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Abstract. The reduced-particle model is the central element for the systematic

derivation of the gyrokinetic Vlasov-Maxwell equations from first principles. Coupled

to the fields inside the gyrokinetic field-particle Lagrangian, the reduced-particle model

defines polarization and magnetization effects appearing in the gyrokinetic Maxwell

equations. It is also used for the reconstruction of the gyrokinetic Vlasov equation

from the particle characteristics. Various representations of reduced-particle models

are available according to the choice of the gyrokinetic phase space coordinates. In this

paper, the Hamiltonian representation of the reduced particle dynamics at an order

suitable for the implementation in particle-in-cell simulations is explicitly derived from

the general reduction procedure. The second-order (with respect to the fluctuating

electromagnetic fields), full Finite Larmor Radius (FLR) Hamiltonian gyrokinetic

particle model as well as the second-order model suitable specifically for the long-

wavelength approximation (i.e., containing up to the second-order FLR corrections),

are derived and compared to the model recently implemented in the particle-in-cell

code ORB5. We show that the same long-wavelength approximate equations can also

be derived by taking the proper limit of the full FLR model.
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1. Introduction

A magnetized plasma represents a complex system with multi-scale dynamics in both

time and space, which is a challenge for numerical implementation. For several decades

the gyrokinetic dynamical reduction [1], [2], [3] has been of interest as one of the most

powerful tools to study this multi-scale problem both numerically and analytically (see

for example [4],[5]).

One of the main challenges for a systematic derivation of the gyrokinetic theory

comes from the fact that the general derivation [3] includes several groups of small

parameters. The first group is connected to the relative amplitude of the background

inhomogeneities, while the second group originates from the ratio between the amplitude

of fluctuating electromagnetic fields and background quantities. The full gyrokinetic

derivation considers both kinds of small parameters of the same order, which makes

not only the derivation of the final model but also its numerical implementation rather

challenging.

Nowadays, a simplified ordering, which allows one to transfer corrections from the

background inhomogeneities at the next higher order in perturbation theory, is widely

used for the derivation of models implemented in gyrokinetic codes. In particular, the

Vlasov-Maxwell reduced models with linearised polarisation and magnetisation are of

great interest.

From the perspective of the approximations performed on the electromagnetic field

fluctuations, models for global codes (i.e., ORB5 [6] and GENE [7]) are usually derived

in the low − β approximation, meaning that the parallel component of the perturbed

magnetic field is systematically neglected, which is the framework we consider in this

article.

The gyrokinetic theory derived from the field theory formulation has a great

advantage over the direct asymptotic decomposition of the Vlasov equation first derived

in Ref. [1]. In fact, considering the coupling between fields and reduced particle

dynamics within the same mathematical framework gives access to the derivation of

self-consistently coupled gyrokinetic Vlasov-Maxwell equations.

The reduced-particle model is an essential element of this derivation. First of

all, the reduced particle dynamics affects the Maxwell equations via polarization and

magnetization terms. At the same time, it defines the gyrokinetic Vlasov equation,

which can be directly reconstructed from its characteristics. The coupling between the

reduced field and particle equations can be systematically established via a first-principle

derivation from the gyrokinetic Lagrangian [8], [9].

A systematic variational framework for gyrokinetic theory has undergone a

significant development during the last two decades, while the development of codes

started a decade earlier. For this historical reason, some of the major gyrokinetic

codes are based on the asymptotic derivation rather than on field theory. A significant

effort toward code verification started in 2014 in the framework of the European project

VeriGyro. In a recent work, [10] orderings have been identified and a general gyrokinetic
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field theory has been developed for an explicit derivation of the model implemented in

the PIC code ORB5.

This paper focusses on the detailed derivation of Hamiltonian gyrokinetic models

for the reduced particle dynamics suitable for the derivation of the gyrokinetic Vlasov-

Maxwell system. Such a derivation has been recently presented in a compact and

simplified form for the long-wavelength approximation [10]. Here, we extend this

derivation by including the full Finite Larmor Radius (FLR) effects in the second-

order Hamiltonian model. We show that the very same long-wavelength approximated

equations can be retrieved by taking the proper limit of the full FLR model.

This paper is organised as follows. In Sec. 2, we summarize the main idea of the

gyrokinetic reduction. In Sec. 3, we set up the general framework for coordinate change

and the derivation of the reduced dynamics. In Sec. 4, we present the derivation of

the Hamiltonian gyrokinetic models with the full series of FLR corrections and then in

Sec. 5, in the long-wavelength approximation. Finally, in Sec. 6, we give expressions

for the corresponding characteristics and provide the corresponding gyrokinetic Vlasov

equations. The Vlasov-Maxwell gyrokinetic models, derived from the full FLR second-

order gyrokinetic particle model and the model truncated up to the second-order FLR

corrections suitable for the long-wavelength approximation are currently implemented

in the PIC code ORB5 [6].

2. Gyrokinetic dynamical reduction in a nutshell

In magnetised plasmas, the presence of a strong magnetic field induces a separation of

the scales of motion. The particle motion is decomposed into a fast rotation around

the magnetic field lines and a slow drift motion in the direction perpendicular to the

magnetic field. The scale of gyromotion is set by the cyclotron frequency Ω = eB/mc,

where e and m are, respectively, the charge and mass of the particles, B is the magnetic

field amplitude and c is the speed of light. The gyromotion is described by a fast

gyroangle variable θ to which corresponds a canonically conjugated, slowly varying

magnetic moment µ. At the lowest order, it is given by

µ = mv2⊥/2B, (1)

where v⊥ is the perpendicular velocity of particle with respect to the magnetic field lines.

In slab (constant magnetic field) geometry, µ is an exact dynamical invariant. However,

magnetic curvature effects as well as the presence of electromagnetic fluctuations break

this exact invariance. The gyrokinetic dynamical reduction uses the fact that, averaged

over long times, the magnetic moment is conserved, i.e., 〈µ̇〉t = 0.

