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INRETS, 2 rue de la butte verte 93166 Noisy-Le-Grand, France

Abstract: The paper describes a model predictive control strategy for multimodal urban
traffic regulation for private vehicle (PV) traffic and public transport (PT). By acting on
the traffic lights, the strategy aims to achieve two objectives. First to make public transport
vehicles respect their timetable and, second, to improve the global traffic conditions. Based
on a complex model, the strategy determines the optimal green splits and the offsets of
the traffic lights. The optimization problem is multiobjective and resolved by the particle
swarm optimization algorithm. Two criteria are proposed for private vehicle traffic and public
transport. One of the originalities of this work is that the two criteria are expressed globally
and are related since the PT progression model depends on the PV traffic. Two PSO algorithm
versions are used: the original algorithm and a modified version expected to be more efficient.
The efficiency of the strategy is evaluated on a large virtual urban network.

Keywords: Particle Swarm Optimization(PSO); Model predictive control; traffic model; bus
priority; private vehicle (VP); public transport (TC).

1. INTRODUCTION

Many decades ago, the regulation of private vehicle urban
traffic became a necessity due to the huge increase in the
volume of traffic in urban areas associated with the im-
possibility of infinitely extending the road infrastructure.
It had also become urgent to regulate public transport in
cities. Today, reducing PV traffic has become insufficient
to regulate the progression of PT vehicles. Many urban
traffic control strategies exists, including TUC, PRODYN,
UTOPIA, SCOOTS, CRONOS. These strategies were first
developed to deal just with PV traffic. Some of them
were then extended to deal with PT traffic. Urban traf-
fic control strategies giving an active priority to public
transport in a large urban network has been developed by
(Bhouri and Lotito [2005]). However although they are
methodologically different, these strategies have the same
objective which is to relieve traffic congestion over the
whole network by doing more for the links when and where
public transport vehicles are present. This paper proposes
a new strategy which, in addition to improving traffic
conditions over the whole network, aims in particular to
enable public transport vehicles respect their timetable.
Based on a multimodal model that predicts the state vari-
ables, two optimization criteria are formulated for PV and
PT traffic. The nature of the multimodal model and thus
of the optimization criteria and the large-scale nature of
the problem have led to using a sophisticated optimization
method that guarantees fast convergence for a complex
problem. The optimization method used is Particle Swarm
Optimization (PSO) which is an efficient metaheuristic.
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The paper is organized as follows. The first section gives
an overview of particle swarm optimization and presents
both the original algorithm and a modified algorithm.
The extension of the PSO algorithm to the case of mul-
tiobjective optimization is introduced. The second section
presents the urban traffic control strategy. The multimodal
model is presented and the problem is formulated as a
multiobjective optimization problem. The third section
concerns the simulation results achieved on a virtual urban
network with different receding horizons. This is followed
by a conclusion.

2. PARTICLE SWARM OPTIMIZATION (PSO)

Particle swarm optimization (PSO) is an evolutionary
algorithm to find an optimum in a search space. It was
proposed first in 1995 by James Kennedy and Russel C.
Eberhart. The PSO algorithm is a stochastic, population-
based algorithm. Initially a population is spread randomly
in the search space. The movement of the population is
based on the social physiological behavior of birds. The
trajectory of each particle depends not only on its own
past trajectory but also on the best positions occupied
by a defined neighborhood. Without loss of generality, a
mono objective optimization problem can be formulated
as follows:

Minimize  f(z)
subject to :
With ze R"

where f is the function to be minimized, g and h are the
constraints, Z is the vector of decision variables.



The algorithm described by J. Kennedy and R-C. Eberhart
in 1995 is the original version of PSO. Since then many
versions whave been proposed. In this paper, the original
version and a modified PSO proposed by Van Der Bergh
in 2001 are used.

