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On the use of virtual ground scatterers to localize double and triple
bounce scattering mechanisms for bistatic SAR

L. Villarda∗ and P. Borderiesb
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France; bONERA (Office National d’Études et de Recherches Arospatiales), 2 av. Edouard Belin,

31055 Toulouse, France

In Radar remote sensing, the electromagnetic (em) modeling of scattering contributions
from natural or man-made scatterers has often to deal with coupling scattering mech-
anisms due to the underlying reflecting surface (ground or water). For the monostatic
configuration, this contribution is commonly associated with the so-called double bounce
scattering mechanism, which is also known to be located in synthetic aperture radar
(SAR) images at the vertical projection of the scatterer onto the ground. To explore
this phenomenon in the more general case of bistatic SAR but also for triple bounce
scattering, a new formalism using virtual scatterers is introduced in this paper. Based
upon image theory and on far-field assumption, these virtual points are defined by
simple interaction scatterers located on the reflecting surface, and involving the same
traveling wave path than the considered scattering mechanism. Depending only on the
incidence and scattering angles, elegant formulae in their simplicity are highlighted
to construct these fictitious scatterers. The resulting reduction of multiple to simple
interaction scattering mechanisms simplifies the finding of their location within bistatic
SAR images, generalizing thereby migration effects associated to coupling mechanisms
in the bistatic configuration.

Keywords: electromagnetic (em) modeling; double and triple bounce scattering
mechanisms; image theory; bistatic synthetic aperture Radar (SAR)

1. Introduction

Electromagnetic (em) scattering from media made of discrete scatterers over an infinite

reflecting surface has originated an abundant literature, especially in Radar remote sensing

for the modeling of scattering from natural lands (see for instance [1]). Considering a discrete

medium, the Distorted Born Wave Approximation (DBWA) is commonly applied as long

as its volume fraction (volume of scatterers per unit volume within the medium) does not

exceed values about 5% (cf. [2,3]). In agreement with this one-order approximation, incident

or scattered field on or from a scatterer accounts for the direct path together with the averaged

contribution of all the scatterers surrounding that path. The most common formulation of

this averaged contribution results from the Forward Scattering Theorem as an application

of the stationary phase theorem (cf. [4,5]), and leads to the famous ‘Foldy’ approximation,

also referred to as the Effective field approximation. With regard to modeling of natural land

surfaces such as agriculture fields or forests, this approximation is broadly used, especially

for discrete and coherent (i.e. phase preserving) models such as those detailed in [6–9].
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To account for the coupling effect with the underlying ground surface – which is modeled

as an infinite horizontal plane – the specular point theory (SPT) is commonly used (cf.

[10]). As described hereinafter, points on which specular reflections onto the ground hold

are found using mirroring symmetry with respect to the reflecting surface, these specular

points being intrinsic to double and triple bounce scattering mechanisms. At this point,

it can be stressed that these restrictions (in the number of interactions accounted for) are

not only determined by the growing complexity of these em scattering contributions but

also by their isotropy essential for standard SAR compression methods (see e.g. [11]),

whether in the common monostatic configuration or in the bistatic one, characterized by a

distance between Transmitter and Receiver of the order of their distance to the observed

scene (see e.g. [12]). For both kind of SAR configurations, the stability of the scattering

return for each Radar pulse recorded along the acquisition long or slow-time axis – also

called azimuth axis but possibly ambiguous in bistatic geometries – is required in order to

get a standard point compression and retrieve the scattering contribution from the target.

Hence, the limitations in our study of quasi-isotropic coupling terms (i.e. sufficiently stable

to be properly retrieved by standard SAR compression) implying thereby quasi-isotropic

scatterers and specular interactions onto the reflecting surface. Higher order and specific

coupling terms such as those theoretically detailed in [13] or experimentally analyzed in

[14] will be therefore left aside.

The question that arises in the following lies on the migration of scatterers involved in

double and triple bounce scattering in bistatic SAR images. Such question is all the more

challenging that severe image distortions may occur in bistatic geometries (cf. [15]) and

that issues related to the so-called ghost scatterers associated with multiple scattering still

give rise to many studies in the monostatic case (cf. [16]), particularly with respect to their

stability as persistent scatterers (e.g. [17]). Given the complexity of multiple scattering,

the possibility of finding virtual scatterers involving only one interaction together with

the same traveling wave path (and thereby the same phase history) as the original higher

order scattering mechanism would thus be very interesting. This is precisely the aim of

the following developments, considering on the one hand the image theory framework and

on the second hand plane wave fronts rather than spherical ones (hereinafter referred to as

far-field approximation).