The goal of the gyrokinetic dynamical reduction consists in building up a new

set of phase space variables, such that the θ dependence is completely uncoupled and

µ has a trivial dynamics, i.e., µ̇ = 0. Therefore, the reduced particle dynamics on

the 4 + 1 dimensional phase space with variables (X, p, µ), where X represents the

reduced position, p is a scalar momentum coordinate and the new magnetic moment µ
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is constant. This change of coordinates is constructed via a perturbative series of near-

identity phase space transformations, i.e., these transformations are invertible at each

step of the perturbative procedure. The reduced position X has a simple geometrical

meaning: It represents an instantaneous center of the fast particle rotation around the

magnetic field line. Therefore, from the space coordinate point of view the gyrokinetic

transformation is a shift between the initial particle coordinate x and the instantaneous

center of its rotation X. The difference between both positions is the polarization

displacement ρ, the derivation of which will be discussed later. Performing numerical

simulations on the 4 + 1 dimensional phase space instead of the 6 dimensional one and

also removal of the fastest time scales enable the drastic reduction of the numerical cost.

The dynamical reduction can be organized in one or two steps. In the framework

of the one-step procedure, the contributions from the background geometry non-

uniformities and electromagnetic fluctuations to the breaking of the magnetic moment

conservation are taken into account simultaneously. The two-step procedure, composed

by the guiding-center reduction and the subsequent gyrocenter reduction, allows one

to treat those effects separately, which may have some advantages for making a direct

link between the coordinate transformation and the polarization effects induced on the

reduced particle and field dynamics. Here, we consider the two-step procedure in order

to make a clear separation between the polarization contributions associated with each

of these transformations at the lowest order.

In the two-step reduction procedure, a small parameter is associated with each

transformation: These parameters are for the guiding-center ǫB = ρth/LB, where ρth is

the thermal Larmor radius of particle and LB = |∇B/B|−1 sets the spatial scale for

background magnetic field variation, and for the gyrocenter, ǫδ = (k⊥ρth) eφ1/T ≡

ǫ⊥eφ1/T . The dimensionless parameter ǫ⊥ allows one to distinguish between the

gyrokinetic theory with ǫ⊥ ∼ O(1) and the drift-kinetic theory with ǫ⊥ ≪ 1, known also

as the long-wavelength approximation when only the second-order O(ǫ2⊥) corrections

are included. Following the gyrokinetic ordering relevant for numerical implementation,

we consider ǫB ≪ ǫδ, i.e., all the background gradient effects are of higher order with

respect to the amplitude of the fluctuations.

In what concerns the FLR or the ǫ⊥- ordering, we consider models derived in the

limit with full FLR corrections as well as models truncated up to the second-order in

ǫ⊥.

As a perturbative theory, each of the coordinate transformations, the guiding-center

and the gyrocenter, represents an infinite series of corrections ordered according to the

corresponding small parameter, ǫB or ǫδ. In particular, for the particle position x, this

means that the exact gyrokinetic coordinate transformation contains an infinite series

of polarization displacements. Roughly speaking, the position of the particle x as a

function of the reduced gyrocenter position X is given by

x = X+ ρ0(X, µ, θ) + ρ1(X, µ, θ),

where we have introduced two polarization displacements: ρ0 corresponding to the
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lowest order guiding-center reduction and ρ1 corresponding to the lowest order of the

subsequent gyrocenter reduction.

The lowest order guiding-center displacement (in the guiding-center coordinates) is

given by:

ρ0 ≡
mc

e

√
2µ

mB
ρ̂ ≡ ρ0ρ̂ ∼ O(ǫ0B), (2)

where ρ̂ is the unit vector in the plane perpendicular to the background magnetic field;

the magnitude of magnetic field B is evaluated at the reduced (guiding-center) position

X. The general gyrokinetic derivation comes up with a result that all the following

guiding-center polarization displacements are at least of order O(ǫB) or higher (see, for

example, Eq. (36) in [11] or Eqs. (63) and (66) in [12]), these corrections are neglected

in the numerical implementation. The lowest order gyrocenter displacement is given by

ρ1 = −ǫδ
mc2

eB2
∇⊥

(
φ1(X)−

pz
mc

A1‖(X)
)
∼ O(ǫδ)O(ǫ⊥), (3)

where pz is the gyrocenter scalar canonical momentum coordinate related to the parallel

guiding-center momentum and will be defined in Eq. (6); φ1 represents the first order

perturbative electrostatic potential and A1‖ the first order electromagnetic parallel

perturbative potential.

In this work we consider the gyrokinetic coordinate transformation together with

the derivation of the corresponding reduced Hamiltonian models in two cases: First, in

Sec. 4 we present the transformation containing all the FLR corrections, i.e., from the

point of view of functional dependencies, containing corrections of all orders related to

the guiding-center transformation where the particle is located at x = X+ρ0. Later, in

Sec. 5 we explicit this change of coordinates at the lowest FLR order, which corresponds

from the physical point of view to the long-wavelength approximation, expressed in

Fourier space with ǫ⊥ ≡ k⊥ρth ≪ 1.

3. Phase-space perturbative procedure

In gyrokinetic theory, the definition of the reduced phase-space coordinates is done

within a common perturbative procedure together with the derivation of the reduced

dynamics. At the first step, the guiding-center dynamical reduction starts from the

local particle coordinates (x,v). To access those coordinates, one needs to define two

bases of vectors: the static one and the dynamic one. The static basis is related to the

background magnetic field line and the dynamic one rotates with the particle. As the

static basis we choose the natural Frenet triad : the unit magnetic field vector b̂ = B/B,

the normalized curvature vector

b̂1 = b̂ ·∇b̂/|b̂ ·∇b̂|,

and

b̂2 = b̂× b̂1.
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We notice that in the case of a uniform background magnetic field it is possible to choose

a Cartesian frame as a static basis: b̂ = êz, b̂1 = êx and b̂2 = êy. Then, the dynamic

basis (ρ̂, b̂, ⊥̂) is defined from the static one as follows:

ρ̂ = b̂1 cos θ − b̂2 sin θ, ⊥̂ = −b̂1 sin θ − b̂2 cos θ, (4)

where ρ̂ is used for definition of the guiding-center displacement ρ0 in Eq. (2) such that

the local particle velocity is decomposed in the following way:

v = v‖b̂+

√
2µB

m
⊥̂.

At the lowest order, the guiding-center transformation is defined as follows: the

position of the particle is decomposed as x = X+ρ0(X, µ, θ), withX the reduced particle

(i.e., guiding-center) position and ρ0 the lowest order guiding-center polarization shift;

the scalar momentum coordinate is the parallel kinetic momentum p‖ = mv‖; µ is the

lowest order magnetic moment given by Eq. (1) and θ is the fast rotation angle.