2.1 Original PSO algorithm

The PSO algorithm is based on an efficient move of the
population within the search space. Each particle is defined
by a position and a velocity. In fact, the velocity is not
defined as a real speed but as a displacement vector. At
each computational iteration, these two variables are up-
dated. The displacement of a given particle in the current
iteration depends on (i) the displacement in the previous
iteration, (il) the difference between the current position
and the best position of the particle in the past and (iii)
the difference between the current position and the best
position of the particles that make up the neighborhood.
Each term of this update in weighted by a factor that will
be discussed later. The position update is simply given by
adding the displacement updated to the past position.
The best position is defined as the one that minimizes
the objective function f. As mentioned implicitly above,
each particle has a neighborhood. There are many ways to
define a neighborhood. Further details can be found in the
work of (Clerc and Kennedy [2002] and Reyes-Sierra and
Coello. [2006]). Let X;(k) and V;(k) designate the position
and the displacement vector of particle ¢ at iteration k, the
update equation of particle 7 is given by:

Vilk+1) =w-Vi(k) +c1-7r1,:(k) - [Xbest; — X;(k)]
+co - T‘Z,»f,(k) . [Xbestv — Xz(k)]
Xi(k+1) =X;(k) +x Vi(k+1)

Xbest; and Xbesty are respectively the best position of
particle ¢ and the best position of the particles making up
the neighborhood of particle 3.

r1,:(k) and ro ;(k) are two random numbers included in set
[0;1].

w, ¢1, c2 and x are the setting parameters of the swarm
movement. These parameters are very important for the
convergence and the speed convergence of the swarm.

The convergence of the original PSO algorithm was studied
by Clerc and Kennedy in (Clerc and Kennedy [2002]).
They established the following inequality that guarantees
the convergence of the algorithm w > % x (e1 +c2) — L.
However, an empiric combination of these parameters has
given a good balance between the quality of the optimum
found and the rate of convergence. The empiric combina-
tion is given by: w = Wl(z) and ¢; = ¢y = 0.5 + In(2),
where ¥ is the constriction factor. In the original version,
this factor was set to 1. It was observed that the optimal
setting parameters depend on the nature of the problem
formulated, i.e. on the objective function. In this paper, we
use the empiric combination so that we do not substitute
our optimization problem by searching for the optimal
setting parameters.

The last point concerns a large class of optimization prob-
lems when the decision variables z are bounded in the set

[Zmin; Tmaz]- In this case, when the position goes beyond
the bounds, it is set to the closest bound. Therefore, the

complete update is given by:

Vilk +1) =w-Vi(k) +c1 - m1,4(k) - [Xbest; — X;(k)]
+cg - o4(k) - [Xbesty — X;(k)]
Xi(k+1) = X;(k) + x - Vi(k+1)
if (Xi(k+1) < Zpin) then
Xl(kl + ]-) = Tmin
if (Xi(k+1) > Tmag) then
Xz(k + 1) = Tmax

In this paper, the neighborhood of a particle is made up of
all the other particles of the swarm. If we note nb_mazx the
maximum number of iterations, € a fitness objective fixed
by users and min.p the global minimum of the swarm, the
pseudo-code of the PSO algorithm is given by:

Initialize the population
While (i < nb-maz or minp >¢) do
For each particle
determine the best neighborhood position;
update velocity and position;
update the best personal position;
end for;
I
end while;

report the final global minimum min.p;

2.2 Modified PSO (GCPSO) algorithm

Clerc and Kennedy (Clerc and Kennedy [2002]) have given
the convergence condition of the original PSO algorithm.
Shi and Eberhart (Shi and Eberhart [1999]) indicated
that choosing a constriction factor of less than 1 improves
the convergence rate of the algorithm. However, Van der
Bergh has proved in his PhD thesis (Van Den Bergh
[2002]) that the original PSO does not guarantee a global
optimum. It is important here to recall that the algorithm
is stochastic and hence it is impossible to prove rigorously
the convergence or not of the algorithm. The fact remains
that, as for the studies of Clerc and Kennedy, Van Der
Bergh has assumed the hypothesis that a mathematical
proof is possible. Finally, if the convergence to a global
optimum is not guaranteed, the original algorithm may in
some cases find a global a such optimum.

