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Abstract

We study, in this paper, a taxi-sharing problem, called Dial-a-ride problem with
money as an incentive (DARP-M). This problem consists in defining a set of
taxis that will be shared by different clients in order to reduce their bill by a
given factor α < 1. To achieve this, each client shares the cost of the ride with
other passengers. More precisely, the fragments of the ride in which the client
is alone is fully paid by this client and, for each fragment in which the client
shares the taxi with other passengers, the cost is equally divided between the
passengers. In addition to this cost constraint, the taxi must satisfy a time
window constraint for each passenger and a capacity constraint.

We define three versions of the problem: max-DARP-M where the objective
is to drive the maximum number of clients with an arbitrarily large number
of taxis; max-1-DARP-M in which we want to drive the maximum number of
clients with one taxi; and 1-DARP-M which consists in deciding whether it is
possible to drive at least one client while satisfying the constraints. We study the
parameterized complexity and approximability of those problems with respect
to four parameters: the factor α, the capacity capa of the taxis, the maximum
sizeW of the time windows of the clients, and the value S of an optimal solution.

Among other results, we prove that 1-DARP-M is NP-Complete and max-
DARP-M and max-1-DARP-M cannot be approximated in polynomial time to
within any variable ratio even if α, capa andW are fixed and if the road network
is a planar graph. We also give a polynomial algorithm for max-1-DARP-M for
the case where capa and W are fixed and where the network does not contain a
circuit. This algorithm implies a 1√

n
-polynomial approximation for max-DARP-

M.

Keywords: Parameterized complexity, Approximability, Dial-a-ride problem,
Taxi-Sharing
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1. Introduction

The Dial-a-Ride problem (DARP) consists in the search for an optimal route
for many vehicles in order to drive people from their respective origin to their
respective destination. This model is used, for example, to determine an opti-
mized route for taxis in order to pick up passengers. We focus in this article on
the complexity of a version of this taxi-sharing problem in which the price paid
by each passenger is shared. Such a version, called Dial-a-ride problem with
money as an incentive, was previously introduced and studied in [19, 20].

Ride-sharing, including Taxi-sharing, has been massively studied for the last
fifteen years due to the economical impact and the ecological impact of such a
research. Indeed, optimizations reducing the number of vehicles or the number
of travels is an obvious way to reduce the costs and the greenhouse gas emissions.
DARP can be seen as a subproblem of the general pickup and delivery problem
(GPDP) described in [21] in which the goal is to transport a resource from
different pickup locations to drop off locations. In DARP, we consider a human
resource (the clients) and each pickup or drop off location is associated with
exactly one client. The consequence of this specific resource is that one must
be aware of the user inconvenience.

1.1. Related work on the DARP problem
DARP can hardly be defined as a unique problem. The feasible and optimal

solutions of a Dial-a-ride problem depend on the measure, the fleet parameters
and the clients constraints. Thus, the variety of studies about DARP is not
surprising.

Considering the measure, one may optimize the vehicle travel cost, see for
example [3, 15, 18], the total travel time [10] or the profit [7]. Another option
is to maximize the number of satisfied requests or a combination of all those
parameters [19, 20, 22].

Some constraints modelize the user convenience. A usual option is to search
for a feasible solution considering time windows [4, 10, 18, 22] as it has been
done for the more general pickup and devivery problem [8]. This last problem is
solved with a column generation scheme where columns define admissible routes.
In [10, 18], the authors develop a similar approach merging a branch-and-cut
algorithm with column generation. In [4, 22], the problem is solved using a
Tabu search heuristic. Another option to modelize the user convenience is to
tend to minimize the excess ride time [2, 11, 13].

Finally one can consider either the static problem in which all the requests
are known in advance or the dynamic version in which the requests may occur
at any time [1, 6, 11, 19, 20], this problem is usually solved using a local search
heuristic.

A recent review about the Dial-a-ride problem and some of its generalizations
may be found in [14]. We refer the reader to [5, 10] for a more specific review
about DARP.
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1.2. DARP with Money as an incentive
We focus on a problem where the goal is to find a feasible solution satisfying

a client cost constraint. Few paper focused on that constraint. In [19, 20],
the authors study the version of the problem in which each client, traveling by
taxi, may share the cost of the ride with other passengers. More precisely, the
fragments of the ride in which the client is alone is fully paid by this client. On
the contrary, for each fragment in which the client shares the taxi with other
passengers, the cost is equally divided between the passengers. The problem
consists in the search for a ride in which every client does not pay more than
the cost he would pay alone in a taxi traveling directly from his origin to his
destination. Note that a client can be served by being affected to a private ride
but each client must also satisfy a time window constraint. The objective is
to maximize the number of served clients. This problem is called Dial-a-Ride
problem with Money as Incentive and is denoted by DARP-M.

In [20], the authors give a reduction from the Traveling salesman problem
to DARP-M, based on the sole time windows constraint. However, no taxi is
shared, all the clients are driven in a private ride. It proves that serving all the
clients and satisfying a time windows constraint is NP-Complete. Considering
this reduction, DARP-M can be seen as a generalization of TSP in which we add
a sharing cost constraint. Although this reduction clearly shows that DARP-
M is strongly NP-Complete, it does not reflect the hardness of determining if
at least two clients can be served by sharing a taxi while satisfying the cost
constraint. That simpler question is not insignificant as it leads to a natural
greedy algorithm for DARP-M in which we group clients who can share a taxi
until all of them have to be affected to a private rides.

Furthermore, it was shown by [17] that searching for a (not elementary)
shortest path between a source and a sink satisfying a time windows constraint
is weakly NP-Complete as it can be solved in polynomial time if the width of
the time windows is polynomially bounded. Consequently, as the reduction of
[20] uses only the time windows constraint and as it is from the strongly NP-
Complete problem TSP, it seems that it cannot be easily adapted to prove the
hardness of determining if at least two clients can share a taxi.

1.3. Our contributions
We focus on the parameterized complexity and the parameterized approx-

imability of three problems derived from DARP-M defined by [19, 20]. The
purpose of this paper is mainly to investigate on how hard the cost constraint
is. Particularly, we point out the fact that every hardness result we give is true
even if we do not take into account the time windows.

We now formally define the problems we study. We work in a directed graph
G = (V,A). We are given a set of n clients arbitrarily numbered in J1;nK. The
i-th client is attached to two nodes vi and v′i, which are respectively the origin
and the destination of the client. We respectively define Vc and V ′c as {vi, i ≤ n}
and {v′i, i ≤ n}. A route P of a taxi is defined by a list (u1, u2, . . . , u2·s(P )) of
nodes in Vc∪V ′c where s(P ) is an integer. A taxi must satisfy three constraints.
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Precedence constraint. For each client i, vi ∈ P if and only if v′i ∈ P . In
that case, if vi = uj and v′i ∈ uk, then j < k. We say the client i travels in that
taxi, or that the taxi drives the client i. The value of s(P ) can be seen as the
number of clients traveling in P .

Capacity constraint. We consider that each taxi has the same number of
seats. This number is defined as the capacity capa of the taxis. This capacity
is at least 2 and is no more than n. For each node uj ∈ P , let nj = #{uk ∈
Vc, k ≤ j} − #{uk ∈ V ′c , k ≤ j}. This value is the number of clients in the
taxi immediately after uj . For every j, nj ≤ capa. In addition, if j 6= 2 · s(P ),
nj ≥ 1: a taxi cannot be emptied before the end of the ride.

Time constraint. Each arc a = (u, v) ∈ A is weighted with a non-negative
integer t(a), corresponding to the time that a taxi spends to go from u to v.
We extend this function to every couple of nodes in G: t(u, v) is the weight of a
shortest path in G from u to v. Each client i is associated with two moments bi
and ei. A taxi must drive that client between times bi and ei. The taxi can start
at any moment of the time window of its first client. We respectively define Bc
and Ec as the sets containing all the values bi and ei for all the clients.

Cost constraint. Each arc a = (u, v) ∈ A is weighted with a non-negative
integer ω(a), corresponding to the cost that a client would pay alone in a taxi
driving from u to v. We extend this function to every couple of nodes in G:
ω(u, v) is the cost of a shortest path in G from u to v. We define the desired
gain α < 1 as the minimum factor reducing the bill of each client. The cost
paid is divided between the passengers traveling on the same arc: for each
client i traveling in P , if vi = uj and v′i = uk, the cost paid by that client is

ωi =
k−1∑
l=j

ω(ul,ul+1)
nl

. This cost must satisfy ωi ≤ α · ω(vi, v
′
i). In that case, we

say the taxi P satisfies the client i.
Note that there would not be any feasible solution if the capacity of the taxi

is 1. This is why this case is forbidden.

Remark 1. A taxi P is only defined by waypoints in the road network: the
origins where it picks up clients and the destinations where it delivers them. In
order to draw the route of the taxi in the network, we follow the shortest paths
in G from uj to uj+1 for every j < 2 · s(P ). (We assume that a shortest path
over the costs ω is also a shortest path over the weights t.) That route is a
path of G that can contain intermediate nodes that are neither an origin nor a
destination of a client driven by P .

We can now define the problems max-DARP-M, max-1-DARP-M and 1-
DARP-M.

Definition 1. Given a directed graph G = (V,A) with non-negative weights ω
over the arcs, n clients with their origin Vc, their destinations V ′c and their time
windows Bc and Ec, a capacity capa ≤ n of the taxis, a desired gain α < 1,

• the max-DARP-M problem consists in finding a set P of taxis satisfying
the precedence constraint, the capacity constraint the time constraint and
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the cost constraint maximizing
∑
P∈P s(P ) such that for each client there

is a unique taxi of P in which that client travels;

• the max-1-DARP-M problem consists in finding a taxi P satisfying the
four constraints and maximizing s(P );

• the 1-DARP-M problem consists in deciding whether a taxi P satisfying
the four constraints exists.