We consider the guiding-center phase space Lagrangian [2], [13] in the
(
X, p‖, µ, θ

)

coordinates as a starting point of the derivation:

Lgc

(
X, p‖, µ, θ

)
=
e

c
A∗ · Ẋ+

mc

e
µ θ̇ −Hgc, (5)

where the symplectic part contains the modified magnetic potential:

A∗ = A+
c

e
p‖b̂.

The guiding-center Hamiltonian is given by:

Hgc =
p2‖
2m

+ µB.

For the second step, i.e., the gyrocenter reduction, we consider the first order

fluctuating time-dependent electromagnetic potential fields φ1 and A1‖ both of order

O(ǫδ). Following the approximations currently performed on global code models, the

perpendicular part of perturbed magnetic potential is omitted here. Moreover, as we

have already stated in the introduction, the low-β approximation is assumed in our

derivation, which corresponds to the choice of considering the perpendicular component

of the perturbed magnetic field only: B1 = b̂ × ∇A1‖. These approximations are

implemented in the electromagnetic global particle-in-cell code ORB5 as well as in the

global version of the Eulerian code GENE.

To account for the time-dependence of the perturbed electromagnetic potentials

A1‖ and φ1, we extend the phase space from 6 to 8 dimensions. Therefore, formally the

gyrocenter dynamical reduction is performed on the 8-dimensional phase space where

(t, w) are canonically conjugate: t corresponds to time and w to energy. This extension

of the phase space is used to make the dynamical system autonomous so as to perform

the coordinate change in a more consistent way (see for example [14]). From the physical

point of view, the relevant reduced dynamics is still performed on the 4 dimensional part

with coordinates (X, pz), where

pz = mv‖ + ǫδ
e

c
A1‖(X+ ρ0), (6)
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is the guiding-center canonical momentum, and we notice that the perturbed part of

magnetic potential A1‖ enters in the definition of one of the phase space variables.

Consequently, the perturbed guiding-center phase-space Lagrangian and Hamiltonian

are [3, 10] :

Lpert (X, pz, µ, θ; t, w) =
(
e

c
A+ pzb̂

)
· Ẋ+

mc

e
µθ̇

− Hpert (X, pz, µ, θ; t, w) , (7)

Hpert (X, pz, µ, θ; t, w) =
p2z
2m

+ µB + ǫδeφ1(X+ ρ0)− ǫδ
e pz
mc

A1‖(X+ ρ0)

+ ǫ2δ
1

2m

(
e

c

)2

A2
1‖(X+ ρ0) + w. (8)

All the background quantities A, b̂ and B are evaluated in the reduced guiding-center

position X, while the perturbative electromagnetic potentials A1‖ and φ1 are evaluated

in the reduced particle position X+ ρ0, i.e., the perturbed electromagnetic potentials

depend on the gyroangle through the displacement ρ0. The first two terms of the right

hand side of Eq. (7) represent the non-perturbed symplectic part and Hpert, given by

Eq. (8) is the perturbed Hamiltonian of the system.

This choice of phase space coordinates corresponds to the Hamiltonian [3], or pz-,

[15] representation of the perturbed guiding-center dynamics. It gives the possibility of

keeping the symplectic part of the phase-space Lagrangian free from all electromagnetic

perturbations and therefore, gyroangle-independent. The gyroangle-dependent terms

are transferred into the expression for the perturbed Hamiltonian Hpert. For this

reason, the corresponding representation of the reduced dynamics is called ”Hamiltonian

representation”. This maneuver has one significant advantage while constructing

the phase-space dynamical reduction procedure for the phase-space Lagrangian: the

(canonical) transformations have to be applied only on the Hamiltonian part of the

phase space Lagrangian, since the corresponding symplectic part is already free of any

θ dependence.

The Hamiltonian representation is the most common choice for the models

implemented in particle-in-cell simulations since it avoids the appearance of the

inductive electric field (i.e., the explicit time-derivative of the perturbative magnetic

potential A1‖) in the particle characteristics given in Sec. 6. For example, a

control-variate scheme implemented in PIC code ORB5 [16] is using the Hamiltonian

representation.

In the next section we show how to eliminate the gyroangle-dependence from the

perturbed guiding-center phase-space Lagrangian induced by the second-order ∼ O(ǫ2δ)

perturbed electromagnetic potentials. To that purpose we build a Lie-transform near-

identity transformation and move from the guiding-center to the gyrocenter variables

by applying it systematically to the phase space variables and at the same time to the

perturbed Hamiltonian Hpert, given by Eq. (8). Our goal is to clarify the connection

between the displacements ρ0 and ρ1, and to eliminate the gyroangle-dependence from

the reduced dynamics.
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4. Full FLR Hamiltonian model

In this section we build a near-identity phase-space transformation aiming to eliminate

the gyroangle-dependence from the perturbed phase-space Lagrangian (7). Since within

the pz- representation the symplectic part of the phase-space Lagrangian does not

contain any θ-dependence, the gyrocenter phase-space transformation will only modify

its corresponding Hamiltonian part. For the near-identity phase-space transformations

we use Lie transforms which have several advantages, among them, they are canonical

transformations, meaning that they do not affect the expression of the Poisson backet,

only the expression of the Hamiltonian.

To define this technique, we need first of all, a Poisson bracket for the guiding-center

dynamics, which can be derived from the symplectic part of the perturbed Lagrangian

given by Eq. (7), which coincides with the symplectic part of the unperturbed one

defined by Eq. (5) (see [13] for more details):

{F,G}gc =
1

ǫ

e

mc

(
∂F

∂θ

∂G

∂µ
−
∂F

∂µ

∂G

∂θ

)
+

B∗

B∗
‖

·

(
∇F

∂G

∂pz
−
∂F

∂pz
∇G

)

− ǫ
cb̂

eB∗
‖

· (∇F ×∇G)−
∂F

∂w

∂G

∂t
+
∂F

∂t

∂G

∂w
, (9)

where B∗ = B + e
c
pz∇× b̂ and B∗

‖ = B∗ · b̂. For physical reasons, we know that there

is a time scale separation among the motion described by the different terms of the

Poisson bracket. In order to exploit this separation we order the first three terms of the

bracket following the formal ordering introduced by Newcomb [17], ǫ = e−1: the first

term ∝ e is related to the fast rotation around the magnetic field line (fastest scale of

motion), the second term ∝ e0 represents the parallel motion, and the third term ∝ e−1

is related to the slow drifts in the perpendicular direction. The last term in the bracket

corresponds to the extension of the phase space to 8 dimensions (autonomization of the

system). In the following calculations we fix the small parameter ǫ = ǫδ, so that the