To introduce the method and its related hypothesis, definitions related to the bistatic

configuration are given in the next section with the straightforward case a single reflection

off a volume scatterer. Sections 3 and 4 are then dedicated to double and triple bounce

interactions, while resulting applications are discussed in the concluding section.

2. Problem definition considering simple scattering

To introduce the problem and the notations used hereinafter, the straightforward case of

a single bistatic reflection – that bounces off a volume scatterer – is considered in this

section, as shown in Figure 1. As opposed to ground scatterers, the vertical position of a

volume scatterer ‘P’ is defined by a non-zero height noted ‘h’. Ground or volume scatterers

are considered as coherent targets, for which scattering contributions seem to come from

individual points corresponding to their phase centers. The question at issue lies in finding

the position of a virtual ground scatterer which involves the same traveling wave path than

the simple bistatic reflection onto the considered volume scatterer.

In the following, a vector from point P to T is described by the symbol
−→
PT , distance

from P to T by PT , and an unitary vector by û so that |P̂T| = |
−→
PT /PT | = 1. Concerning

bistatic geometry, this study will be restricted to plane configurations, i.e. for every position
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Figure 1. Virtual ground scatterer noted E(1) in the case of a single bistatic interaction, considering
the em emitted wave for transmitter T which bounces off the volume scatterer P above the ground
and then towards receiver R. Assuming that the ellipsoid iso-range

(
ε
)

can be approximated by its

tangent, the position of E(1) is given by the intersection between the ground and the tangent driven

by the angle ι̂ (1).

of the receiver within the plane defined by k̂i and ẑ, being, respectively, the unitary incident

wave vector and unitary vertical one. The 3D generalization would indeed overwhelm

the problem with geometrical features which may be not appropriated to keep the line

of this letter. Following that restriction, a bistatic configuration is then completely defined

through the plane coordinates of the transmitter and receiver noted ‘T’and ‘R’, respectively.

Considering the volume scatterer P (see Figure 1), the incidence and scattering angles θT

and θR can be emphasized as well as the iso-range loci for the distance |T P + P R|, which

turns out to be the ellipsoid (ε) of foci T and R (cf. [15,18]), as the generalization to bistatic

configuration of the spherical iso-ranges in the monostatic case. At that stage, it can be

noted that the bistatic angle noted and defined by β = (θT − θR) does not fully characterize

the bistatic configuration, in particular since a zero bistatic angle may be associated to a

non-monostatic geometry, when PT �= P R. Besides, whether for airborne or spaceborne

configurations, the height noted h of a scatterer above the ground turns out to be sufficiently

small in comparison to PT or P R so that the ellipsoid line passing through P can be

approximated by its tangent, which intersects with the ground giving the projection into

the corresponding pixel of all the points belonging to the same iso-range |T P + P R|.
This intersection defines the equivalent ground point for a single interaction onto a volume

scatter, noted E (1). To make its location explicit, one can recall the well-known property

of the tangent to an ellipsoid which turns out to be normal to the bisectrix vector β̂ at the

tangent point, that is:

d
(−→

O P
)

dt
·
(

P̂T + P̂R
)

=
d

(−→
O P

)

dt
· �β = 0

with t as a real number used to parametrize the vector �O P(t). Having in mind this property,

it follows that E (1) can be found from the angle ι̂ (1) between the tangent to the ellipsoid

and the vertical axis, with:

ι̂ (1) =
π

2
−

(
β/2 + θR

)
=

π

2
−

θT + θR

2
(1)
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As a result, this characterization can be considered as a generalization in the bistatic

configuration of the well-known layover effect in monostatic SAR images, truly intrinsic

to the slant range geometry of Radar acquisitions, unlike optical ones at the nadir of the

observed scene which do not suffer from that effect. Indeed, in reducing the 3D scene

information through the projection on the ground of all the scatterers belonging to the

same iso-range or pixel, the layover effect originates image distortions (e.g. the mixed-up

between scattering contributions from several targets) and is thereby essential to account

for in monostatic or bistatic SAR imaging.