We define also define two decision problems max-DARP-M= and max-1-DARP-
M= in which, given an instance of max-DARP-M or max-1-DARP-M and an
integer S, we search for a solution for which the objective value equals S. We
finally define the parameter W as max

i∈J1;nK
(ei − bi) + 1, the maximum width of a

time window.

The results are summarized in Table 1.

Table 1: This table summarizes the set of results in the paper. The parameters column
specifies which parameter is fixed or polynomialy bounded. An hyphen in the approximability
column means that the cell does not make sense, either because the problem is polynomial
(or XP), or because the line is about a decision problem. The last column indicates in which
theorem/corollary the result is proven.

Graphs Problem Parameters Comp. Approx. Result

Planar
graphs

max-DARP-M α, W , capa NP-H No approx. Cor. 2.1
max-1-DARP-M α, W , capa NP-H No approx. Cor. 2.1

1-DARP-M α, W , capa NP-C - Th. 2.1
All

graphs
max-DARP-M= S XP - Sect. 3.1.3
max-1-DARP-M= S XP - Sect. 3.1.3

DAG

max-DARP-M

W NP-H No approx. Th 3.3
W (poly), capa NP-H 1√

n
-approx Cor. 3.2

α, W , capa NP-H APX-H Th. 3.1
α, capa NP-H No approx. Cor. 3.1

max-DARP-M= S, α, W , capa W[1]-H - Th. 3.3

max-1-DARP-M
W NP-H No approx. Th 3.3

W (poly), capa XP - Th. 3.4
α, capa NP-H No approx. Cor. 3.1

max-1-DARP-M= S, α, W , capa W[1]-H - Th 3.3

1-DARP-M

W NP-C - Th. 3.3
W (poly), capa XP - Th. 3.4

α, capa NP-C - Th. 3.2
α, W , capa W[1]-H - Th. 3.3
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Remark 2. We studied the problems in two main cases: planar and acyclic
graphs. If the first may seem relevant considering the application, the second is
clearly not as a road network hardly is acyclic. However, there exists parame-
terized algorithms for the three problems in that case. Its could be used if the
circuits of the graph are removed (by defining a priority order over the nodes of
the graph using, for example, the time windows of the clients). Of course, this
restriction removes feasible solutions but according to Table 1, none of those fea-
sible solutions may be build in polynomial or FPT time by any parameterized
algorithm.

Remark 3. Note that, on every hardness result whereW is fixed, the reduction
first consists in setting the durations t to 0 and the time windows to [0, 0], so
that the time constraint is trivially satisfied and that W = 1. This means that
the same hardness results occur even if we remove the time constraint.

2. Planar graphs

This section is dedicated to proving that 1-DARP-M is NP-Complete and
that max-DARP-M and max-1-DARP-M are NP-Hard and cannot be approxi-
mated to within any constant or variable ratio, even if capa, α and W are fixed
and if the graph is planar.

In this proof, we fix capa = 2 and α ∈]0.5, 1[. Note that it is possible to
adapt the result for any fixed values of capa and α. This adaptation is not trivial
and make the proof harder to read. That is why we present in this section only
the simple case. We also consider that we remove the time constraint by setting
t(a) = 0 for every arc a ∈ A and bi = ei = 0 for all i and, in that case, W = 1.

Belonging to NP. We consider the decision version of max-1-DARP-M and max-
DARP-M in which, given an instance of the optimization problems and an
integer K, we search for a set of taxis or a unique taxi satisfying at least K
clients.

Those problems and 1-DARP-M belong to NP as, given a taxi, we can easily
determine whether the capacity, the cost and the precedence constraints are
satisfied for every client in the taxi and count how many clients are satisfied by
the taxi.

NP-hardness: the reduction. In this part, we prove a reduction from the 3-
partition problem to 1-DARP-M. We then deduce the hardness of approximation
results for the optimization problems.

Given n positive integers X = [x1, x2, . . . , xn], with n = 3m, the 3-partition
problem consists in the search for a partition S1 ] S2 ] · · · ] Sm of X such that
|Sj | = 3 and m ·

∑
x∈Sj

x =
∑
x∈X

x for all j ≤ m. Let B = 1
m

∑
x∈X

x. The 3-partition

problem is NP-Complete even if xi ∈]B/4;B/2[ for each i ≤ n [9].
We define two real values 1 ≤ φ ≤ Ω. We set those variables later in this

proof. Let n ≥ 7 be an integer and X = [x1, x2, . . . , xn] be an instance of 3-
partition such that xi ∈]B/4;B/2[ for each i ≤ n. We build an instance J =
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(G, (Vc, V
′
c , Bc, Ec), t, ω, capa, α) of 1-DARP-M as follows. As it was previously

said, we fix capa = 2, α ∈]0.5, 1[, t(a) = 0 for every a and bi = ei = 0 for every
client i.

There are 3 categories of clients :

• the main clients: m clients cj , for j ∈ J1;mK, going from uj to u′j ;

• 2 clients a1 and am, going respectively from v1 to v′1 and vm to v′m.

• m ∗ n clients dij , for i ∈ J1;nK, j ∈ J1;mK going from wij to wi′j .

Figure 1 illustrates the graph G and the costs ω. Note that, for each client
cj , the cost of a private ride is 2Ω. For the clients a1 and am, the cost is Ω. For
the clients dij for j 6= 1, the cost is φ and for the clients di1 the cost is φ + xi.
Note also that the graph is planar.

u1 v1 v′1

u2u′1

u3u′2

umu′m−1

vm v′m u′mΩ

Ω

Ω

Ω

Ω

A B

2Ω

2Ω

2Ω

...

A

w1
1

w2
1

w3
1

wm1

w1′
1

w2′
1

w3′
1

wm′1

w1
2

w2
2

w3
2

wm2

w1′
2

w2′
2

w3′
2

w4′
2

w1
n

w2
n

w3
n

wmn

w1′
n

w2′
n

w3′
n

wm′n

B

φ+ x1

φ

φ

φ

φ+ x2

φ

φ

φ

φ+ xn

φ

φ

φ

...
...

...

Figure 1: A reduction from 3-partition to max-1-DARP-M. Note that this graph can be drawn
planar if we move u1 and v1 above u2 and v′1 above u′1.
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We set Ω and φ as follows:

φ ≥ B + 1 (1)

Ω =
nφ+B + 1

2

4α− 2
(2)

We start by proving useful properties on φ and Ω.

Lemma 2.1. Ω and φ satisfy the following properties :

2Ω + nφ+B + 1

2
> 2αΩ (3)

2Ω + nφ+B

2
≤ 2αΩ (4)

3

2
Ω +

nφ

2
> 2αΩ (5)

Ω

2
> α · (φ+B) (6)

Proof. Equation (2) proves that

nφ+B

4α− 2
≤ Ω <

nφ+B + 1

4α− 2

nφ+B + 2Ω ≤ 4αΩ < nφ+B + 1 + 2Ω

and this proves Equations (3) and (4).
We now prove Equation (6). As α < 1,

4α(4α− 2) < 8 and 2α(4α− 2) < 4

We recall that n ≥ 7 and B > 0,

0 < (n+ 1− 4α(4α− 2))B + (n− 2α(4α− 2)) +
1

2

0 < (n− 2α(4α− 2))(B + 1) + (1− 2α(4α− 2))B +
1

2

By Equation (1)

0 < (n− 2α(4α− 2))φ+ (1− 2α(4α− 2))B +
1

2

2α(4α− 2)(φ+B) < nφ+B +
1

2

By Equation (2)

α · (φ+B) <
Ω

2
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Finally, we can similarly prove Equation (5). As n ≥ 7, α < 1 and B > 0,

0 < (n− (4α− 3))(B +
1

2
)

By Equation (1)

0 < nφ+ (3− 4α)(B +
1

2
)

0 < (4α− 2)nφ+ (3− 4α)(nφ+B +
1

2
)

By Equation (2)

0 < nφ+ (3− 4α)Ω

2αΩ <
nφ

2
+

3

2
Ω

NP-hardness: from X to J .

Lemma 2.2. We now assume X is a YES-instance, then, J is a YES-instance.

Proof. Let I1 ] I2 ] · · · ] Im be a partition of J1;nK such that
∑
i∈Ij

xi = B for

all j ≤ m. The taxi picks up c1 at u1 and drives the client a1 from v1 to v′1.
Then, for j ∈ J1;mK it drives each client cj from his origin to his destination
such that, when the taxi drives cj from position A to position B, it drives the
three clients d1

i for i ∈ Ij and one client dki for some k > 1 and every i 6∈ Ij .
Finally, while driving the client cm from um to u′m, it picks up the client am at
vm and delivers them at v′m. In that case, the client cj pays Ω

2 + nφ+B
2 + Ω

2 . By
Equation (4), the client cj satisfies his cost constraint. Each other client pays
exactly half of the price he would have pay alone. As α > 0.5, it is a feasible
solution for J satisfying every client.

NP-hardness: from J to X. In order to prove the converse of Lemma 2.2, we
first prove six intermediates results from Lemma 2.3 to 2.8.

Lemma 2.3. The three following cases are not possible :

• The taxi drives a client dij to a node which is not wi′j .

• The taxi drives the client a1 to a node which is not v′1.

• The taxi drives the client am to a node which is not v′m.
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Proof. If the taxi drives the client dij to any node different from wi′j , that client
must go through at least one arc of cost Ω in order to reach his destination. By
equation (6), even if there is another client in the taxi with dij , he has to pay
at least α · (φ+B). However, in a private drive, dij pays φ or φ+ xi depending
on whether j = 1 or not. As xi ∈]B4 ; B2 [ for every i, dij cannot satisfy his cost
constraint. A similar argument proves the two other cases.

Lemma 2.4. A feasible solution must start at u1.