To address this issue, Van Der Bergh proposed a modified
version of the original algorithm that is supposed to guar-
antee a global optimum or at least to find an optimum of a
better quality than the original algorithm. Considering 7
the index of the global best particle of the swarm, the only
modification concerns the velocity update of this particle.
The new velocity update of particle 7 is given by:

Vr(k+1) = —X,(k) + Xbest, +w x Vo(k) + p(k) x (1 -
2 X 7‘2)7-)

The other velocity particles are unchanged. The new
update equation of the best particle position is X, (k +
1) = Xbest, (k) +w x Vo(k) + p(k) x (1 — 2 x ro(k)).

The best global particle position is reset to its best position
to which is added the current displacement. The random
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term p(k) x (1 —2 x r2(k)) is used to explore a hypercube
of side 2 x p(k). The values of p(k) are adapted at each
time-step and depend on the nature and search space
of the optimization problem. However, this parameter is
generally increased when the global best of the swarm is
improved at each time-step and decreased in the contrary
case. The most simple way to adapt p is to double it if
the global best of the swarm is improved successively for
a number of time-steps higher than a fixed value and to
divide it by 2 if the global best remains the same for a
number of time-steps below a fixed value.

2.8 Multiobjective PSO

A multiobjective optimization problem can be formulated
as follows:

Minimize  [f1(%), f2(), .., fu(T)]
subject to: gi(;) =0;1=1,...m

hi(£)<0; j=1,...,p
With ze R"

In monoobjective optimization, the optimizer determines
a single solution that minimizes the cost function. In mul-
tiobjective optimization, the optimizer determines a set of
solutions that form the Pareto front. The difficulty then is
the choice of a single solution within the Pareto front. For
reasons easily related to the features of the monoobjective
PSO algorithm, extension to a multiobjective PSO raises
the question of the comparison of two or more solutions
during the optimization process. In particular three ques-
tions have to be asked:

(1) How to update the best position of a given particle?
(2) How to select the best particle of the neighborhood?

(3) How to determine the best global particle of the
swarm?

The most commonly used way to retain nondominated
solutions is the use of external archives (Reyes-Sierra and
Coello. [2006]). Strictly speaking, three external archives
are necessary. One to retain the best position of a particle;
the second to retain the best particle of the neighbor-
hood of a given particle; the third to store the global
best particle of the swarm. However, for evident reasons
of combinatory complexity, no more than one external
archive is reported in the literature (Reyes-Sierra and
Coello. [2006]). Actually, if we choose a full connected
neighborhood topology, the best particle of the neighbor-
hood is the global best of the swarm. For this present work,
we choose a full connected neighborhood topology and one
external archive for the global best particle of the swarm.
The corresponding pseudo-code of the multiobjective op-
timization algorithm is as follows:
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Initialize the population
Initialize the swarm archive
While (i < nb_maz or min_p >e¢) do
For each particle
select the global best;
update velocity and position;
update the particle best position;
end for;
i+ 4
update the swarm archive;
end while;
report the final swarm archive;

However, two questions remain unanswered. The first con-
cerns the update of the best position of a particle. Given
the past best position and the new updated position, how
do we update the best position? If one position dominates
the other, the new best position is the dominating one.
In the case where the two positions are nondominated,
M. Reyes-Sierra and C.A. Coello have reported in (Reyes-
Sierra and Coello. [2006]) several ways of choosing be-
tween the two solutions. In the work presented in this
paper, 4 ways were tested. The first is to consider an
aggregate function and the solution that minimizes this
function is chosen. The second is to choose randomly
between the two solutions. The third is to choose the
solution that minimizes only one criterion among the p
criteria. In our case, there are two objective functions to be
minimized which results in two possibilities: giving priority
to the first or the second criterion. The two possibilities
were considered in the simulation. The second question
concerns the selection of the global best position of the
swarm. As far as updating the best particle position is
concerned, three cases are studied: random choice, choice
based on an aggregate function and choice based on giving
priority to one criterion.