Poisson bracket (9) is separated in three brackets according to the scale of motion:

{F,G}gc =
1

ǫδ
{F,G}−1 + {F,G}0 + ǫδ {F,G}1 −

∂F

∂w

∂G

∂t
+
∂F

∂t

∂G

∂w
, (10)

where

{F,G}−1 =
e

mc

(
∂F

∂θ

∂G

∂µ
−
∂F

∂µ

∂G

∂θ

)
, (11)

{F,G}0 =
B∗

B∗
‖

·

(
∇F

∂G

∂pz
−
∂F

∂pz
∇G

)
, (12)

{F,G}1 =
cb̂

eB∗
‖

· (∇F ×∇G) . (13)

Following the pz-representation of the Lagrangian defined in Eq. (7), we rewrite the

perturbed Hamiltonian Hpert, given by Eq. (8) as follows:

Hpert = H0 + ǫδ e ψ1(X+ ρ0, pz) + ǫ2δ
1

2m

(
e

c

)2

A2
1‖(X+ ρ0), (14)
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where the unperturbed guiding-center Hamiltonian now writes as:

H0 =
p2z
2m

+ µB + w,

and

ψ1(X+ ρ0, pz) = φ1(X+ ρ0)−
pz
mc

A1‖(X+ ρ0),

is the linear perturbed gyrocenter potential. Note that the guiding-center displacement

ρ0 given by Eq. (2) is depending on the phase-space coordinates (X, µ, θ). To make

formulas more compact we omit writing the functional dependencies of the displacement

ρ0 explicitly when this is unambiguous. We notice that the spatial dependence of ρ0

can be omitted since |∇ρ0| ∼ O(ǫB).

4.1. Gyrocenter phase-space coordinate transformation

A Lie transform generated by a scalar differentiable function S is defined by its action

on observables G as:

Ḡ = e−ε£SG = G− ε {S,G}+
1

2
ε2 {S, {S,G}}+O(ε3), (15)

where ε is a small parameter of a given problem and {·, ·} is a Poisson bracket. To

this change of observables corresponds an invertible change of coordinates by the scalar

invariance: Ḡ(z̄) = G(z), where the new coordinates are given by

z̄ = eε£Sz,

where we have used the fundamental property of a Lie transform ϕ(e−ε£SG) =

e−ε£Sϕ(G) for any scalar function ϕ. Another fundamental property is that Lie

transforms are canonical changes of coordinates, in the sense that the expression of

the Poisson bracket in the new variables is exactly the same as the one in the old

variables. This comes from the property {e−ε£SF, e−ε£SF} = e−ε£S{F,G}.

The full gyrokinetic coordinate transformation represents an infinite series of near-

identity phase-space transformations, aiming to remove the gyroangle dependence from

the reduced dynamics at all orders. The key element of the reduction procedure is the

identification of a generating function S, which plays a double role: first, defining new

phase space coordinates and second, the reduced dynamics. The generating function

S is constructed from a perturbative series. Keeping the chosen ordering in mind, we

are using the Lie transform given by Eq. (15) with the generating function at the first

order S, and the Poisson bracket given by Eq. (9), we define the gyrocenter phase-space

coordinates as:

X̄ = eǫδ£SX = X+ ǫδ{S,X}gc +O(ǫ2δ), (16)

p̄z = eǫδ£Spz = pz + ǫδ{S, pz}gc +O(ǫ2δ), (17)

µ̄ = eǫδ£Sµ = µ+ ǫδ{S, µ}gc +O(ǫ2δ), (18)

θ̄ = eǫδ£Sθ = θ + ǫδ{S, θ}gc +O(ǫ2δ). (19)
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Therefore, in principle, there are two sets of coordinates, the guiding-center ones

(X, pz, µ, θ), and the gyrocenter ones (X̄, p̄z, µ̄, θ̄). Since, after performing the Lie

transforms, it is clear that the coordinates are the gyrocenter ones, we will omit the

bars over the new variables where it is not ambiguous, and denote the gyrocenter phase

space coordinates as (X, pz, µ, θ) in what follows.

The gyrocenter displacement is defined from the Lie transform of the position of

the particle expressed in the guiding-center coordinates:

e−ǫδ£S(X+ ρ0) = X+ ρ0 + ρ1, (20)

where

ρ1 = −ǫδ{S,X+ ρ0}gc, (21)

at the first order. An explicit calculation of the polarization displacement ρ1 requires

the knowledge of the generating function S, which is also necessary to get the expression

for the reduced Hamiltonian and therefore to derive the reduced dynamics. This

emphasizes the essential link between the definition of the new phase-space coordinates

and derivation of the reduced gyroangle-independent dynamics.

We derive the expression for the reduced Hamiltonian together with the expression

for the lowest order generating function S in the following section.

4.2. Full FLR gyrocenter dynamics

In order to accommodate various orderings and small parameters present in the problem,

and in particular to eliminate the singularity in ǫδ appearing in the first term of the

Poisson bracket (10), we expand the generating function S = ǫδS1+ǫ
2
δS2+O(ǫ3δ). Taking

Eqns. (10,11,12,13) into account, the corresponding Lie transform up to order ǫ3δ is given

by:

e−ǫδ£S =
(
1− ǫ2δ {S1, .}gc +

1

2
ǫ4δ
{
S1, {S1, .}gc

}
gc

)(
1− ǫ3δ {S2, .}gc

)
+O(ǫ3δ),

=
(
1− ǫδ{S1, .}−1 − ǫ2δ {S1, .}0 +

1

2
ǫ2δ
{
S1, {S1, .}−1

}
−1

)
×

(
1− ǫ2δ {S2, .}−1

)
+O(ǫ3δ) = 1− ǫδ {S1, .}−1

− ǫ2δ {S1, .}0 +
1

2
ǫ2δ
{
S1, {S1, .}−1

}
−1

− ǫ2δ {S2, .}−1 +O(ǫ3δ). (22)

The purpose of the Lie transform is to eliminate the gyroangle dependence from the

reduced dynamics up to the second-order in ǫδ. As already mentioned, since the Poisson

bracket (9) is gyroangle-independent, we have to eliminate the gyroangle dependence

only from the perturbed Hamiltonian (14).