Proof. By enumerating every case, we prove that a taxi starting at any other
position should pick up a client that could not satisfy the cost constraint.

1. If the taxi starts at wi1, the client di1 must pay φ + xi alone, and then,
cannot satisfy his cost constraint. Similarly the taxi cannot start at wij
for any j > 1.

2. If the taxi starts at v1, the client a1 must pay Ω alone, and then, cannot
satisfy his cost constraint. Similarly, the taxi cannot start at vm.

3. If the taxi starts at ui, for any i ≥ 2, the client ci must firstly pay at
least Ω to reach position A. Then he pays at least nφ+Ω

2 from A to his
destination. By Equation (5), he cannot satisfy his cost constraint.

Lemma 2.5. All the following cases are not possible :

1. the taxi drives through an arc (ui, u
′
i)

2. the taxi drives ci to the node uj, for j 6= i+ 1

3. the taxi drives ci to the node u′i but does not deliver it

4. the taxi drives ci to the node u′i alone, for i 6= m

5. the taxi never picks up a1 while driving c1

6. the taxi never picks up am while driving cm

Proof. If the first statement is true, then, by Lemma 2.3, the taxi can drive only
one client cj or two clients cj and ck through that arc. Because a client alone
in the taxi would have to pay at least 2Ω > 2αΩ, he would not satisfy his cost
constraint. Consequently, there are two clients cj and ck. One of them is not
ci. Without loss of generality, we assume that k 6= i. That client would have
then to pay at least Ω through the arc (ui, u

′
i), then to reach position A, then

to pay at least nφ
2 to reach position B and, finally, to pay at least Ω

2 to reach
u′k. By Equation (5), he cannot satisfy his cost constraint.

If the taxi goes to uj with the client ci, he pays at least Ω
2 + nφ

2 to go to
uj from ui. In order to reach his destination, he has to pay at least twice Ω

2 ,
through the arc (uj , u

′
j−1) and through the arc (ui+1, u

′
i). By Equation (5), he

cannot satisfy his cost constraint, this proves that the case 2 is not possible.
The cases 3 to 6 can be similarly proven.
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Lemma 2.6. While driving the client ci from his origin to his destination, the
taxi drives exactly n clients dkj from their respective origin to their respective
destination.

Proof. By the first statement of Lemma 2.5, in order to reach u′i, the client
ci must go from position A to position B. If the taxi reaches position A with
ci, that client is alone. Indeed, by Lemma 2.3, clients a1, am and dkj cannot
be driven to position A, and if the taxi drives another client cj to position A
from ui, this contradicts one of the four first statements of Lemma 2.5. If we
assume that strictly less than n clients dkj are driven from their respective origin
to their respective destination, ci pays at least φ + (n−1)φ

2 in order to reach
position B from position A. As the taxi goes through at least one arc of cost Ω
to reach position A from ui and to reach u′i from position B, his ride costs at
least Ω

2 +φ+ (n−1)φ
2 + Ω

2 . Note that the same occurs if more than n such clients
are driven.

By Equation (1)

Ω + φ+
(n− 1)φ

2
≥ Ω +

(nφ+B + 1)

2

By Equation (3)

Ω + φ+
(n− 1)φ

2
> 2αΩ

Consequently, the taxi must picks up and delivers exactly n clients dkj from
position A to position B.

Lemma 2.7. In a feasible solution for J , every client is satisfied.

Proof. By Lemmas 2.4, 2.5, 2.6, if there is a feasible solution, the taxi must
start at u1 and drive each client ci from his origin to his destination, each one
goes from position A to position B and then is driven with exactly n clients dij .
As there are m clients ci and n∗m clients dij , every client dij is satisfied. Finally,
a1 and am must be picked up and delivered by Lemma 2.5.

Lemma 2.8. While driving ci from his origin to his destination, it must drive
exactly three clients d1

i1
, d1

i2
and d1

i3
such that xi1 + xi2 + xi3 ≤ B.

Proof. By Lemma 2.6, the set containing the clients d1
i is partitionned into m

subsets, one subset Sj for each client cj , each client of Sj is driven with cj .

Then the client cj pays at least Ω
2 +

nφ+
∑

i∈Sj

xi

2 + Ω
2 . If

∑
i∈Sj

xi ≥ B + 1, by

Equation (3), the client cj cannot satisfy his cost constraint.
Moreover, if |Sj | < 3, as n = 3m, there is a client ck such that |Sk| > 3. As

xi ∈]B4 ; B2 [,
∑
i∈Sk

xi ≥ B + 1 and ck cannot satisfy his cost constraint.
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Lemma 2.9. We now assume J is a YES-instance then X is a YES-instance.

Proof. There exists a taxi satisfying at least one client. By lemma 2.7, every
client ci is satisfied by that taxi. By Lemma 2.8, such a solution proves the
existence of a partition S1]S2]· · ·]Sm such that

∑
x∈Sj

x ≤ B. As
∑
x∈X

x = mB,

then
∑
x∈Sj

x = B for all j. Consequently, X is a YES-instance.

By Lemma 2.2 and 2.9, we can deduce the following theorem.

Theorem 2.1. 1-DARP-M is NP-Complete even if G is planar and if α, capa
and W are fixed.

Corollary 2.1. max-DARP-M and max-1-DARP-M are NP-Hard and, unless
P = NP, cannot be approximated in polynomial time to within any variable ratio,
even if G is planar and if capa, α and W are fixed.

Proof. If we assume there exists a polynomial r-approximation algorithm A for
max-DARP-M, where r is a function from N to Q+ satisfying 0 < r(p) < 1.
Let J be an instance of 1-DARP-M and max-DARP-M. If no client can be
satisfied, the optimal solution of J is 0. Thus A returns a solution of value
r(|J |) · 0 = 0. If some client is satisfied, the optimal solution of J is greater
than 1 and A returns a solution of value greater than r(|J |) · 1 > 0. We can
then decide in polynomial time whether at least one client can be satisfied or
not. There is then a contradiction with Theorem 2.1. The same result occurs
for max-1-DARP-M.

3. Directed acyclic graph

In the previous section, we proved hardness results for all the DARP-M prob-
lems even if we strongly restrict the instance. The reduction from 3-partition
produced an instance in which any taxi must satisfy all the clients by cycling
in the graph, driving multiple time through the same roads. Consequently, we
study, in this section, the directed acyclic graph case, in order to establish the
influence of directed cycles on the complexity of DARP-M.

Obviously, such a case hardly ever occurs on real road networks and finding a
polynomial time algorithm does not seem relevant. However, we can arbitrarily
order the nodes of the graph. For example, each client i is associated with a
time window [bi, ei] ; we can order the origins and the destinations of the clients
using the values of bi for the origins and ei for the destination. For instance,
the taxi could drive from the origin vi to the origin vj only if bi < bj .

In this section, we show some hardness results for the acyclic case, a param-
eterized algorithm for 1-DARP-M and max-1-DARP-M with respect to capa
and W , and an parameterized 1√

n
-approximation algorithm for max-DARP-M

in capa and W .

12



3.1. Hardness results
3.1.1. Hardness of approximation for max-DARP-M

In this section, we prove a hardness of approximation result for max-DARP-
M when G is a DAG and when the parameters α, capa and W are fixed.

The reduction. We prove a reduction from the 3-Dimentional Matching problem
(3DM). Given three finite disjoint sets X,Y and Z, and a subset S of triplets
of X × Y × Z, (3DM) consists in the search for a maximum size subset M of
S such that for every couple (m1,m2) of M , m1 and m2 are disjoint. (3DM) is
NP-Complete and APX-Complete. [12]

From an instance I = (X,Y, Z, S) of (3DM), we now build an instance
J = (G, (Vc, V

′
c , Bc, Ec), ω, t, capa, α) of max-DARP-M where capa and α are

fixed such that I has a feasible solution of size K if and only if J has a feasible
solution with K taxis satisfying 7K clients. An example is given in Figure 2.
We consider that we remove the time constraint by setting t(a) = 0 for every
arc a ∈ A and bi = ei = 0 for all i and, in that case, W = 1.

For each set s = (x, y, z) ∈ S, we define four clients cs, cxs , cys and czs going
respectively from vs, vxs , vys and vzs to v′s, vx′s , vy′s and vz′s . For each element x
of X (respectively y of Y and z of Z), we add a client dx, (respectively dy and
dz) going from wx to w′x (respectively wy to w′y and wz to w′z).

We add an arc (wx, w
′
x) of cost 1 for each x ∈ X. We add similar arcs for

each y ∈ Y and each z ∈ Z. For each set s = (x, y, z) ∈ S, we add four arcs
(vs, v

x
s ), (vx′s , v

y
s ), (vy′s , v

z
s ) and (vz′s , v

′
s) of cost 0. We also add two arcs (vxs , wx)

and (w′x, v
x′
s ) of cost 0. We similarly link the nodes of cys and czs to the origin

and destination of dy and dz.
Finally, we set capa = 3 and α = 1

3 . Consequently, there must be 3 clients
in the taxi when it drives through an arc of cost non-zero.

Note that G is a DAG.

NP-Hardness. .

Theorem 3.1. max-DARP-M is NP-Hard and APX-Hard, even if G is a DAG
and if α and capa are fixed.

Proof. As α = 1
3 and capa = 3, there must be 3 clients in the taxi while it is

driving through an arc of cost 1. Any taxi must then start at a node vs for some
s = (x, y, z) ∈ S and end at v′s, otherwise, there cannot be enough client in the
taxi to satisfy any cost constraint. Let Ps be such a taxi. We now show that
there is only one possible path Ps going from vs to v′s. The taxi must go either
to vxs or wx as it cannot reach another node with an arc of cost 0. If the taxi
goes to wx directly, it would have to drive through the arc (wx, w

′
x) of cost at

least 1 with at most 2 clients and thus, would not satisfy the cost constraint of
the clients cs and dx. Consequently, the taxi Ps must pick up the clients cs, cxs
and dx, and goes to w′x and vx′s to deliver cxs and dx. Similarly, Ps must satisfy
cys , dy, czs and dz before reaching v′s.

