθ + sin θur) + ∂θuθ + ur

)
(

1

sin θ
(∂φvφ + cos θvθ + sin θvr) + ∂θvθ + vr

)
+ 2

1

R2

(
1

sin2 θ
(∂φuφ + cos θuθ + sin θur)(∂φvφ + cos θvθ + sin θvr)

+
1

2 sin2 θ
(∂φuθ + sin θ∂θuφ − 2 cos θuφ)(∂φvθ + sin θ∂θvφ − 2 cos θvφ) + (∂θuθ + ur)(∂θvθ + vr)

)
.

The insertion of the above expression for C̃ into (3.23) gives the equations of the spherical membrane
shell. They read: find {(uφ, uθ, ur)} ∈ C([0, T ];VM (ω)), satisfying the system∫ d1

0

∫ d2

0

((
2λ̃

λ̃+ 2
+

4α2

(λ̃+ 2)
(
β(λ̃+ 2) + α2

)) 1

R2

(
1

sin θ
(∂φuφ + cos θuθ + sin θur) + ∂θuθ + ur

)
(

1

sin θ
(∂φvφ + cos θvθ + sin θvr) + ∂θvθ + vr

)
+ 2

1

R2

(
1

sin2 θ
(∂φuφ + cos θuθ + sin θur)(∂φvφ + cos θvθ + sin θvr)

+
1

2 sin2 θ
(∂φuθ + sin θ∂θuφ − 2 cos θuφ)(∂φvθ + sin θ∂θvφ − 2 cos θvφ)

+ (∂θuθ + ur)(∂θvθ + vr)

))
R2 sin θdφdθ

=

∫ d1

0

∫ d2

0
(((P+)φ + (P−)φ)vφ + ((P+)θ + (P−)θ)vθ + ((P+)r + (P−)r)vr)R

2 sin θdφdθ,

(vφ, vθ, vr) ∈ VM (ω).

Then
∫ 1/2
−1/2 p

0dr is calculated from (3.22) and the fluctuation of the pressure across the thickness can

be calculated from (3.25).

Remark 20. In the case of the whole sphere we are not in the elliptic membrane case since the
boundary conditions are different. However if we assume that the body is loaded radially (i.e. P±, V
are functions of time only) we can search for the radial solution of the three-dimensional problem
(3.16) (i.e. uφ = uθ = 0 and ur is independent of φ and θ). The asymptotic analysis is based on the
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a priori estimates used in Theorem 12. In the case of the whole sphere and radial solutions, a simple
calculation gives

∥γε(v)∥2L2(Ω;R3×3) =

∫ 2π

0

∫ π

0

∫ 1/2

−1/2

(
(R sin2 θ − εz3)

4v23 + (R− εz3)
2v23 +

1

ε2
∂3v3(z3)

2

)
dz3dθdφ

≥
∫ 2π

0

∫ π

0

∫ 1/2

−1/2

(
R2/4v23 +

1

ε2
∂3v3(z3)

2

)
dz3dθdφ ≥ C2∥v3∥2H1(Ω),

for R ≥ ε and 1 ≫ ε. Then the subsequent analysis follows as above and the limit model in this case
can be obtained by specialization of the above equations for spherical geometry.

Thus for loading depending only on time for the solution of the shell problem we obtain the
following relation for ur and p0:

3λ̃+ 2

λ̃+ 2
4ur − 2R

2α

λ̃+ 2

∫ 1/2

−1/2
p0dr = ((P+)r + (P−)r)R

2. (A.21)

d

dt

∫ 1/2

−1/2

(
β +

α2

λ̃+ 2

)
p0qR2dr + 2R

2α

λ̃+ 2

∫ 1/2

−1/2
∂turqdr +R2

∫ 1/2

−1/2

∂p0

∂r

∂q

∂r
dr =

V (q(−1/2)− q(1/2))R2 in D′(0, T ), q ∈ H1(−1/2, 1/2),

p0 = 0 at t = 0.

(A.22)

From (A.22) for constant test functions we obtain(
β +

α2

λ̃+ 2

)
∂t

∫ 1/2

−1/2
p0R2dr + 2R

2α

λ̃+ 2
∂tur = 0.

Inserting ur from(A.21), after some calculations, we obtain

∂t

∫ 1/2

−1/2
p0 = − Rα

β(3λ̃+ 2) + α2 3λ̃+6
λ̃+2

∂t((P+)r + (P−)r). (A.23)

After partial integration in (A.22), we obtain(
β +

α2

λ̃+ 2

)
∂tp

0R2 + 2R
2α

λ̃+ 2
∂tur −R2∂rrp

0 = 0,

∂rp
0|r=±1/2 = V,

p0 = 0 at t = 0.

Here we calculate ur from (A.21) with ∂t
∫ 1/2
−1/2 p

0dr replaced using (A.23) and obtain the boundary

value problem for p0(
β +

α2

λ̃+ 2

)
∂tp

0 +R
α(β(λ̃+ 2) + α2)

β(3λ̃+ 2)(λ̃+ 2) + α2(3λ̃+ 6)
∂t((P+)r + (P−)r)− ∂rrp

0 = 0,

∂rp
0|r=±1/2 = V,

p0 = 0 at t = 0.

This equation has the same structure as the equation in [31] for spherical poroelastic membrane,
however the coefficients are obviously not the same since in [31] there are no inverse Biot’s coefficient
β and the effective stress coefficient α. In the constitutive law (2.6) Taber takes α = 1 and in (2.8)
β seems to be 1 as well. Hence, our consideration establish rigorously the results from [31].
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