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OPTIMAL CONTROL OF TRAFFIC FLOW ON PERIURBAN RINGWAYS
WITH APPLICATION TO THE BOULEVARD PERIPHERIQUE iN PARIS
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* Absiraci, An optimal contral algorithem baved on Lhe discrete maximum principis is applied to reguinte wraffic fow on

ringways by use of ramp melering.

The optimal oneramp matericg seategy is applied to the Bowlevard Périphériqua of Parit which has a toml lengrh of 35
km and includes 34 on-ramps and 36 off-ramps, 1o view of the high probless dimension, the nop-linear model used is s
simplificd version of an afeurue mycroscopie modst of traffic fiow ¢n motorways whick is calied META. Spacetime
discratization is cffectusted on e basis of 3 kol s intervals. Simuiadion 1est bave been performed is exder to 10s the
scouracy of the modsl, The optizmal coptrn) problem is formolxted sbject 1o soverai tochnical snd physical resuricions
which arc expressed in fors of inequality constraintx. Tho tptimination objective is mainly the mintmization of the totat

time spaol in the ringway

Fystem,
The numearical solution of the formulaied aon-Enear opiimal cantrql probles is perdormed by powerful fessihle directinn

algarithms using conjugate gradicat techrics,

1. INTRSDUCTION

Traffic flew on unsentrolled periurkan ringweys
whieh are fed by raaps and  BOtOTWRYS. iS5
charasterized by w natural {rather than optimal)
- gpace and--tipe distribution’ Bf trdfflc deliand,
Thiz causes severs congestlons which reduce
traffic throvghput &t several losatlons of the
ringway during dally rush howrs, at the begin
resp. end of the vacation perieds, wesk-ends. ets,
This papsr Investigates the possibility of
improving the treff)e situation ph  periurban
ringuays ty on~ramp metering strategies based on
eptimal control theory.

Application of eptimal eentrel thesry to regulate
trafflc flow  on  wtorways has  aitained
ropsiderable attentlon in the last two decades.
Bepause of the high computatlonal sffort required
for the eolution of nen-linesr optimal zentrol
probless, several proposed strategles have been
bassd on lLineswr OQuadratic (LQ) optimization
thesry. However, due to the bigh order of
non-iinearities of congested irafflc flow,
strategies based on LQ-problens may not be able to
digseive gevare congestions. Furthermope, =any
restrictions wnd <system constralnts srg not
conaidered 4in the Tormulatien of LQ=eptimal
eontrol prodlems.

Non~11inear cptimal centrol problems for
coprdinated ramp metering have been forpulated by
Keys ({1572) nnd Tabac {1972}, These papers
considered the minimization of the totml tize
spent ex Bn optimizaticn objective end us=d a
relatively simple non+iinear traffic flew model,
Greenles nnd Fayne [1877) proposed a different
optimal coptrel approach  for  responding o
jpcidents, Unfortunately, none of these papers
includes a numericm! algorithm for solution of the
optimization problem. On the other hand., Bllnkin
[1978), Cremer (1976) and Papageorgiou & Mayr
{1982} have resolved the optimal contrsl provlem

on the basiz of more wcouwrsts non-linear models.
Blinkin (1878), FPapageorgioy & Yesyr (1882) wsed
slgorithzs based on the eavieum prinsipls. Cremer
11878) selved the problem using s non-)inear
programging aigoerithn. In these thres cases the

optimal rarpemetering probliem 1% golved subject to

artificial optinmization objlectives, for a
reiatively low nunber of on=rasps.

The optiral control methodelogy !5 applied in this
paper to the Bouleverd Périphérique de Paris,
which hae a totnl length of 35 kn and includes 34
on-ramps and 38 off-ramps. In view of the high
preblen dipension, the rnon=Iifear mathematical
model used 15 a simplifled versicn of an ancurate
nop-linear macroscoplc model of traffie flow on
metorways which 13 called META {Madéle
d'Ecotilement. de Trafic aur Autorsute),
[Fapageorgion, 1958). Spacestime discretization of
the simplified model i effectuated on the basls
of 3 kp/60 s Intervals, In order to test the
effieiehey of the chosen sodel with sush a rude
digeretization, simulation tests jpmve been
perforned.

The optimizatien objestive  considered ie
essentinlly . minizization ef the totwl i(ime Spent
by all drivers on thke ringway. Thls includes the
totel travel time on the ringwmy 1tself &nd the
totsli waiting time =&t the on-ramps. Several
technical mnd physical restricticns which are
present for the ringway System, are mxpressed in
form .pf Inequailty censtraints.

The pumerical solutlon of the Jorsulated
pon-linear optimal control problem is performed by
a powerful njgoritha based on the discrets maxipum
pringiple and using conjugate gradients technics.
The main advantage of the algoriths-used 1s the
modérate computational effert as well as the fact
that Doth storsge upace and CPU time incrense
roughly lihearly with the problem dloensidn.



The presented optimal contfol wigoriths for remp
metering is wppiicable either as n deslgn topl
{Investigation of different on-rakp metering
eptlions, closure of On~TABRE, potentiel
improvements, elc...) or as a renl-tipe control
tool proposing optimal, treflic responsive oneramp
retering strategies te the traffie opsrster or teo
lecal wentrol leops.