A feasible solution can contain two taxis Ps1 and Ps2 if and only if s1∩s2 6= ∅.
Indeed, if, for instance, s1 ∩ s2 = {x}, the two taxis would have to pick up the
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vx3
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1
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Figure 2: Example of reduction from (3DM). Every unspecified cost is 0. An optimal solution
of (3DM) is 2: for example the sets A and C. An optimal solution for max-DARP-M is 14
with two taxis, for example the taxi starting at vA and ending at v′A and the taxi from vC to
v′C .

same client dx. Consequently, there is a feasible solution for I of size K if and
only if there is a feasible solution of J with K taxis. As each taxi satisfies 7
clients, the solution satisfies 7K clients.

LetM∗ = {s∗1, s∗2, . . . , s∗K∗} be an optimal solution for I of sizeK∗. Then, an
optimal solution P∗ = (P ∗s∗1 , P

∗
s∗2
, . . . , P ∗s∗

K∗
) for J has K∗ taxis and satisfies 7K∗

clients. If we assume there is a polynomial α-approximation for max-DARP-
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M, such an algorithm would return a feasible solution P = (Ps1 , Ps2 , . . . , PsK )
satisfying 7K clients such that α7K∗ ≤ 7K. Consequently, we could build in
polynomial time a feasible solution {s1, s2, . . . , sK} for I of size K such that
αK∗ ≤ K. Thus, there is a polynomial α-approximation for (3DM). As (3DM)
is NP-Complete and APX-Complete and as G is a DAG in the reduction, this
concludes the proof.

Remark 4. The previous proof can be adapted to any fixed values of capa and
α such that capa ≥ 1

α ≥ 3 by replacing every client dx, dy or dz by
⌈

1
α

⌉
− 2

clients. The nodes wx and w′x (similarly wy and w′y or wz and w′z) would be
replaced by two paths respectively containing the

⌈
1
α

⌉
−2 origins and the

⌈
1
α

⌉
−2

destinations of those new clients. Every arc of those paths would have a cost 0.
And an arc of cost 1 would link the last origin to the first destination.

3.1.2. NP-Hardness when W is not bounded
We give, in this part, a proof that 1-DARP-M is NP-Complete, even if the

graph is a DAG and if α and capa are fixed.

The reduction. We prove a reduction from the partition problem (PART). Given
a finite set of integers X = {x1, x2, . . . , xn}, is it possible to part J1;nK into two
parts I ] J such that

∑
i∈I

xi =
∑
i∈J

xi. (PART) is weakly NP-Complete [9].

From an instance I = (X) of (PART), we now build an instance J =
(G, (Vc, V

′
c , Bc, Ec), ω, t, capa, α) of 1-DARP-M where G is a DAG and where

capa and α are fixed. Let B =
∑
x∈X

x/2. We fix capa = 2 and α = 1
2 . We define

three main clients c1, c2 and c3 going respectively from v1 to v′1, v2 to v′2 and
v3 to v′3. We also define 2n clients d1

1, d
1
2, . . . , d

1
n and d2

1, d
2
2, . . . , d

2
n. The client

dji goes from wji to wj′i .
The graph G, the costs ω and the times t are illustrated on Figure 3.

v1

v2 v′2

w1
1

w2
1

w1′
1

w2′
1

w1
2

w2
2

w1′
2

w2′
2

w1
n

w2
n

w1′
n

w2′
n

v3 v′3

v′1

1, 0

1, x1

1, 0

1, x2

1, 0

1, xn

1, 0

1, 0

Figure 3: Example of reduction from (PART) to 1-DARP-M. On each arc a, we write the
values ω(a) and t(a) in that order. If no number is given, the two values are 0.

The time window of c2 is [0, 0]. The time window of c3 is [B,B]. For all the
other clients, the time window is [0, B].

Theorem 3.2. 1-DARP-M is weakly NP-Complete even if G is a DAG and if
α and capa are fixed.
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Proof. As α = 1
2 and capa = 2, there must be 2 clients in the taxi while it is

driving through an arc of cost 1. Consequently, the taxi must pick up the client
c1. In order to go to v′1, the taxi must drive through (v2, v

′
2) and, then, must

also pick up c2. Similarly it must pick up c3 and, for each i ∈ J1;nK, either d1
i

or d2
i . Let I be the subset of J1;nK such that i ∈ I if d1

i is picked up.
Due to the time window of c2, the taxi must arrive at v2 at time 0 otherwise

the time constraint cannot be satisfied. Similarly it must arrive at v3 at time B.
The moment when the taxi reaches v3 is

∑
i∈I

t(w1
i , w

1′
i ) +

∑
i 6∈I

t(w2
i , w

2′
i ) =

∑
i∈I

xi.

Thus, there exists a feasible taxi if and only if
∑
i∈I

xi = B =
∑
i 6∈I

xi. This

concludes the proof.

From Theorem 3.2, we can deduce the following results.

Corollary 3.1. max-DARP-M and max-1-DARP-M are weakly NP-Hard and,
unless W is polynomialy bounded or P = NP, cannot be approximated in poly-
nomial time to within any variable ratio, even if G is a DAG and if capa and
α are fixed.

3.1.3. NP-Hardness and Parameterized Hardness with respect to the number of
satisfied clients

If we search for a taxi satisfying exactly S clients, we can enumerate every
subset of S clients and check if a taxi only satisfying that subset exists, and this
give an XP algorithm for max-1-DARP-M= and max-DARP-M= with respect
to S. We prove in this subsection that a better algorithm is hardly to exist as
max-1-DARP-M= and max-DARP-M= are W[1]-hard in S, capa, α and W .

We also demonstrate that the three problems, max-1-DARP-M, max-DARP-
M and 1-DARP-M are NP-Complete and cannot be approximated in polynomial
time even if W is fixed and that 1-DARP-M is W[1]-hard in capa, α and W .

The reduction. We describe an FPT-Reduction from the partitioned clique
problem. Given an undirected graph G = (V = V1 ] V2 ] · · · ] Vk, E) where V
is partitioned into k independent sets, the partitioned clique problem consists
in the search for a clique of size k. Any such clique contains exactly one node
in each part Vi. This problem is NP-Complete and is W[1]-hard with respect
to k [16].

From a parameterized instance G of the partitioned clique problem, we build
an instance J of max-1-DARP-M such that the graph is a DAG. We consider
that we remove the time constraint by setting t(a) = 0 for every arc a ∈ A and
bi = ei = 0 for all i and, in that case, W = 1. While describing J , we explain
how the reduction works on a simple example, given in Figure 4.

Our goal is to create a directed acyclic graph H = (W ∪X,A).
W contains two nodes wvu and wv′u for each edge (u, v) of G. It is partitioned

into k layers and each layer is partitioned into k − 1 sublayers. We write Wi

for layer i. The sublayers of layer i are numbered from 1 to k except i and we
write W j

i for sublayer j of layer i. For each edge {u, v} in E such that u ∈ Vi
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and v ∈ Vj and i < j, we add a client cvu with the origin wvu ∈ W j
i and the

destination wuv ∈W i
j .

Each sublayer is a stable set. A node wv1u1
∈ W j

i is linked to a node wv2u2

of the next sublayers of Wi (W
j+1
i if j 6= i − 1, W i+1

i otherwise) if u1 = u2.
Note that this common node is necessarily in Vi. Note also that each layer is
an acyclic graph.

X is a set of k − 1 paths. For each i ∈ J1; k − 1K, we add to H a path
(x1
i , x

2
i , . . . , x

di
i , x

1′
i , x

2′
i , . . . , x

di′
i ) where di = (k−1)·k

2 − i · (k− i). We also add di
clients Di = {d1

i , d
2
i , . . . , d

di
i }. Each client dli goes from xli to xl′i . Let Xi be the

set of origins of those clients and X ′i be the set of destinations. All the nodes
of the last sublayer of each layer Wi, for i 6= k, are linked to x1

i , and, similarly,
xdi′i is linked to all the nodes of the first layer of Wi+1.

We can easily see that H does not contain a circuit as each layerWi is acyclic
and as it is only connected to the following layer with the path Xi ∪X ′i.

The cost of every arc (xdii , x
1′
i ) is 1. For every other arc, the cost is null.

Finally, we set S = (k−1)·k
2 +

k−1∑
p=1

dp, capa = (k−1)·k
2 and α = 1

capa . Any taxi

driving through an arc of cost non-zero must contains capa clients otherwise the
cost constraint cannot be satisfied.

We only give, in this section, the key idea of the reduction. The formal proof
is given in Appendix A.

Key idea of the reduction. Firstly, we assume we search for a taxi satisfying S
clients. That taxi must satisfy exactly one client per sublayer and all the clients
of Di. The way H is built make the taxi do a choice: while traversing the
k − 1 sublayers of Wi, the taxi must choose a node vi of Vi because each such
node is associated with a connected component of the layer Wi. For example,
the component of 4 in Figure 4, represented with dotted nodes, is {w1

4, w
2
4, w

6
4}.