3. Virtual ground scatterer for double bounce scattering mechanism

3.1. Monostatic case

Even though the monostatic case constitutes a particular bistatic configuration which could

have been combined with the next subsection, the developments given hereinafter have

not been skipped since it emphasizes the most common case in Radar remote sensing and

makes the following geometrical calculations more comprehensive.

Within the specular point theory framework (detailed in introduction), the points onto

the ground where the specular reflections hold can be judiciously found using the mirroring

principle. As shown in Figure 2, considering a given scatterer P and its mirror symmetric

noted Pℵ, the specular points are determined by the intersections between the ground surface

and the lines (T Pℵ) and (R Pℵ) – joining Pℵ with T and R, respectively. Since T and R

coincide in the monostatic configuration, the specular points onto the ground noted (GT

and GR) are located at the same position so that the monostatic double bounce is made

of two identical paths (with yet opposite time directions), originating thereby coherent

effects (superposition of two waves in phase) commonly referred to as the backscattering

enhancement (see for instance [19]). In this subsection, T and GT have been arbitrary

preferred.

The following two-step demonstration to determine E (2) – the point on which a single

interaction involves the same traveling wave path as the double bounce scattering mech-

anism associated to P – will first consist in showing the existence of E (2) and then its

uniqueness. Let us then consider the configuration presented in Figure 2 with E (2) as the

vertical projection of P onto the ground. According to the afore-mentioned hypothesis of

plane wave fronts (P being sufficiently far for T and R), it can be stated that:

2E1 E (2) = E1 E2 + 2E2 E (2) + E ′
2GT

= E ′
1 P + PℵE ′

2 + E ′
2GT

= E ′
1 P + PℵGT

= E ′
1 P + PGT (2)

where equality 2E2 E (2) = PℵE ′
2 results from the Thales’ theorem (or also called intercept

theorem) applied to the triangle (GT Pℵ P) with (GT Pℵ)//(E1 E (2)) and P Pℵ = 2P E (2),

and where equality GT P = GT Pℵ results from construction of Pℵ. From Equation (2), it

follows that

2 · T E (2) = T P + PGT + GTT (3)

which proves the existence condition of E (2). Let’s now suppose that equality in (3) is

verified by two points E (2)
A and E (2)

B . By definition, the simple interaction onto these

two points involves the same traveling wave path, so that E (2)
A and E (2)

B belong to the
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Figure 2. Monostatic configuration for which transmitter T and receiver R coincide, as well as the

specular ground points GT and GR. The virtual ground points for the double and triple bounce

scattering mechanisms are, respectively, noted E (2) and E (3).

same spherical iso-range which intersects with the ground giving a single point, hence the

uniqueness condition for point E (2).

Alternatively, it results from the Thales’ theorem applied to in the triangles (GT P E ′
1)

and (GT Pℵ P) that:

2 · E1 E3 = E ′
1 P and 2 · E3 E (2) = GT Pℵ = GT P

hence: 2 · E1 E (2) = 2 · E1 E3 + 2 · E3 E (2)

= E ′
1 P + GT P (4)

which also proves the existence condition for E (2).

Finally, a last demonstration can be also put forward since it will be used in the

subsequent paragraph in the bistatic case: from the construction of points E1 and E4, it

results that:

E1 E2 = GTE4 and E2 E (2) = E4 P

hence the term by term equality:

GTE4 + E4 P + P E ′
1 = E1 E (2) + E (2) E2 + E2 E1

which constitutes another necessary condition for the localization of E (2).

Using these developments as an introduction to more advanced cases, the well-known

vertical projection on the ground of the double bounce backscattering mechanism has been

rewritten. This phenomenon is indeed very common in monostatic SAR imaging: whereas

the position of a given scatterer will be shifted according to the layover effect, its double

bounce contribution will remain at its vertical projection, whatever the considered scatterer

height above the ground.

At that stage, we can already infer that ι̂ (2) – the angle between P̂ E (2) and ẑ – is likely

to be proportional to the bistatic angle β, so that β nullifies ι̂ (2) in the monostatic case.
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Figure 3. Traveling wave path in the bistatic configuration for the double bounce scattering

mechanism with respect to the transmitter T. The virtual ground point E (2) corresponds to the position

of the floating point E onto the ground so that: L
(
T → E → R

)
=

E=E(2)
L

(
T → GT → P → R

)
.