Each function on the gyrocenter phase space evaluated at the position X+ρ0, and

therefore gyroangle dependent, can be decomposed in its gyoaveraged and fluctuating

parts:

Ψ(X+ ρ0, pz, µ, θ) = 〈Ψ(X+ ρ0, pz, µ, θ)〉+ Ψ̃(X+ ρ0, pz, µ, θ),
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where

〈Ψ(X+ ρ0, pz, µ, θ)〉 =
1

2π

∫ 2π

0
Ψ(X+ ρ0, pz, µ, θ)dθ.

First, we apply the Lie transform (22) to the perturbed Hamiltonian (14), and

identify a fluctuating and a gyroaveraged part for each term:

Hgy = e−ǫδ£SHpert = H0 + eǫδ 〈ψ1(X+ ρ0, pz)〉+ eǫδψ̃1(X+ ρ0, pz)

+ ǫ2δ
1

2m

(
e

c

)2 〈
A1‖(X+ ρ0)

2
〉
+ ǫ2δ

1

2m

(
e

c

)2

Ã2
1‖(X+ ρ0)

− ǫδ {S1, H0}−1 − ǫ2δ {S1, H0}0 +
1

2
ǫ2δ
{
S1, {S1, H0}−1

}
−1

− ǫ2δ{S1, eψ1 (X+ ρ0, pz)}−1 − ǫ2δ {S2, H0}−1 +O(ǫ3δ).

Second, we identify order by order fluctuating contributions, which should be removed

by a well-chosen generating function:

At O(ǫδ), {S1, H0}−1 = eψ̃1 (X+ ρ0, pz) , (23)

At O(ǫ2δ), {S2, H0}−1 =
1

2m

(
e

c

)2

Ã2
1‖ (X+ ρ0)− {S1, H0}0 (24)

−
︷ ︸
{S1, eψ1 (X+ ρ0, pz)}−1+

1

2

︷ ︸{
S1, {S1, H0}−1

}
−1
.

The expression for the lowest order generating function S1 is obtained from Eq. (23),

which represents a condition that the gyroangle-dependent part of linear electromagnetic

perturbation ψ̃1 is removed from the lowest order gyrocenter Hamiltonian. Since H0 does

not depend on θ, the equation determining S1 reduces to:

eB

mc

∂S1

∂θ
= eψ̃1 (X+ ρ0, pz) . (25)

Therefore, the lowest order generating function writes:

S1 =
e

Ω

∫
dθ ψ̃1 (X+ ρ0, pz) . (26)

We recover the conventional expression for the generating function, used for the

gyrokinetic calculations in [18], [3],[8].

We are now considering Eq. (24). Since S2 removes the fluctuating parts from

the second-order terms in the Hamiltonian, we only need to evaluate the corresponding

gyroaveraged contributions to the reduced Hamiltonian. Taking into account Eq. (25)

which indicates that S1 is a purely fluctuating function, the second term in Eq. (24),

namely {S1, H0}0, is purely fluctuating and will not affect the expression of the second

order reduced Hamiltonian. For similar reasons, the third term possesses the following

property: 〈{S1, ψ1}−1〉 =
〈
{S1, ψ̃1}−1

〉
, i.e., we obtain a partial cancellation of the

second-order terms:
1

2
〈{S1, {S1, H0}−1}−1〉 − e 〈{S1, ψ1(X+ ρ0, pz)}−1〉

= −
e

2
〈{S1, ψ1(X+ ρ0, pz)}−1〉 .
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The next order correction to the generating function can be obtained from Eq. (24)

using the expression for the generating function S1 , which we have now determined in

Eq. (26):

eB

mc

∂S2

∂θ
=

1

2m

(
e

c

)2

Ã2
1‖ −

B∗

B∗
‖

·

(
∇S1

pz
m

−
∂S1

∂pz
µ∇B

)
(27)

−
e2

2mc

︷ ︸(
∂S1

∂θ

∂ψ̃1

∂µ
−
∂S1

∂µ

∂ψ̃1

∂θ

)
−
e2

mc

∂S1

∂θ

∂〈ψ1〉

∂µ
.

Here we do not explicitly resolve Eq. (27), we just use the fact that S2 removes all the

fluctuating parts at the order O(ǫ2δ). We notice that the perturbative procedure can be

expanded to higher orders.

Finally, we get the expression for the second-order Hamiltonian containing the FLR

corrections (i.e., with respect to the polarization displacement ρ0) at all orders:

Hgy =
p2z
2m

+ µB + w + ǫδ (e 〈φ1(X+ ρ0)〉

−
e

mc
ǫδ pz

〈
A1‖(X+ ρ0)

〉)
+ ǫ2δ

1

2m

(
e

c

)2 〈
A1‖(X+ ρ0)

2
〉

− ǫ2δ
e

2

〈
{S1, ψ̃1(X+ ρ0, pz)}−1

〉
,

where S1 is given by Eq. (26). Rewriting the expression for the lowest order Poisson

bracket:

{F,G}−1 =
e

mc

∂

∂θ

(
F
∂G

∂µ

)
−

e

mc

∂

∂µ

(
F
∂G

∂θ

)
,

we have

{S1, ψ̃1(X+ ρ0, pz)}−1 =
e

mc

∂

∂µ

(
ψ̃1(X+ ρ0, pz)

∂S1

∂θ

)

−
e

mc

∂

∂θ

(
ψ̃1(X+ ρ0, pz)

∂S1

∂µ

)
,

and taking into account that ∂θS1 =
e
Ω
ψ̃1(X+ ρ0, pz), we get:

〈
{S1, ψ̃1(X+ ρ0, pz)}−1

〉
=

e

B
∂µ
〈
ψ̃1 (X+ ρ0, pz)

2
〉
. (28)

Therefore, the reduced Hamiltonian becomes:

Hgy =
p2z
2m

+ µB + w + ǫδ (e 〈φ1(X+ ρ0)〉

−
e

mc
pz

〈
A1‖(X+ ρ0)

〉)
+ ǫ2δ

1

2m

(
e

c

)2 〈
A1‖(X+ ρ0)

2
〉

− ǫ2δ
e2

2B
∂µ
〈
ψ̃1 (X+ ρ0, pz)

2
〉
. (29)
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For further convenience, we decompose the expression for the Hamiltonian as

Hgy = H0 + ǫδH1 + ǫ2δH2 with:

H0 =
p2z
2m

+ µB + w (30)

H1 = e 〈φ1(X+ ρ0)〉 −
e

mc
pz

〈
A1‖(X+ ρ0)

〉
(31)

H2 =
1

2m

(
e

c

)2 〈
A1‖(X+ ρ0)

2
〉
−

e2

2B
∂µ
〈
ψ̃1 (X+ ρ0, pz)

2
〉
, (32)

where H0 is the non-perturbed guiding-center Hamiltonian, H1 is the first order

gyrocenter Hamiltonian and H2 is the second-order gyrocenter Hamiltonian, which

contains the FLR corrections at all orders. This result corresponds to the expression

obtained in a slab magnetic geometry [19].