While driving through a node containing 4 in W 1
2 , it is not possible anymore to

go to a node containing 3 or 5 in W 1
2 or W 3

2 . Thus, it is not possible to drive
to a node containing 3 or 5 in any other set, because this would mean that a
client is picked up and not delivered. Thus, the taxi must choose one node vi
per set Vi. Consequently, the taxi build a set C = {vi ∈ Vi, i ∈ J1;nK}. While
crossing the k − 1 sublayers of Wi, it must also choose k − 1 edges of G, one
incident edge to vi for each of the k− 1 sets corresponding to the index i. Each
of those edges selects a node of a set Vj , for j 6= i. This node is vj for each j if
and only if the set C is a clique. For example, a valid taxi corresponding to the
clique {2, 5, 7} is drawn in Figure 4 with bold arcs and nodes. If, on the other
hand, the taxi chooses to start with the nodes w4

2 and continue with w7
2, then

it must continue to w4′
2 in order to satisfy the client c42. It is then not possible

to satisfy three clients: either it drives c72 to his destination or forget this client
and drives c64. This is due to the fact that the taxi must choose a node of W 3

2

containing 4 but the edge {4, 7} does not exists in G thus, the taxi must choose
another node.

Secondly, in order to go from one layerWi to the following layer, a taxi must
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Figure 4: Example of reduction from the Partitioned Clique problem. There are 3 stable sets
in G: V1, V2 and V3; and 6 sublayers in H: W 2

1 , W
3
1 , W

1
2 , W

3
2 , W

1
3 and W 2

3 . Each layer is
separated from the other with an horizontal dashed line. The two paths of X are on the right.
Note that there are dashed lines joining the origin and the destination of each client cvu for
information. Those lines are not edges or arcs of the graph. Every cost which is not specified
is 0.

go through the path Xi∪X ′i and thus it must go through an arc of cost 1. When
this happens, as α = 1

capa , the taxi must be full: it must picks up every clients
of Di. For example, in Figure 4, capa = 3. Any taxi must picks up the clients d1

1

and d1
2 in order to go through (x1

1, x
1′
1 ) and (x1

2, x
1′
2 ). Thus there cannot be more

than one taxi in a feasible solution otherwise the two taxis must satisfy some
same clients and this is not allowed. Consequently, a feasible solution satisfying
S clients can contain only one taxi.

Finally, a taxi must satisfy S clients. Indeed, it must pick up a client from
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W k
1 and delivers it at W 1

k . Otherwise there is no way for it to pick up capa
clients before going though an arc of cost 1. Thus it must satisfy exactly one
client per set W j

i and all the clients of every set Di.

Theorem 3.3. Even if G is a DAG,

• 1-DARP-M is W[1]-hard with respect to capa, α and W ;

• max-DARP-M= and max-1-DARP-M= are W[1]-hard with respect to S,
capa, α and W ;

• 1-DARP-M is NP-Complete and max-DARP-M, max-1-DARP-M are NP-
Hard and cannot be approximated in polynomial time to within any variable
ratio even if W is fixed.

The proof of this theorem is given in Appendix A.

3.2. Parameterized algorithms
In this section, we first give an algorithm to solve max-1-DARP-M in a

DAG in pseudopolynomial time when capa is fixed. We then deduce a
√
n-

approximation algorithm for max-DARP-M in a DAG in pseudopolynomial time
when capa is fixed.

3.2.1. A parameterized algorithm for max-1-DARP-M
We consider an instance I = (G, (Vc, V

′
c , Bc, Ec), t, ω, capa, α) with n clients

and where G is a DAG. We assume that, in G, there is a path from any origin
vi ∈ Vc to the corresponding destination v′i ∈ V ′c : there is no path from v′i to vi.
We finally consider that there is no intermediate point: V = Vc ∪V ′c . Every arc
(u, v) corresponds to a shortest path from u to v in the road network if such a
path exists.

Definition 2. We now define an auxiliary graph S(I) in which each node is
associated with a state corresponding to the taxi leaving a node u ∈ V at time
t with a set S of at most capa clients and such that κ clients already entered
the taxi (including the clients who have left the taxi and the clients who have
not); we write that state w(u, t, S, κ), u ∈ V , t ∈ [bi, ei] if u = vi or if u = v′i,
S ⊂ J1;nK, |S| ≤ capa, κ ∈ J1;nK. An arc is a transition between two states:
we add an arc (w(u1, t1, S1, κ1), w(u2, t2, S2, κ2)) in S(I) if and only if all the
following three properties are true:

1. S1 6= ∅

2. there is a path from u1 to u2 in G;

3. t2 − t1 = t(u1, u2)

4. • either u2 is the origin vi of client i, S2 = S1 ] {i} and κ2 = κ1 + 1

• or u2 is the destination v′i of client i, S1 = S2 ] {i} and κ2 = κ1
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Figure 5: Example of transformation from I to the auxiliary graph S(I). For readability,
we do not consider, in this figure, the time windows, and some states like w(v3, t, 3, 1) or
w(v4, t, 4, 1) are missing. The weight of each arc a on the upper graph is the cost ω(a). For
each state w(u, t, S, κ) contains u, S and κ respectively on the lower left part, the upper part
and the lower right part of the node. The time t is not given.

An example is given in Figure 5.
As the existence of an arc between two states w(u1, t1, S1, κ1) and w(u2, t2, S2, κ2)

implies that there is a path from u1 to u2 in G and as G is a DAG, we can deduce
the following property.

Property 1. S(I) is a DAG.

We now introduce Algorithm 1, which solves max-1-DARP-M using the aux-
iliary graph S(I). We then prove the polynomial time complexity and the cor-
rectness of the algorithm.

For each node w = (v, t, S, κ) ∈ S(I), we define a set P(w) of mappings
associating to each client of S a non negative real: each mapping represents a
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possible taxi driving the clients of S through v and p(i) is the cost that the
client i has already paid from its origin to v in that taxi.

Definition 3. Let w = (v, t, S, κ) ∈ S(I), and p and p′ be two mappings of
P(w). We say p dominates p′ if, for every client i in S, p(i) ≤ p′(i). We write
p � p′.

We use Algorithm 1 to compute all the sets of mappings of the auxilliary graph
and to deduce a feasible solution for I.

Each set P(w) is built recursively using the sets of mappings of all pre-
decessors of w. In order to simplify Algorithm 1, we define, for each arc
(w1, w2) ∈ S(I), a set of intermediate mappings P(w1, w2) which can be seen as
the subset of P(w2) built from the state w1 with useful additional information.
This set is built with the SUBMAP function, described in Algorithm 2. In ad-
dition, a BUILD function is given in Algorithm 3 to build a solution. Table 2
illustrates some iterations of the algorithm on the example given in Figure 5.

Algorithm 1 Main algorithm
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), t, ω, capa, α) of max-1-DARP-M

Ensure: an optimal solution for I
1: Build the auxiliary graph S(I)
2: For each client i ∈ J1;nK and t ∈ [bi, ei] Do
3: pi ← a mapping associating 0 to the client i
4: P(w(vi, t, {i}, 1))← {pi}
5: pred(pi)← null

6: L← a topological ordering of S(I)\{w(vi, {i}, 1)|i ∈ J1;nK}
7: For each w = w(v, t, S, κ) ∈ L Do
8: P(w)← ∅
9: For each predecessor w− = w(v−, t−, S−, κ−) of w Do

10: P(w−, w)← SUBMAP(I,S(I), (w−, w),P(w−))
11: For each (p, w−, p−) ∈ P(w−, w) Do
12: If For all p′ ∈ P(w), p′ 6� p Then
13: remove from P(w) every mapping p′ such that p � p′
14: add p to P(w)
15: pred(p)← (w−, p−)

16: T ← {w = w(v′i, t, ∅, κ)|i, κ ∈ J1;nK,P(w) 6= ∅}
17: If T = ∅ Then Return no solution.
18: τ ← argmax{κ|w(v′i, t, ∅, κ) ∈ T}
19: p← a mapping of P(τ)
20: Return BUILD(I,S(I), pred, τ, p)

Due to the length of this part, we put the proof of correctness of Algorithm 1
in Appendix B.

The end of this part is dedicated to proving that, for every node w =
(v, t, S, κ) ∈ S(I), the size of P(w) is polynomial if capa is fixed and if W is

21



Algorithm 2 SUBMAP Function
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), t, ω, capa, α) of max-1-DARP-

M, the auxiliary graph S(I), an arc (w1 = w(u1, t1, S1, κ1), w2 =
w(u2, t2, S2, κ2)) ∈ S(I), a set P(w1) of mappings from S1 to R+

Ensure: a set P(w1, w2) of mappings from S2 to R+

1: function SubMap(I,S(I), (w1, w2),P(w1))
2: P(w1, w2)← ∅
3: For each mapping p1 ∈ P(w1) Do
4: Initialize a mapping p2 of S2 → R+

5: For each client i ∈ S1 Do
6: If p1(i) + ω(u1,u2)

|S1| ≤ α · ω(vi, v
′
i) Then

7: If i ∈ S2 Then p2(i)← p1(i) + ω(u1,u2)
|S1|

8: Else
9: Continue loop For at Line 3

10: If S2 contains a client i not in S1 Then, p2(i) = 0

11: Add (p2, w1, p1) to P(w1, w2)

12: Return P(w1, w2)

Algorithm 3 BUILD Function : Build a partial solution from a selected node.
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), t, ω, capa, α) of max-1-DARP-

M, the auxiliary graph S(I), a predecessor function pred,a node w =
w(u, t, S, κ) ∈ S(I) and a mapping p of P(w)

Ensure: an path ending at u in G
1: function Build(I,S(I), pred, w, p)
2: P ← {u}
3: If pred(p) 6= null Then
4: (w−, p−)← pred(p)
5: P ← P∪ BUILD(I,S(I), pred, w−, p−)