For the sake of clarity, E (2) is not displayed above but can be easily located, moving E on the right

so that â = b̂.

3.2. Bistatic case within the plane of incidence

As stated in Section 2, the bistatic configurations considered hereinafter are restricted to the

plane of incidence, defined by the incidence wave vector k̂i and the vertical vector ẑ. The

geometry for such configuration is displayed in Figure 3, where an arbitrary point scatterer

P above the ground is chosen, as well as transmitter T and receiver R, from now on located

at different places. Still considering the specular point theory framework, specular ground

points involved for the double bounce scattering mechanism are determined using the mirror

symmetric point Pℵ. Two different specular ground points noted GT and GR with respect

to T and R can then be found, noticing that both do not coincide anymore as for monostatic

cases.

As a result, two distinct equivalent ground points will be searched for, starting from

the one with respect to the transmitter which is still noted E (2) in the following (as long

as both are not involved). Geometrical features are given in Figure 3, especially for the

construction of GT based on Pℵ. Dot lines are dedicated to virtual geometrical points

(especially towards E (2)) whereas plain lines are dedicated to the ‘real’ traveling wave

path: T → GT → P → R, whose length will be hereinafter noted with the operator L
(
·
)
.

Let’s consider the angle ι̂ between the vertical axis (along ẑ and the line passing by P
and the candidate floating point E , which position on the ground is sought to be E (2). Points

E1 and E4 are constructed from the projection of GT and E , respectively, so that whatever

the position of E onto the ground, the triangle of base GTE is isosceles and E1 E = GTE4.

Let us now emphasize the angles â and b̂, respectively, defined in triangles
(
E2 E P

)
and(

E P E4

)
(still in Figure 3). These angles can thus be expressed as follows:

â = θR + ι̂ and b̂ = θT − ι̂ (5)

6



With that construction, the equality E E2 = E4 P holds if and only if the triangle of base

E P is isosceles, i.e. â = b̂. From that equality, it comes that:

GT P = GTE4 + E4 P = E1 E + E E2

As a result, with the starting assumption that both transmitter and receiver are far enough

from P to consider the equi-phase plane surfaces, a sufficient and necessary condition on the

location of E to verify L
(
T → E → R

)
= L

(
T → GT → P → R

)
lies in â = b̂, hence

the following elegant formula in its simplicity for the virtual ground point E (2) associated

to the double bounce scattering mechanism with respect to the transmitter, which turns out

from (5) to be half the bistatic angle:

ι̂ (2)|GT =
β

2
(6)

Concerning now the double bounce with respect to the receiver, the reciprocity of the

configuration can be invoked: if T and R are inverted, GR is located at the former position

of GT so we come back to the traveling wave path associated to the former double bounce

with respect to T and then to the former virtual ground point E (2) and its associated angle

ι̂ (2).As expected, reversing the situation by reciprocity does correspond to a switch between

GT and GR as well as between T and R in formula (6), hence the following generalization:

ι̂ (2) = ±
β

2
(7)

where the plus or minus are, respectively, for the double bounce with respect to the transmit-

ter or to the receiver. From that result, it is interesting to note that depending on the largest

angles between θT and θR, the double bounce scattering mechanisms are either projected

forward or backward in comparison with the monostatic case where both double bounces

are vertically projected on the ground. Besides, this result also means that double bounce

contributions (with respect to T or R) of all scatterers located along the line (E (2) P) will be

associated with the same traveling distance or time, giving thereby the shapes of Radar iso-

ranges for the scattering mechanisms concerned. Therefore, not only the geometrical phase

for bistatic double bounces are different (unlike the monostatic superposition in phase) but

these contributions may be not recorded in the same pixel, especially for SAR images at

high (spatial) resolution.

4. Virtual ground scatterer for triple bounce scattering mechanism

The following developments are now dedicated to triple bounce scattering. To come up

with the traveling path associated to that scattering mechanism, the coupling interactions

between vegetation and ground scatterers are considered for both downwards and upwards

paths, respectively from transmitter T towards an arbitrary volume scatterer (still noted P)

and from P to receiver R (see Figure 4). Still in agreement with the afore-invoked specular
point theory, both specular ground reflections onto points GT and GR are thereby involved,

being still constructed using Pℵ, the mirror symmetric of P (as in Section 3). Supported by

geometrical details provided in Figure 4, the problem now at issue being in the location of

the floating point E onto the ground so that:

L
(
T → E → R

)
=

E=E(3)
L

(
T → GT → P → GR → R

)
(8)

7



Figure 4. Traveling wave path in the bistatic configuration for the triple bounce scattering mechanism.