We recall that since the expression for the generating function S has been defined

within the dynamical reduction procedure for the Hamiltonian, we have obtained the

explicit expression for the second-order Hamiltonian without writing explicitly the

expression for the new (i.e., gyrocenter) phase space coordinates. We are now completing

the dynamical reduction procedure by providing an explicit expression for the gyrocenter

phase space coordinates.

4.3. Explicit gyrocenter phase space coordinate transformation

Using the expression for the generating function S1 given by Eq. (26) and the guiding-

center Poisson bracket given by Eq. (9), we explicitly evaluate the expression for the

corresponding lowest order gyrocenter coordinate transformation given by Eqs. (16-19),

i.e., we express the leading order modifications of the gyrocenter coordinates (X̄, p̄z, µ̄, θ̄)

as functions of the guiding-center coordinates (X, pz, µ, θ):

X̄ = X− ǫ2δ
B∗

B∗
‖B

∫
dθÃ1‖(X+ ρ0) +O(ǫ3δ),

p̄z = pz + ǫ2δ
e

Ω

∫
dθ

B∗

B∗
‖B

· ∇ψ̃1(X+ ρ0, pz) +O(ǫ3δ),

µ̄ = µ+ ǫδ
e

B
ψ̃1(X+ ρ0, pz) +O(ǫ2δ),

θ̄ = θ − ǫδ
e

B

∫
dθ
∂ψ̃1

∂µ
(X+ ρ0, pz) +O(ǫ2δ).

We notice that the modifications for X̄ and p̄z are of order ǫ
2
δ , whereas the modifications

for µ̄ and θ̄ are of order ǫδ. Because of the modification of µ̄ and θ̄ at the order ǫδ, the

gyrocenter displacement is of order ǫδ.

Concerning the coordinate change, we recall that there are two important sets

of coordinates in the two-step gyrokinetic reduction, the guiding-center coordinates

(X, pz, µ, θ) and the gyrocenter ones (X̄, p̄z, µ̄, θ̄) which we have also denoted (X, pz, µ, θ)

after Lie transforming the Hamiltonian. The position of the particle is x = X + ρ0 in

the guiding-center coordinates and x = X + ρ0 + ρ1 in the gyrocenter coordinates
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(which, for clarity, should be denoted x = X̄ + ρ̄0 + ρ̄1). Therefore, in the gyrocenter

coordinates ρ0+ρ1 is the difference between the position of the particle and the position

of the gyrocenter, whereas ρ0 is the difference between the position of the particle and

the guiding center in the guiding-center coordinates. It is tempting to conclude that the

gyrocenter displacement ρ1 is the distance between the guiding center and the gyrocenter.

However this is incorrect. We have seen above that the gyrocenter displacement is of

order ǫδ whereas the distance between the guiding center and the gyrocenter is of order

ǫ2δ . The way to solve the apparent contradiction is to carefully evaluate the system in

which the positions are expressed. The expressions of ρ0 in the guiding center and in

the gyrocenter coordinates are different, even at the leading order: At the leading order,

the difference between these two expressions is given by

ρ0(X, µ, θ)− ρ0(X̄, µ̄, θ̄) ≈ −ǫδ{S1,ρ0}−1,

where we have to distinguish both sets of coordinates since they are used in

the same equation. The shift in ρ0 by the Lie transform generates exactly the

gyrocenter displacement ρ1 at the leading order, whereas the reduced positions remain

approximately unchanged (at least at the order ǫδ).

To account for all FLR corrections, i.e., corrections related to the displacement ρ0,

in the expressions for the reduced Hamiltonian given by Eqs. (30-32) we have evaluated

the fields φ1 and A1‖ at the position X̄ + ρ0(X̄, µ̄, θ̄) instead of the particle position

x = X̄ + ρ0(X̄, µ̄, θ̄) + ρ1(X̄, µ̄, θ̄). This generates polarization and magnetization

corrections related to the displacement ρ1 into the second term of the second order

Hamiltonian H̄2 given by Eq. (32). To make it more explicit, we consider the Lie

transform of the gyrocenter potential ψ1 evaluated at the position (X+ ρ0(X, µ, θ)):

e−ǫδ£Sψ1(X+ ρ0(X, µ, θ), pz)
∣∣∣
(X̄,p̄z,µ̄,θ̄)

= ψ1(X̄+ ρ0(X̄, µ̄, θ̄) + ρ1(X̄, µ̄, θ̄), p̄z),

which is obtained from Eq. (20). The expansion of the left-hand side leads to

e−ǫδ£Sψ1(X+ ρ0, pz)
∣∣∣
(X̄,p̄z,µ̄,θ̄)

= ψ1(X̄+ ρ̄0, p̄z)− ǫδ {S1, ψ1}−1 +O(ǫ2δ),

where ρ̄0 = ρ0(X̄, µ̄, θ̄). The Taylor expansion of the right-hand side leads to , since :

ψ1(X̄+ ρ̄0 + ρ̄1, pz) = ψ1(X̄+ ρ̄0, p̄z) + ǫδρ̄1 ·∇ψ1 +O(ǫ2δ),

since ρ1 ∝ O(ǫδ). Therefore we have {S1, ψ1}−1 = −ρ1 ·∇ψ1 evaluated at X̄ + ρ̄0. In

other words, according to Eqs. (28) and (32), the polarization effects associated with

the displacement ρ1 are contained in the second order gyrocenter Hamiltonian H̄2.