6: Return P
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Table 2: Example of iterations of the For loop at Line 7 of Algorithm 1 on the instance given
in Figure 5. We assume that every duration t(a) is 0 and that every time window contains 0.
The first part ends with a state containing two pareto optimum mappings whereas the second
part ends with an iteration where a mapping is not inserted in P(w) because it is dominated
by an existing mapping.-

w w− P(w−, w) P(w)

w({1, 3}, 0, v3, 2) w({1}, 0, v1, 1) 1→ 1, 3→ 0 1→ 1, 3→ 0

w({1}, 0, v′3, 2) w({1, 3}, 0, v3, 2) 1→ 2 1→ 2

w({1, 2}, 0, v2, 3) w({1}, 0, v′3, 2) 1→ 3, 2→ 0 1→ 3, 2→ 0

w({1, 2}, 0, v2, 2) w({1}, 0, v1, 1) 1→ 1, 2→ 0 1→ 1, 2→ 0

w({1, 2, 4}, 0, v4, 3) w({1, 2}, 0, v2, 2) 1→ 2, 2→ 1, 4→ 0 1→ 2, 2→ 1, 4→ 0

w({1, 2}, 0, v′4, 3) w({1, 2, 4}, 0, v4, 3) 1→ 4, 2→ 3 1→ 4, 2→ 3

w({1, 2, 5}, 0, v5, 4) w({1, 2}, 0, v2, 3) 1→ 6, 2→ 3, 5→ 0 1→ 6, 2→ 3, 5→ 0

w({1, 2, 5}, 0, v5, 4) w({1, 2}, 0, v′4, 3) 1→ 5, 2→ 4, 5→ 0
1→ 6, 2→ 3, 5→ 0

1→ 5, 2→ 4, 5→ 0

w({1, 4}, 0, v4, 2) w({1}, 0, v1, 1) 1→ 3, 4→ 0 1→ 3, 4→ 0

w({1}, 0, v′4, 2) w({1, 4}, 0, v4, 2) 1→ 6 1→ 6

w({1, 5}, 0, v5, 3) w({1}, 0, v′4, 2) 1→ 8, 5→ 0 1→ 8, 5→ 0

w({1, 5}, 0, v5, 3) w({1}, 0, v′3, 2) 1→ 9, 5→ 0 1→ 8, 5→ 0

bounded by polynomial in |I|, and deduce that Algorithm 1 is XP with respect
to capa when W is polynomially bounded.

Definition 4. Let w = (v, t, S, κ) ∈ S(I), for every subset I ⊂ S, we define
p|I as the subvector of p restricted to every client of I. The set P(w, I) is the
subset of pareto optimal vectors of {p|I , p ∈ P(w)}, i.e. for any two distinct
mappings p and p′ of P(w, I), p 6� p′ and p′ 6� p.

Note that P(w, S) = P(w) due to Lines 12 and 13 of Algorithm 1.
We want to prove the following properties:

Property 2. Let w = (u, t, I ] J, κ) ∈ S(I), with |I| ≥ 2, and if u is the origin
of a client in I, then |P (w, I)| ≤ n(capa−1)·(|I|−2) ·W |I|−2.

Property 3. Let w = (u, t, I ] J, κ) ∈ S(I), with |I| ≥ 1, and if u is not the
origin of any client in I then |P (w, I)| ≤ n(capa−1)·(|I|−1) ·W |I|−1.

We prove the two properties by induction on the size of |I|. Each property
alternatively proves the other one. The following lemmas proves that Property 3
is true when |I| = 1, that if Property 3 is true when |I| ≤ s for some constant
s, then Property 2 is true when |I| = s+1, and, finally, when Property 2 is true
when |I| ≤ s for some constant s, then Property 3 is true when |I| = s.

Lemma 3.1. Property 3 is true when |I| = 1.
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Proof. Let I = {i}. In that case, every mapping of |P (w, I)| maps some positive
real to the client i. There can be only only one pareto optimal mapping: the
one associating the smallest real to i.

Lemma 3.2. If, for some constant s ≤ capa, Property 3 is true when 1 ≤ |I| ≤
s, then Property 2 is true when |I| = s+ 1.

Proof. Let w = w(u, t, I ] J, κ), we assume I = {i1, i2, . . . , is+1}. We assume
that u is the origin of some client in I and, in any topological ordering of G,
vij is before vik if and only if j ≤ k. Then u = vis+1

and for any mapping p of
P(w), p(is+1) = 0. If we consider two mappings p and p′ of P(w), p|I\is+1

�
p′|I\is+1

if and only if p|I � p′|I . Thus, |P(w, I)| = |P(w, I\is+1)|. By the
hypothesis, |P (w, I\is+1)| ≤ n(capa−1)·(s−1) ·W s−1 = n(capa−1)·(|I|−2) ·W |I|−2.
Thus Property 2 is proved for I.

In order to prove the last lemma, we first prove an intermediate result.

Definition 5. Using the pred array, we can define a precedence tree of mappings
in which p− is linked to p if pred(p) = (w−, p−) for some state w−. Let w1 =
w(u1, t1, I ] J1, κ1) and w2 = w(u2, t2, I ] J2, κ2) such that there is a path from
w1 to w2 in S(I). We say that a mapping p1 of P(w1) generates p2 of P(w2) if
there is a path of mappings from (w1, p1) to (w2, p2) in the precedence tree.

Lemma 3.3. Let w1 = w(u1, t1, I ] J1, κ1) and w2 = w(u2, t2, I ] J2, κ2) such
that there is a path from w1 to w2 in S(I). Let q1 be a mapping of P(w1, I)
and p1 and p′1 be two mappings of P(w1) such that p1|I = q1 and p′1|I = q1. Let
p2 and p′2 be two mappings of P(w2) such that p1 generates p2 and p′1 generates
p′2. Let finally q2 and q′2 be p2|I and p′2|I . Then q2 � q′2 or q′2 � q2.

Proof. We first assume that w1 is a predecessor of w2. Note that, due to Al-
gorithm 2 at Line 7, p2(i) − p1(i) = p′2(i) − p′1(i) equals ω(u1,u2)

|I]J1| for every
clients i ∈ I ⊂ S1. Since p1|I = p′1|I = q1, p1(i) = p′1(i) = q1(i) and then
q2(i) = p2(i) = p′2(i) = q′2(i).

We can similarly show the same property if w1 is an ancestor of w2 instead
of just a predecessor. In that case, there are intermediates mappings between
p1 and p2, and between p′1 and p′2. There is a path (w1 = x1, x2, . . . , w2 =
xl) such that p1 generates a mapping px2

of x2 which generates a mapping
px3

of x3, . . . There is also a path (w1 = x′1, x
′
2, . . . , w2 = x′k) such that p′1

generates a mapping p′x2
of x′2 which generates a mapping p′x3

of x′3, . . . Let
xi = w(uxi , t

x
i , S

x
i , κ

x
i ) and x′i = w(ux

′

i , t
x′

i , S
x′

i , κ
x′

i ). Due to Algorithm 2 at

Line 7, p2(i)− p1(i) =
l−1∑
i=1

ω(ux
i+1−u

x
i )

|Sx
i |

and p′2(i)− p′1(i) =
l−1∑
i=1

ω(ux′
i+1−u

x′
i )

|Sx′
i |

. Since

p1|I = p′1|I = q1, for all i ∈ I, p1(i) = p′1(i) = q1(i) and then depending whether
l−1∑
i=1

ω(ux
i+1−u

x
i )

|Sx
i |

≥
l−1∑
i=1

ω(ux′
i+1−u

x′
i )

|Sx
i |

or not, either for all i ∈ I q2(i) ≥ q′2(i) or for

all i ∈ I q2(i) < q′2(i).
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Lemma 3.4. If, for some constant s ≤ capa, Property 2 is true when 2 ≤ |I| ≤
s, then Property 3 is true when |I| = s.

Proof. Let w = w(u, t, I ] J, κ), we assume I = {i1, i2, . . . , is} and u is not the
origin of any client in I.

Let
A =

⋃
t′∈[eis ,bis ]

J′⊂J1;nK\I
|J′|≤capa−|I|
κ′∈J1;nK

P(w(vis , t
′, I ] J ′, κ′), I)

. We want to prove that |P(w, I)| ≤ |A|.
We define a function anc associating to each mapping of P(w, I) a mapping

of A. Let q be a mapping of P(w, I). There exists a mapping p of P(w) such
that q = p|I . Thus there exists an ancestor ws = w(vis , t

′, I ] J ′, κ′) of w in
S(I) and a mapping ps of P(ws) such that ps generates p. Let anc(q) = ps|I .

If |P(w, I)| > |A|, there exist two mappings q1 and q2 in P(w, I) such that
anc(q1) = anc(q2). By Lemma 3.3, q1 ≺ q2 or q2 ≺ q1. There is a contradiction
because every mapping of P(w, I) is Pareto optimal. Consequently |P(w, I)| ≤
|A|.

|P(w, I)| ≤ |A| ≤
∑

t′∈[eis ,bis ]

J′⊂J1;nK\I
|J′|≤capa−|I|
κ′∈J1;nK

|P(w(vis , t
′, I ] J ′, κ′), I)|

≤ (W · ncapa−2 · n) · (n(capa−1)·(|I|−2) ·W |I|−2)

≤ n(capa−1)·(|I|−1) ·W |I|−1

Thus Property 3 is proved for I.

Lemma 3.5. Algorithm 1 is pseudo XP with respect to capa.

Proof. We assume capa are fixed and want to prove that the algorithm is poly-
nomial in |I| and W . Note firstly that the size of S(I) is O(n ·W · ncapa · n).

Secondly, Lemmas 3.1, 3.2 and 3.4 prove by induction that Properties 2
and 3 are true. Thus, for each node w ∈ S(I), the size of P(w) is at most
W capa · ncapa·capa.

The number of iterations of the loops of Algorithm 1 and the complexity
of each operation inside the loops depend polynomially on n and W , S(I) or
|P(w)| for some node w ∈ S(I). Thus, the algorithm is polynomial.

By Lemma B.1 (proved in Appendix B) and 3.5, we prove the following
theorem.

Theorem 3.4. If G is a DAG, max-1-DARP-M is pseudo XP in capa.
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3.2.2. A parameterized approximation for max-DARP-M
Corollary 3.2. If G is a DAG, there is a 1√

n
-approximation for max-DARP-M

in time pseudo XP with respect to capa.