An exhaustive overview of multiobjective particle swarm
optimization can be found in the paper of M. Reyes-
Sierra and C.A. Coello ”Multiobjective Particle Swarm
Optimizers : A Survey of the State-of-the-Art”.

3. MULTIMODAL TRAFFIC CONTROL

Reducing congestion in urban road networks and regu-
lating the traffic of public transport vehicles has become
an important issue which needs to be resolved. The aim
of this work is to propose a closed-loop control strategy
that reduces congestions in each link of the urban network
and regulates public transport vehicle traffic. From traffic
measures collected from the real network, the strategy has
to determine the optimal inputs to apply to the system in
order to respect the objectives cited above. The strategy
uses an internal model or predictor that predicts the state
variable of the system.

3.1 Traffic model

The global system considered is made up of four elements:
the urban road network, the Private Vehicle traffic, the
Public Transport vehicles and the traffic lights controlling



the whole of the traffic.

To establish a mathematical or computational model, a
mathematical description of these four elements is neces-
sary. The urban road network is considered as a direct
graph. The nodes represent the intersections and the links
represents the roads connecting two intersections. Mathe-
matically, traffic lights are described by four variables: the
cycle time C, the green splits that are the durations of the
green phase, the offsets between two consecutive intersec-
tions and the phase sequence. To describe the traffic math-
ematically, several variables may be used depending on the
objective of the model and the features of the problem
formulation. The variables may be the mean waiting time
at intersections, the travel time for an origin-destination
combination, the flow in each link or the number of private
vehicles in each link of the urban network. As far as the
PV mode is concerned, there are several ways to describe
the progression of PT vehicles in the network. It may be
the mean waiting time at intersections, the travel time
between two points or the positions collected for a regular
time interval.

For this present work, the PV mode is described by the
number of private vehicles in each link of the network and
the PT mode is described by the position of each vehicle of
each line present in the network. The control variables are
the green splits of all the traffic lights of the network and
the offset of just those traffic lights crossed by PT vehicles.
cycle time and the phase sequence are assumed to be fixed
and known.

PV traffic model The dynamics of the PV mode in
an urban network is described by the number of private
vehicles in each link at the beginning of the time-step. For
a reason that will be explained later, the time-step is the
cycle time C. Given a link ¢ that connects j; to ja, the
number of VP in this link at the beginning of cycle time
k + 1 is given by the following conservation equation:

Xi(k+1) = Xi(k) + C - (g (k) — wi(k))

where ¢;(k) and u;(k) are respectively the inflow and the
outflow of link 7 at cycle time k. The inflow of link ¢ may
be expressed as the sum of outflows of upstream links
weighted by their respective turning rates. It results that
the knowledge of the outflows is sufficient to completely
determine the conservation equation. Gazis and Potts in
(Gazis and Potts [1963]) have established a simple model
called store — and — forward model. The model expresses
the outflow of a link %, controlled by a traffic light with G;
the duration of the green phase, as follows, u; = S; % %
where S; is the saturation flow of link 7. Incorporating this
in the last conservation equation, the final dynamics of
link ¢ is given by:

Xi(k+1) = Xi(k)
+C - Z Tw,i - MAN( Sy -

welj1

Gu(k) Xuw(k)
c o )

c’ C
where Inj, is the set of upstream links of link ¢ and 7,
is the turning rate from link w toward link ¢. The whole
dynamics of PV traffic in the urban network is inferred by
applying this equation to all links.

——min(Si .