5. Hamiltonian model in long-wavelength approximation

In the previous section, we have derived the gyrocenter Hamiltonian model (29)

containing up to ǫ2δ corrections. In this section we consider an additional ordering ǫ⊥ =

k⊥ρth ≪ 1 and derive the Hamiltonian model in the long-wavelength approximation,

containing up to the second-order FLR corrections, i.e., terms of order O(ǫ2⊥). Such
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a derivation has a direct interest with respect to the numerical implementation of

gyrokinetic Vlasov-Maxwell models. Indeed, from the point of view of the variational

derivation, the second-order terms in Eq. (29) will enter the gyrokinetic Maxwell

equations as the linear (i.e., of order O(ǫδ)) polarization corrections (see for example a

detailed derivation in [10]).

The gyrokinetic Vlasov-Poisson model with linearized polarization term derived in

the long-wavelength limit with ǫ⊥ = k⊥ρth ≪ 1 has been the first implemented model in

a gyrokinetic PIC code [20]. It is still widely used for the investigation of MHD modes,

and it is also suitable for studies of turbulence generated by the interaction of modes

with low toroidal numbers. As it has been shown in the latest linear electromagnetic

benchmark [21], the long-wavelength approximation implemented into the ORB5 code

allows one to treat modes with ǫ⊥ = k⊥ρth < 0.6.

From the numerical point of view, the long-wavelength approximate model,

containing up to O(ǫ2⊥) corrections is of special interest because of its consistency with

respect to the n-point gyroaverage operator approximation, implemented in ORB5. The

n-point operator is an extension of the original four-point gyroaverage proposed in [20].

The expression for the gyroaverage operator, applied to a scalar field ψ(X +

ρ0, pz, µ, θ) can be expressed in Fourier space in the following form:

(J gc
0 ψ) (X, pz, µ) =

1

2π

∫ 2π

0
ψ (X+ ρ0(X, µ, θ), pz, µ) dθ,

=
1

(2π)3

∫
ψ̂(k)J0(k⊥ρth)e

ik·Xdk,

where ψ̂ is the Fourier-transformed scalar field ψ. The last expression shows that the

action of the operator J gc
0 in Fourier space is translated into the multiplication of the

Fourier coefficients by the Bessel function J0(k⊥ρi). In order to be implementable, the

gyroaverage procedure is approximated by an average over a finite number of points

on the gyroring. In the first PIC code [20] the four-point gyroaverage was used, this

procedure is equivalent to considering the finite difference approximation of the Taylor

expansion J0(k⊥ρi) ≈ 1− (k⊥ρi)
2/4, which corresponds in real space to:

(J gc
0 ψ)(X, pz, µ) ≈ ψ(X, pz, µ) +

1

4
ρ2i∇

2
⊥ψ(X, pz, µ).

A detailed discussion is available in [22].

Recently, a full FLR solver for the Poisson equation has been implemented in ORB5

[23], [24]. Preliminary results show that the new algorithm is twice slower than the long-

wavelength solver. This is mostly due to the need for additional integration points for

the gyroaverage algorithm as it was already shown in [25].

We present two different ways to obtain the simplified Hamiltonian model,

containing up to the ǫ2⊥ terms. First of all, we perform the lowest order FLR series

truncation directly on the perturbative electromagnetic potential ψ̃1 and we keep up

to the second-order FLR terms inside the magnetic potential A1||, which enter into

the expression of the second-order O(ǫ2δ) electromagnetic potential given by Eq. (28).

Next, we are following the main steps of the gyrocenter coordinate transformation by
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introducing the FLR truncation at each step: starting with the expression for the

generating function S1, getting the corresponding gyrocenter change of coordinates and

finally the expression for the simplified Hamiltonian.

In this section, we follow the direct ǫ⊥- truncation of Eq. (28) and in Sec. 5.2 we

detail the main steps of the second derivation, in which we show that the first order

ǫ⊥-truncation of the generating function S1 is sufficient for recovering the second-order

FLR, i.e., ǫ2⊥ corrections in the Hamiltonian.

5.1. Direct full FLR model truncation

Here we evaluate the second-order, i.e., O(ǫ2⊥), FLR contributions to the second-order

Hamiltonian (32). We start by decomposing the first-order fluctuating electromagnetic

potential in the FLR series:

ψ̃1(X+ ρ0, pz) = ρ0 ·∇ψ1(X, pz) +
︷ ︸
ρ0ρ0 : ∇∇ψ1(X, pz) +O(ǫ3⊥).

To get the ǫ2⊥- contributions in the Hamiltonian, we only keep the first term, and we

calculate:

∂

∂µ

〈
ψ̃1 (X+ ρ0(µ, θ), pz)

2
〉
=

∂

∂µ

〈
|ρ0 ·∇ψ1(X, pz)|

2
〉
=

=
∂ρ20
∂µ

〈ρ̂ρ̂ : ∇ψ1(X, pz)∇ψ1(X, pz)〉 =
(
c

e

)2 m

B
|∇⊥ψ1(X, pz)|

2 ,

where we have used the definition (2), the fact that 1
2

∂ρ2
0

∂µ
= c2m

e2B
and the dyadic tensors

property 〈ρ̂ρ̂〉 = 1
2

(
b̂1b̂1 + b̂2b̂2

)
= 1

2
1⊥.

The magnetic term of the second-order is truncated up to the second FLR

correction:
〈
A1‖(X+ ρ0)

2
〉
=

〈(
A1‖(X) + ρ0 ·∇A1‖(X) +

1

2
ρ0ρ0 : ∇∇A1‖(X)

)2
〉

= A2
1‖(X) +m

(
c

e

)2 µ

B

∣∣∣∇⊥A1‖(X)
∣∣∣
2
+m

(
c

e

)2 µ

B
A1‖(X) ∇2

⊥A1‖(X).

We note that the second term is missing in the ORB5 model [10], which corresponds

to the slab geometry result obtained in [19]. Finally, truncated up to the second-order,

the FLR Hamiltonian writes:

HFLR
gy =

p2z
2m

+ µB + w + ǫδ

(
e 〈φ1(X+ ρ0)〉 −

e

mc
pz

〈
A1‖(X+ ρ0)

〉)

+ ǫ2δ

(
1

2m

(
e

c

)2

A2
1‖(X) +m

(
c

e

)2 µ

B

∣∣∣∇⊥A1‖(X)
∣∣∣
2
)

(33)

+ ǫ2δ

(
m
(
c

e

)2 µ

B
A1‖(X) ∇2

⊥A1‖(X)−
mc2

2B2

∣∣∣∣∇⊥φ1(X)−
1

mc
pz∇⊥A1‖(X)

∣∣∣∣
2
)
,

which for further convenience is separated into three parts: the unperturbed part H̄0 and

the first order contribution H̄1 are defined by Eqs. (30) and (31), while the second-order
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term is defined as:

H
FLR
2 =

1

2m

(
e

c

)2

A2
1‖(X) +m

(
c

e

)2 µ

B

∣∣∣∇⊥A1‖(X)
∣∣∣
2

(34)

+ m
(
c

e

)2 µ

B
A1‖(X) ∇2

⊥A1‖(X)−
mc2

2B2

∣∣∣∣∇⊥φ1(X)−
1

mc
pz∇⊥A1‖(X)

∣∣∣∣
2

.