Proof. We use Algorithm 4.

Algorithm 4
Require: An instance I = (G, (Vc, V

′
c , Bc, Ec), t, ω, capa, α) of max-DARP-M

Ensure: A feasible solution for I
1: P ← ∅
2: loop
3: I1 ← the instance of max-1-DARP-M with the same parameters as I
4: P ← an optimal solution for the instance I1 of max-1-DARP-M
5: If P = ∅ Then Return P
6: Else
7: Insert P into P
8: Remove every client satisfied by P from I.

If G is a DAG and as capa is a fixed parameter, we can compute the taxi P
at Line 4 in pseudopolynomial time by Theorem 3.4. Consequently, Algorithm 4
is pseudopolynomial.

We define s(P ) as the number of clients that are driven by the taxi P . Let
P∗ = (P ∗1 , P

∗
2 , . . . , P

∗
q ) be an optimal solution for I and let P = (P1, P2, . . . , Pr)

be the solution returned by Algorithm 4. We now show the following property :

Property 4. Either P∗ and P are empty or

q∑
i=1

s(P∗i )

r∑
i=1

s(Pi)
≤

√
q∑
i=1

s(P ∗i ).

Note that P is empty if and only if P∗ is empty. We just have to assume that
P 6= ∅ and prove the second part of the property. Finally, note that Property 4

implies that Algorithm 4 is a 1√
n
-approximation algorithm as

q∑
i=1

s(P ∗i ) ≤ n.

We prove Property 4 by induction on n, the number of clients.
Basis : if there are 2 clients, then, there cannot be more than one taxi in

a feasible solution for I : q = r = 1. Consequently, the optimal solutions for
I and for I1 are the same. Thus, s(P∗1 )

s(P1) = 1 ≤
√

2 =
√
s(P ∗1 ). Consequently,

Property 4 is proved in that case.
Inductive Step : We now assume that the property is true for every

instance with n clients or less. Let I be an instance with n + 1 clients. Let l
be the number of taxis in P∗ with a non empty intersection with P1. Without
loss of generality, we renumber those taxis (P ∗1 , P

∗
2 , . . . , P

∗
l ). Note that l ≤ s(P )

because a client cannot be satisfied by two taxis in P∗, thus, there cannot be
more than s(P ) taxis intersecting P . In addition, note that l ≤ q.
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As P1 is an optimal solution of I1 and as every taxi in P∗ is a feasible
solution of I1,

l∑
i=1

s(P ∗i )

s(P1)
≤ l · s(P1)

s(P1)

≤ l
≤ s(P1)

Consequently, √√√√ l∑
i=1

s(P ∗i ) ≤ s(P1) (7)

l∑
i=1

s(P ∗i )

s(P1)
≤

√√√√ l∑
i=1

s(P ∗i )

If l = q, then the property is proved.
Otherwise, let J be the instance I where every client satisfied by P1 is

removed. Note that, this instance is exactly the instance Algorithm 4 is working
on at the beginning of the second of iteration. Consequently, if we directly run
Algorithm 4 on instance J , it returns (P2, P3, . . . , Pr).

Let Q∗ be an optimal solution of J . Note that, as l 6= q, (P ∗l+1, P
∗
l+2, . . . , P

∗
q )

is not empty, and as it is a feasible solution for J , Q∗ is not empty. In addition,
r ≥ 2. By the inductive hypothesis,

∑
Q∗∈Q∗

s(Q∗)

r∑
i=2

s(Pi)
≤
√ ∑
Q∗∈Q∗

s(Q∗)

√ ∑
Q∗∈Q∗

s(Q∗) ≤
r∑
i=2

s(Pi)

As (P ∗l+1, P
∗
l+2, . . . , P

∗
q ) is a feasible solution for J ,√√√√ q∑

i=l+1

s(P ∗i ) ≤
r∑
i=2

s(Pi)

By equation (7),√√√√ l∑
i=1

s(P ∗i ) +

√√√√ q∑
i=l+1

s(P ∗i ) ≤
r∑
i=1

s(Pi)
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Finally, note that if A > 0 and B > 0, then
√
A+B ≤

√
A+
√
B,√√√√ q∑

i=1

s(P ∗i ) ≤
r∑
i=1

s(Pi)

The inductive step is proved. Consequently, Property 4 is proved too and this
concludes the proof of the corollary.

Remark 5. The proof of Corollary 3.2 proves also that the smaller the optimal
solution is, the better the approximation ratio is.

4. Conclusion

We have studied a taxi sharing problem in which the price of a trip is evenly
shared between the passengers of the trip. The bill of the passengers must be
reduced by a given factor α. In addition, the taxi must satisfy a capacity con-
straint and a time window constraint. We defined two optimization problems,
max-DARP-M and max-1-DARP-M, and a decision problem 1-DARP-M and
studied the parameterized complexity and approximability of those problems.
It seems that the cost constraint affects the complexity of the problem more
than the time constraint. Note that the time constraint make the problems
weakly hard: when the width of the time windows are polynomially bounded
and when the cost constraint is removed, the problems are polynomial. On the
contrary, even if the time constraint is removed and if all the parameters are
fixed, the problems are hard to solve.

We showed that there exists a pseudopolynomial algorithm for max-1-DARP-
M and 1-DARP-M if the capacity capa of the taxis is fixed and if the road net-
work is acyclic. This algorithm makes it possible to build a 1√

n
-approximation

for max-DARP-M. However, considering its time complexity, this algorithm
seems unpractical without any implementation improvement.

Some questions remain open: what is the parameterized complexity and
approximability of the three problems with respect to α or to α and W?, and
is there a constant factor parameterized approximation for max-DARP-M in
capa?

To conclude, max-1-DARP-M seems too hard to be solved in practice and it
looks like the cost constraint is the main cause of that. We think this constraint
is hard because it is independently defined for each client. A way to simplify it
could be to define a unique constraint for all the clients or for all the clients of a
same taxi. In the current model, every client cannot pay more than α multiplied
by the cost of a private ride. Instead of that constraint, we could ask all the
clients of a same taxi to not pay more than the sum of all their private rides
multiplied by α. If we then fairly divide the cost of the ride, no client would
pay more than α multiplied by the cost of a private ride. Note that some of the
clients would not pay exactly the cost of their own ride but also a part of the
rides of the other clients.
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Appendix A. Proof of the reduction of Theorem 3.3

This appendix is dedicated to the proof of Theorem 3.3 by formally proving
the reduction given in Subsubsection 3.1.3. We first show two intermediates
lemmas.

Lemma A.1. A feasible taxi picks up a client in W j
i , for some i < j, and

delivers it in W i
j if and only if it goes through every path Xl ∪X ′l including the

arc (xdll , x
1′
l ) for l ∈ Ji; j − 1K.

Proof. We first demonstrate that the taxi picks up a client in W j
i , for some

i < j, and delivers it in W i
j if and only if it goes through every path Xl ∪ X ′l

including the arc (xdll , x
1′
l ) for l ∈ Ji; j − 1K. The necessary condition follows

from the fact that any path from W j
i to W i

j goes through those paths.
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We now assume there is a feasible route of a taxi in H not containing any
node of W j

i and that this taxi goes through (xdll , x
1′
l ) for some l ∈ Ji; j − 1K.

The clients that can go through that arc (xdii , x
1′
i ) are those for which the origin

is before xdii and the destination is after x1′
i in a topological ordering of H.

There are firstly the di clients of Di. There are secondly the clients coming
from sublayer W q

p to sublayer W p
q where p ≤ l and q > l except if p = i and

q = j because the taxi does not drive any client fromW j
i . There are l ·(k− l)−1

such couples of sublayers. As there is no more than one client per sublayer in a
path of H, there cannot be more than di + i · (k − i)− 1 clients in a route of a
taxi going through (xdii , x

1′
i ). As di = (k−1)·k

2 − i · (k − i) and capa = (k−1)·k
2 ,

there can be at most capa − 1 clients in the taxi. However α = 1
capa , the taxi

cannot go through an arc of cost 1 with less than capa clients. Thus, the taxi
cannot drive through any arc (xdll , x

1′
l ) for l ∈ Ji; j − 1K.

Lemma A.2. If there is a clique C of size k in G, there is a feasible solution
for J satisfying S clients.

Proof. If there is a clique C of size k in G, then, let ui be the node of C ∩ Vi.
We define the subgraph P of H such that, for each i < j ∈ J1; kK, P contains
one node per sublayer, the origin and the destination of the client cuj

ui , and all
the paths Xi ∪X ′i. There is always in P an arc linking two nodes wvu and wyx of
two consecutive sublayers of Wi because u = x = ui. Thus, P is a path.

P satisfies the precedence constraints. A similar argument to the one given
in the proof of Lemma A.1 proves that P never drives more than capa clients
at the same time and that P satisfies the cost constraint. Finally, P satisfies

exactly S = k·(k−1)
2 +

k−1∑
1
di clients.

Lemma A.3. The route of a feasible taxi contains exactly one node in each
sublayer and all the nodes of X.

Proof. As every sublayer W j
i is either linked to the next sublayer or connected

to Wi+1 with the path Xi ∪X ′i, there is no path connecting two nodes of W j
i .

Thus, there is at most one node of W j
i is a path of H.

The taxi must go through at least one arc of cost 1, because, for every client,
there is such an arc separating its origin to its destination. Thus, by Lemma A.1,
it must satisfy at least one client fromW k

1 . Consequently, again by Lemma A.1,
it goes through every arc (xdll , x

1′
l ) for l ∈ Ji; k− 1K and every node of X. Thus,

again by Lemma A.1, the route of the taxi contains one node per sublayer.

Lemma A.4. If there is a feasible taxi for J satisfying S clients, there is a
clique C of size k in G.