PT traffic model The dynamics of the PT vehicles
is represented by their positions in the network. These
positions are referenced with respect to the starting point
of the PT vehicle in the network. Apart the geometric
features of the urban network, the free bus speed and the
dwell times at stops, strictly speaking the evolution of this
position in time depends on the PV traffic conditions and
on the configurations of the traffic lights, especially the
green splits and the offsets. In (Kachroudi and Bhouri
[2008]), a detailed description of a similar model was given.
This model only involves the green splits, the offsets were
ignored and assumed to be random. A detailed description
of the model used here will be proposed in future papers.
Given bus n of line m, its position at the beginning of cycle
time k is Py, » (k). The change in bus position can be given
by the following general equation:

Pon(k+1) = FTC(Pnn(k), Tdmn(k), Gmn(k),
Nbpn(k), Tsmn(k))

Tdpm,n(k) and G, n (k) are the vectors that contain respec-
tively the beginning instants and the durations of the green
phases of all traffic lights that can be crossed by buses
during cycle time k. Nb., (k) is the vector containing
the number of private vehicles ahead of the bus in each
link that may be crossed by the bus during cycle time k.
Finally, Tsm (k) is the vector containing the dwell time
at the stops where the bus may dwell during cycle time k.
Function F_T'C is an if — then — else type algorithm. We
introduce a new variable ¢tr that is the remaining time
before the end of the current cycle time. Initially, ¢r is set
to the value C and at the end of the cycle time tr = 0.
The algorithm is given as follows:

Pp = Prnn(k);
try = C;
While (ir, > 0) do
if (next_stop = station) then
(P‘n,a tT’n) = g—St(PpytTZH G7 Td7 Nba Tst);
else (next_stop = traf ficlight)
(P, try) = glight(Py, trp, G, T4, Nb);
end if;
Pp = Pna
try =1ry;
end while;
Ppnlk+1)=P,

The algorithms g_st and g_light update the position and
the remaining time of a bus respectively when the bus
dwell on a stop and when it crosses over a traffic light.
These two algorithms will be detailed in future papers and
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thus will not be discussed here.

3.2 Problem formulation

As described above, the urban traffic is considered as a
discrete-time system. The state variables or outputs are
the number of private vehicles in each link of the network
and the position of each bus present in the road network.
The controllable variables or inputs are the beginning
instant of green phases (equivalent to offsets) of traffic
lights crossed by bus lines and the green splits of all traffic
lights of the network. At the beginning of cycle time k, the
number of private vehicles in each link of the network is
spliced into the vector X (k) and the position of all buses
present is spliced into the vector P(k). The objective of the
control strategy proposed is to minimize the total number
of private vehicles present in the network and to minimize
the quadratic difference between the real position P(k) of
the buses and a pre-specified position P*(k).

Mathematically, using the following notations:

P(k) = [Pi(k), Pg(k),...,Pnl(k)]T
P*(k) = [P{(k), P5(K), ..., Py (k)]”
X(k) = [Xl(k) Xa(k), ... XN.l(k)]T
G(k) = [Gi(k),Ga(k), ..., Gn, (k)T
Td(k) = [Tdi(k), Tdy(k), ..., Tdn,.(K)]"

where nl is the number of buses present at cycle time k
and Ng, N, are respectively the number of links of the
network and the number of links crossed by the nl buses
present in the network (N, < N,), the problem can be
formulated as follows :

Minimize
E+N, N,
OVPG) = > Y Xij)?
j=k+1 i=1
k+Np nl
0TC(Td,G)= > > [P )2
Jj=k+1 i=1
Subject to

For every intersection :
Gi=G;=C-Gy
Td; = Td; = (G; + Tdg) modulo C
links 4% and j have the right of way
simultaneously contrary to link k
GM™ < Gy < G5 =1..N,
0<Td; £C;j=1.Ng

4. SIMULATION RESULTS AND DISCUSSION

The simulation tests are performed on a virtual urban
road network made up of 16 intersections and 51 links.
It is crossed by 4 bus lines and each bus line has to dwell
on two stops for a time assumed to be known and fixed.
Each intersection and thus each link is controlled by a
traffic light with the same cycle time C' = 80s. The road
network has 11 entrances. The nominal inflows consid-
ered at these entrances correspond approximately to the
maximum of inflows that lead to smooth traffic conditions
with maximum link capacity. In other terms, with higher

inflows the traffic conditions will become saturated with
vehicle queue lengths increasing indefinitely. However, we
will introduce some disturbances. The simulation time is
for 40 cycle times. In the first 10-cycle time, the inflows
are considered nominal and for the 3 remaining lots of 10
cycles, the inflows are disturbed by increasing the inflows
at some entrances and decreasing then at others. Finally,
for all links, the saturation flow value is 0.5 veh/s.