5.2. Gyrocenter coordinate transformation in the long-wavelength approximation

In this section we derive the truncated Hamiltonian model (33) by performing the

gyrocenter coordinate transformation (16-19) at the lowest FLR order. To that

purpose, we only take into account the lowest order FLR correction to the generating

function S = ǫδS1 + O(ǫ2δ). Since the lowest order FLR correction to the fluctuating

electromagnetic potential is ψ̃1 (X+ ρ0, pz) = ρ0ρ̂ ·∇ψ1(X, pz), from Eq. (26) using the

property of the rotating basis vectors ⊥̂ = −
∫
dθ ρ̂ , we get:

S1 = −ǫδ
mc

B
ρ0 ⊥̂ ·∇ψ1(X).

We calculate the gyrocenter displacement ρ1 using the definition (21), taking into

account the lowest order Poisson bracket (11):

ρ1 = −ǫδ {S1,X+ ρ0}−1 = −ǫδ
e

mc

(
∂S1

∂θ

∂ρ0

∂µ
−
∂ρ0

∂θ

∂S1

∂µ

)
.

From the definition of rotating basis vectors (4), and ∂µρ
2
0 =

2mc2

e2B
, we have:

e

mc

∂S1

∂θ

∂ρ0

∂µ
=
mc2

eB2
ρ̂ρ̂ ·∇ψ1 and −

e

mc

∂ρ0

∂θ

∂S1

∂µ
=
mc2

eB2
⊥̂⊥̂ ·∇ψ1.

Using the definition of the dyadic tensor 1⊥ ≡ ρ̂ρ̂+ ⊥̂⊥̂, the first order gyrocenter

displacement in the long wavelength approximation is:

ρ1 ≈ −ǫδ
mc2

eB2
∇⊥ψ1.

At the leading order, only the gyrocenter phase-space coordinates (µ, θ) are

transformed according to the Eqs. (18,19) using:

{S1, µ}−1 =
e

mc

∂S1

∂θ
=

e

B
ρ0ρ̂ ·∇ψ1(X, pz),

{S1, θ}−1 = −
e

mc

∂S1

∂µ
=

e

B
(∂µρ0) ⊥̂ ·∇ψ1(X, pz),

where we have used some properties of the rotating basis vectors: ∂θ⊥̂ = −ρ̂ and

∂θρ̂ = ⊥̂.

Therefore, truncating the second order gyrocenter Hamiltonian (obtained by Lie

transform generated by S1 containing all the FLR corrections) up to the second order

in FLR corrections is equivalent to the second order gyrocenter Hamiltonian obtained

from the Lie transform generated by the first FLR correction of the generating function

S1.
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6. Gyrokinetic Vlasov equation

In this section we derive an expression for the gyrokinetic Vlasov equation corresponding

to the Hamiltonian characteristics according to the models obtained in Secs. 4 and 5.

The particle characteristics are calculated as follows:

Ẋ = {X, Hgy}gc =
cb̂

eB∗
‖

×∇Hgy +
∂Hgy

∂pz

B∗

B∗
‖

, (35)

ṗz = {pz, Hgy}gc = −
B∗

B∗
‖

·∇Hgy, (36)

where Hgy is the Hamiltonian chosen according to the approximation, full FLR model

(29) or truncated up to second FLR order model (33). The Poisson bracket is given by

Eq. (9). Then the corresponding Vlasov equation suitable for the δf simulations, i.e.,

including the decomposition F = F0 + ǫδF1 into the background F0 and the fluctuating

part F1 of the particle distribution function, is reconstructed from the characteristics

given by Eqs. (35) and (36) by saying that the distribution function is constant along

the characteristics:

0 =
d(F0 + ǫδF1)

dt
=
∂(F0 + ǫδF1)

∂t
+ {X, H}gc ·∇ (F0 + ǫδF1)

+ {pz, H}gc ∂pz (F0 + ǫδF1) ,

and then

∂(F0 + ǫδF1)

∂t
= −{F0 + ǫδF1, H}gc, (37)

where we have taken into account the functional dependencies of the gyrocenter

distribution function F = F (X, pz, µ) and the fact that µ is constant on the reduced

gyrocenter phase space. We assume that
{
F0, H̄0

}
gc

= 0, i.e., the background particle

distribution is time-independent; therefore there are two linear and two non-linear

terms). Following the Hamiltonian decomposition given by Eqs. (30), (31), the Vlasov

equation (37) can further be expanded as:

∂F1

∂t
= −

{
F0, H̄1

}
gc
−
{
F1, H̄0

}
gc
− ǫδ

{
F1, H̄1

}
gc
− ǫδ

{
F0, H̄2

}
gc
,

where H̄2 is the second-order Hamiltonian chosen according to the approximation, full

FLR model (32) or FLR truncated model (34). The last term refers to the evolution

of the background distribution under the second-order Hamiltonian. This term is

systematically neglected in most of global codes, but is necessary for full-f nonlinear

simulations.

7. Conclusions

We have performed a derivation of the second-order (in ǫδ) gyrocenter Hamiltonian

models in the case with full FLR corrections and then considering the long-wavelength

approximation. The long-wavelength model has been obtained in two different ways:
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by using a direct truncation of the full FLR model and by constructing the dynamical

reduction procedure with the gyrocenter generating function, containing only the lowest

order FLR contributions. Whether the FLR truncation is performed a priori on the

generating function, or a posteriori on the reduced Hamiltonian does not change the

final expressions at the leading orders. In the course of the reduction, we have clarified

the origin of the gyrocenter displacement, responsible for polarization and magnetization

terms in the reduced gyrokinetic Vlasov-Maxwell equations, using a proper ordering of

the generating function of the Lie transform.
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