Proof. We now assume that there is a taxi P satisfying S clients. Let C be
the subgraph of G induced by the set of edges {{u, v} ∈ E|wvu ∈ P}. Note
that wvu ∈ P ⇔ wuv ∈ P because P satisfies the precedence constraint. By
Lemma A.3, there is in P exactly one node per sublayer and P contains all the
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nodes of X. As a consequence, for each i < j, there are at least one node ui ∈ Vi
and one node uj ∈ Vj such that the client cvjui is satisfied, thus, such that the
edge {ui, uj} ∈ C. In addition, for each i ≤ k, |Vi ∩ C| ≥ 1. By proving that
|Vi ∩ C| = 1 for all i, we prove that C is a clique of size k of G.

If, for some i, |Vi ∩ C| > 1, there would be two nodes u1 6= u2 ∈ Vi ∩ C and
two other nodes v1, v2 such that {u1, v1} ∈ C and {u2, v2} ∈ C. We assume
that v1 ∈ Vj1 , v2 ∈ Vj2 and i < j1 ≤ j2. Every other case can be similarly
proven. There are two nodes w1 = wv1u1

∈ W j1
i ∩ P and w2 = wv2u2

∈ W j2
i ∩ P .

By construction, there is a path in H from w1 to w2 if and only if u1 = u2. As
w1 and w2 belong to the path P , we deduce that u1 = u2 and that |Vi ∩C| = 1.
And this conclude the proof.

Hardness results. Lemma A.3 proves that any feasible solution satisfies exactly
S clients and any taxi satisfies all the clients of X. Thus there cannot be two
taxis in a feasible solution. Consequently, in that instance, an optimal solution
of the problems max-1-DARP-M and max-DARP-M satisfies S clients if and
only if the answer to the problems max-1-DARP-M=, max-1-DARP-M and 1-
DARP-M is YES. Otherwise, no client can be satisfied.

Lemma A.2 and A.4 proves then Theorem 3.3.

Appendix B. Proof of the correctness of Algorithm 1

This part is dedicated to proof the correctness of Algorithm 1. The key idea
is to prove that any mapping of P(w), for some node w = (u, t, S, κ), corresponds
to the part of a taxi from the first origin of its route to u, hereinafter called a
partial taxi.

Definition 6. For every node w = (u, t, S, κ) ∈ S(I), we define the set pP (w)
of partial taxis of w as the set of paths P in G such that:

(i) P starts at an origin vi, for some client i, and ends at u

(ii) the capacity constraint is satisfied;

(iii) the time constraint is satisfied;

(iv) S is the set {i|vi ∈ P and v′i 6∈ P} and κ is the value of |{i|vi ∈ P}|.

(v) if v′i ∈ P , then the precedence and the cost constraints are satisfied for
the client i;

(vi) if i ∈ S, the cost ω(i, P ) paid by the client i from vi to u in P is less than
α · ω(vi, v

′
i);

Remark 6. If P is a taxi starting at vi, then any subpath of P starting at
vi is a partial taxi. However, there exists partial taxis such that no valid taxi
contains them.
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Lemma B.1. Let w = (u, t, S, κ) ∈ S(I). We assume p ∈ P(w) is mapping
that was just added at Line 14. Let P be the result of the BUILD function on
w and p, then P ∈ pP (w) and, for each i ∈ S, p(i) = ω(i, P ).

Proof. Let L′ be the list starting with the nodes of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈
[bi, ei]} and ending with the list L defined at Line 6 of Algorithm 1. Note
that any node w of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈ [bi, ei]} has no predecessor
(otherwise, let w− = w(u−, S−, κ−) be that predecessor, then, according to
Definition 2, by the Rule 4 an arc of S(I) must satisfy, S− = ∅ and this is not
compatible with Rule 1). As a consequence, L′ is a topological ordering of S(I).

We prove the lemma by induction on the index of w in L′.
Basis: We first prove the lemma for the nodes of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈

[bi, ei]}. Let w = w(vj , tj , {j}, 1) be such a node. The set of mappings of w is
initialized at Line 2 of Algorithm 1. The only mapping in P(w) is pj , the map-
ping associating 0 to the client j. By Definition of pP (w), a partial taxi P of
that set ends in vj and satisfies {i|vi ∈ P and v′i 6∈ P} = {j} and {i|vi ∈ P} = 1
by (i) and (iv). Thus, for all i 6= j, v′i ∈ P otherwise, by (v), vi ∈ P and
this would be a contradiction with the fact that {i|vi ∈ P} = 1. Consequently,
pP (w) contains only one partial taxi P = {vj}. In that taxi, the client j pays
0. The lemma is then proved for w.

Inductive Step: Let w = w(u, t, S, κ) ∈ L = L′\{w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈
[bi, ei]}. We now assume that the lemma is true for every node before w in L′.
Note that P(w) is build in the for loop from line 7 and 15 of Algorithm 1.

Without loss of generality, we assume u is the origin vj of the client j.
Let p be a mapping of P(w), this mapping is added at Line 14 of Algorithm 1.

Consequently, there is a predecessor w− = (u−, t−, S−, κ−) of w and a mapping
p− ∈ P(w−) such that (p, w−, p−) ∈ P(w−, w) at Line 11. By Definition 2, as
u is the origin of the client j, S = S−]{j}. The SUBMAP function is called at
Line 10 of Algorithm 1. In that function, when p1 = p−, the current iteration
is not stopped at Line 9 of Algorithm 2, otherwise (p, w−, p−) would not be
returned in P(w−, w). Consequently, p(j) = 0 and, for each client i ∈ S−,

p(i) = p−(i) +
ω(u−, vj)

|S−|
≤ α · ω(vi, v

′
i) (B.1)

Note that the value of pred(p−) is never changed after Line 15 of Algorithm 1:
if we call the BUILD function with p− and w− just after p− is added to P(w−)
or if we call it later, the result is the same. By the inductive hypothesis, that
function returns a partial taxi P− ∈ pP (w−) such that, for each i ∈ S−, p−(i) =
ω(vi, P ).

If we call BUILD after p is added to P(w), as pred(p) is set to (w−, p−), the
result P is the path P− to which we add the node vj . We now prove P ∈ pP (w).

• (i) is obviously proved for the path P .

• As P− ∈ pP (w−), the capacity constraint is satisfied from the first node
of P to v− by (ii). By (iv), there are |S−| clients in the taxi when it leaves
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the node u−. By Definition 2, since the arc (w−, w) exists in S(I) and
since u is an origin node, |S−| ≤ capa − 1. Thus, there are at most capa
clients in the taxi when it leaves vj and (ii) is proved for P .

• The time constraint is satisfied for P−. The taxi leaves u− at time t−
and reaches u at time t−+ t(u−, u). By (iii) Definition 2, t belongs to the
time windows associated with u and, since the arc (w−, w) exists in S(I),
t = t− + t(u−, u). Consequently, (iii) is proved for P .

• S = S− ]{j} = {i|vi ∈ P− and v′i 6∈ P−}]{j} and κ− = |{i|vi ∈ P−} by
(iv). In G, there is no path from v′j to vj , thus v′j 6∈ P−. Consequently,
S = {i|vi ∈ P and v′i 6∈ P}. Moreover, again by Definition 2, since the arc
(w−, w) exists in S(I) and since u is an origin node, κ = κ−+1 = |{i|vi ∈
P−} ] {j}| = |{i|vi ∈ P}|. Consequently, (iv) is proved for P .

• u is an origin node, then, as (v) is true for P−, it is also true for P .

• The cost ω(i, P ) paid by any client i ∈ S− in the path P from vi to vj is
ω(i, P−)+

ω(u−,vj)
|S−| . By the inductive hypothesis, ω(i, P−) = p−(i). Thus,

ω(i, P ) = p−(i) +
ω(u−,vj)
|S−| = p(i) ≤ α · ω(vi, v

′
i) by Equation (B.1). The

cost ω(j, P ) paid by the client j is 0, thus ω(j, P ) = p(j) ≤ α · ω(vj , v
′
j).

Consequently, (vi) is proved for the path P .

As a consequence, P belongs to pP (w) and, for each client i ∈ S, p(i) =
ω(i, P ). Lemma B.1 is shown for w. By induction, Lemma B.1 is proved.

Lemma B.2. For every node w = (u, t, S, κ) ∈ S(I), for each partial taxi P ∈
pP (w), there is a mapping p ∈ P(w) such that, for each i ∈ S, p(i) ≤ ω(i, P ).

Proof. This proof is similar to the one of Lemma B.1. We do it by induction on
the same list L′. The basis is exactly the same in the two proofs.

For the inductive step, a converse argument to the inductive step of Lemma B.1
proves that there is a mapping p built with the SUBMAP function such that
for each client i ∈ S, p(i) = ω(i, P ). When, Algorithm 1 reaches Line 14, either
there is a mapping p′ � p and, for each client i ∈ S, p′(i) ≤ p(i) = ω(i, P ) or no
such mapping exists and p is added to P(w). Lemma B.2 is shown for w and
by induction, Lemma B.2 is proved.

Theorem B.1. Algorithm 1 returns an optimal solution for I.

Proof. We prove that Lines 17 and 20 returns either no solution if no solution
exists or an optimal solution.

If, for some w = w(v′j , t, ∅, κ) ∈ T , there is no mapping in P(w), then, by
Lemma B.2, there is no valid taxi from any origin to v′j in G. If T is empty, at
Line 17, there is no solution and Algorithm 1 correctly returns no solution.

If such a mapping exists, by Lemma B.1, the function BUILD at Line 20
returns a path P ∈ pP (τ). As {i|vi ∈ P and v′i 6∈ P} = ∅, thus every client
of P satisfies the precedence and the cost constraints: P is a valid taxi. In
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addition, P satisfies |{i|vi ∈ P}| = κ clients. By definition of τ , P is an optimal
solution.
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