Two series of simulations were done. Firstly, the optimiza-
tion horizon Nj, is set to 1, which means that the objective
is to regulate the traffic for only the next cycle and that the
consequences of these actions on future cycles are ignored.
Secondly, we consider an optimization horizon of 6 cycles.
Given a current cycle, the objective is to determine the
optimal durations and beginning instant of green phases
of the 6 future cycles. It is important to point out that with
an optimization horizon Ny, > 1, the number of decision
variables is multiplied by Np. This last remark will have
serious consequences on the quality of the optimums found
by the PSO algorithm.

The criteria to be compared are given by the following
equations:

OVP(k) =

ZX (k)

OTC(j =—><Z|P — 350 x j|

where j € {1,2,3,4}

where k is the index of cycle time so k € [1,40], i is the
index of links, j € {1,2,3,4} is a cycle time index (buses
are expected to spend no more than 4 cycle times in the
network), 350 x j is the objective position to be attained at
the beginning of cycle time j, and n is the index of buses
that enter the network over the simulation time.

Figure 1 illustrates the evolution of the criteria OV P and
OTC for three control strategies: without optimization,
with optimization and for N = 1, and with optimization
and for N, = 6.

It emerges from the two figures that with the optimization
algorithm and for an optimization horizon set to 1, PV
traffic and the progression of PT are improved by about
22% for the PV traffic at the end of the simulation
time and by about 230% for PT progression. It was
observed that these improvement were much higher when
the maximum number of iterations allowed for the PSO
algorithm was higher. However, the two figures also show
a surprising result: with the optimization algorithm and
for N = 6, the performance of the optimization process
is worse than for Ny = 1. The explanation is that for
such a networked system (the outflow of one link is the
inflows of others), and for such criteria that iclude all
links, optimal actions for just one future cycle time do not
have such bad consequences on the other future cycle times
that they can not be overcome for the same optimization
process in the respective future cycle times. However,
this explanation justifies the absence of difference between
cases N, = 1 and N, = 6 and does not justify the
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difference. Actually, as said above, when we consider an
optimization horizon Np > 1, the number of decision
variables is multiplied by Nj. Knowing now that the
optimums found by metaheuristics in general and the PSO
algorithm in particular are very sensitive to the number of
decision variables, it can be concluded that the optimums
found in the case of N, = 6 are of worse quality, which
leads to the performances above. It is important to add
that to have better optimum quality with N, > 1, the
maximum iteration allowed for the PSO algorithm has to
be increased considerably. For the same conditions of the
simulation experiment, the modified GCPSO algorithm
improves PT progression compared to the original one.
And increasing the optimization horizon seems to be of
better effect on PT progression. In fact, it was expected
that an optimization horizon Ny, > 1 improves or at least
gives comparable results for the PT progression but as
explained above the original PSO algorithm led to non
high-quality optimums. When we use the modified GCPSO
algorithm, the optimums found are of better quality than
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for the original PSO algorithm. Figure 2 illustrates the
same variables in the same conditions as in Figure 1.

5. CONCLUSION

The paper proposed an urban traffic control strategy that
uses traffic light to regulate private vehicle traffic and
the progression of public transport vehicles. One of the
originalities of this work is the global expression of the two
criteria corresponding to the two transport modes. The
global multiobjective optimization problem is solved using
the Particle Swarm Optimization algorithm (PSO). We
considered the original algorithm and a modified algorithm
(GCPSO) that guarantees better quality optimums. The
simulation results show that the strategy proposed im-
proves the private vehicle traffic and the progression of the
public transport vehicles in the network simultaneously.
They also show that the optimization horizon (control
horizon) in the case of the original PSO algorithm does
not have significant consequences on traffic conditions. On
the contrary, the modified GCPSO algorithm seems to be



more efficient for the progression of the public transport
vehicles for a longer optimization horizon.
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