The virtual ground point E (3) corresponds to the position of the floating point E onto the ground so

that: L
(
T → E → R

)
=

E=E(3)
L

(
T → GT → P → GR → R

)
.

In agreement with the previous hypothesis, equi-phase plane surfaces are still considered

so that:

L
(
T →E → R

)
– L

(
T → GT → P → GR → R

)

= E1 E + E E2 –
(
GT P + PGR

)

= E1 E3 + E3 E + E ′
4GR –

(
GT P + PGR

)

= E1 E3 + E3 E + E ′
4GR –

(
GT Pℵ + PℵGR

)

= E3 E + E ′
4GR – PℵGR

= E3 E – PℵE ′
4 (9)

From the above equation, it can be deduced from the last line that equality (8) holds if

E3 E = PℵE ′
4, i.e. if the line

(
PℵE

)
bisects the corner

(
E ′

4 PℵE4

)
, meaning that:

â = b̂

so that: θR + ι̂ = π − θT − ι̂ (10)

providing the sought formula:

ι̂ (3) =
θT + θR

2
−

π

2
= −̂ι(1) (11)

Existence condition for E (3) is thus proven by the above expression. In the event that

two points E (3)
A and E (3)

B exist, these points onto which simple interactions occur would

belong to the same ellipsoid iso-range, which intersects with the ground giving a single

point, proving thereby the uniqueness condition for point E (3).

8



As far as SAR applications are concerned, the magnitude of triple bounce scattering

mechanism is more likely to be significant over built-up structures such as ships, bridges,

or buildings (see for instance [16,20]) as well as flooded regions, where specular ground

reflections are favored by flat and smooth surfaces.According to the previous result Equation

(11), it is rather remarkable that whatever the scatterer above the ground, its triple bounce

contribution will appear backwards, with exactly the opposite distance which shifts forward

the volume contribution, generalizing thereby the layover effect to triple bounce scattering

mechanism in bistatic configuration.

5. Discussion on resulting applications & conclusion

In this paper, an elegant theoretical method to reduce double and triple bounce scattering

mechanisms to a simple interaction onto a virtual ground scatterer is developed, for any

bistatic configuration where the receiver belongs to the plane of incidence. This method

is based on virtual scatterers located on the ground surface and for which the simple

interaction involves the same traveling wave path as its associated multiple scattering

mechanism. With respect to the original scatterer, the location on the ground of this virtual

point turns out to be driven through remarkable formulae in their simplicity, involving

simply half the signed bistatic angle in the case of double bounce scattering mechanism –

with opposite sign between double bounce with respect to transmitter or to receiver – and

the opposite angle associated with the simple layover in the case of triple bounce scattering

mechanism.

Beyond novelty of the theoretical formulation in SAR configurations for which we

have little experience, these results offer a simple but efficient way to characterize the

migration phenomenon in bistatic images and the so-called ghost scatterers, mostly due to

multiple scattering. However, as for current state-of-the art monostatic SAR imaging meth-

ods, non-supervised corrections to avoid these ghost scatterers are not applicable without

a-priori information about the observed scene. In addition, these results also demonstrate

that the voxel shapes (i.e. the 3D volumes which encompass all the scatterers whose

specific contribution falls into a given pixel) is intrinsic to each scattering mechanism,

which is essential for analytical formulation in em modeling and especially to derive the

interferometric phase sensitivity to scatterer height.

Being less and less limited by technological barriers (especially related to synchronisa-

tion), one can currently attest of a new resurgence of bistatic Radar, not only characterized

by airborne concepts but also by hybrid configurations (like GNSS-Reflectometry) and

the willing of putting bistatic configurations into space (e.g. with the SAOCOM-CS ESA

candidate mission [21]). Fostered by these promising concepts, next steps will be dedicated

to generalize our results to the full bistatic hemispherical space (combining geometrical

features of both scattering and incident planes) and to specific SAR applications, in the

case of non-stationary configurations and polarimetric and interferometric bistatic SAR

acquisitions.
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