2. MODELLING

The efficlency ef an optimal gontrol strategy
depends up %o & certaln degree on the propertles
of the model wused. An nvalleble =mecroscopic
non=linear traffic fiow model called META (Moddle
d'Ecoulanant de Trafic sur Autorouta) has been
tested on the basis of real traific data mhd
results were very satisfactery. A8 shewn In
Papageorgiou {1988}, META reproduses in a patural
way complicated real trefflc phenomena such ag
discostinuities; hysteresis Fhencnens and
breskdown of traffie flow due {io overlcoad.
However, ampplication of META implles subdivisien
ef the ringway Intp sections of seme 500 m in
length. Moreover, META uses two difference
sguations to deseribe the evolutlon of traffic
state in eesch seetion., Hence a set of 140 state
varlabies !s desded For m 35 ko long ringway like
the Boulevard Périphérigue in Parls. The reguired
sample time Interval f8 in the order eof 10-20
seconds. This leads to a censiderably high
computational &ffart for the solutien of an
optimal contrel problem bmaed on META. Tor this
reeson, & uacroscopic non-linenr sinplified model
i5 used In this paper ss a basis for derivation of
optimal contrel trajectories., The =implifications
introduced In  the model equations permit a
ppaucerstime discretization in the opder of Q4
km/imin, Furthermeore, the sioplified model uses
only one giate varlable to deseribe the dynemie
evolution of the ringway traffic flew. In this
way, enly 12 state variables are needed for Lhe 35
kn long ringpsay. Mereover, the coaputation time is
reduced by using 1 Bin  tipe interval
dizcretization Instead of 10-20 5 required by
META.

Ore of the problems faced due 1o the
simpiification i that a 3 km long ringway sectlion
in¢ludes more than one on«ramp and cne of f-romp.
Thus, the on-raops and of f-ramps of 4 sentioh nust
b aggregated intc one slngie on-ramp and one
of f=ramp. . .

In the first part of this seetion there is a brief
presentatisn ef the traffic variables follewed by
the presentation of META- equasions and the
sioplifications Introduced, The second part of
this section’ js concerned with on-remp and
of f=ramp aggregutions. The {inal part presents the
ginplified model validation,

2.1. Trarfic variables

Yacrescople descrliption of itrafflic flow lmpiles
the definitleon of adequate flow  variables
expressing the average behaviour of the vehicles
In a glven motorwny section L. For a
space/time~gincretized presentation, we define
traffic density pitk] ag the pumber of cars In the

section 1 at time ¢t = KT divided by the section
length A!Hbeﬁ.- ¥ = Q,1,...i% the discrete time

‘ndex and T denotes the sample tipe interval.
Eimilarly, we define mean speed v!( x) 85 the mean

speed of the vehicles Included in the section at
time t = kT. Flnally, ql(k] is the numper of

vehicles leaving the section during KI<t<{k+1).T.
divided by T. Dn-remp resp. of f-ramp volumes ullk)

Tesp. si[k) are defined ih an analppouy way.

2.2.The macrorcople traffic flow model NETA

The wmacroscoplc trafflc flow wede]l META, as
presented In Papageorgiou et al, (1SB3) consists
of the following egquations #pplylng to each
section 1.

{1)Conservation of vehicles equaticn

p‘lkﬂ)-piiklﬂflx[ql_iiﬂ-ql!klm‘(k)-si(k)] (1)

{2} A voluve—denuity-pean speed relation which is
a ecohseguence cof the varlables definitions and
which has a dlrect mhalogon in hydrodynemic flow

a, (k) = p {x] v, (k) (2)

(3) A dynamic tean speed-density relationship

vy (ked) = v, (k) + == {Vip, k1] ~ v, (k)]

T

+ Tl vsth ivi_ltklwluﬂl
T piﬂ(k)/hlﬂ-pltx)/ai
-:Al pllkl.fal L

st BytEdv (R}

AS Pl[klo KA

{3)
i

Wheps Vtﬂltkli is a stendy-state homogenecus

speed-density characteristin which 1z & monp-
tenically decreasing function of the censity Py
-]

V(pil " v, exp 1-5.5¢ —— ]?'l

hl.pm_

(4]

The econstant paran&a’t.ers are v, [free speed), Pan

{eritical density per lane), ¢ (time constasit),v
{antieipstizn censtant), &4 {cn=ranp sopstant) and
K, and ?\1 denotes Lhe number of Janes in section i.

Copbining (2) and {4), one obtains & functien
Q(#i) » pl.V{p!J vhich 15 broedly known a3 the

fundamental diagram eof iraffic engineering. One
cah easily show that Qe ™ Q[Alpcr). 1.a. traffic
flow obialns itz maximua value for p-xlp“, Menn
spead resulting from (3) iz limited by.vnm.e.g..
Vein = 5 'kxs/h, The presented macroscople traffic

flow modal i5 baged on & scdel originally proposed
By Payne {1571).The last tern of equation (3) was
bdded in order to onccount for speed decresse
aauted by merging phepozena in on~raBp ceotions,
sees Papageorgiou et al,,1889. A further cause of
speed reduction dye to wemving phenomena resulis
from lane drop on the mnlnstream, For this case,

e Papagearpiou {1268) proposed the following term:
. ) . 4
(oT/nI![{a Al ltk:-]e'tlp =ri.llv,(kJ

- ¥here ¢ ls- & new congtant paramater, This term ls

added to the right~hand side of {3) vhenever

ey

The conservation of vehicles equatien (1) 1is i
sligtly modified. by using a malnctrean velume
rate instead of the direct off-ramp volume slik).



Hence, egq{l) bzcemes

T
Py u'”"l“‘“ii’ ‘"’1"11*:“‘"":‘“‘“1“‘” (1.a)

where 7, ig the off-tamp volums rate vhich Is

supposed to be known, In fart real reasurements
indiceie that exjt rates 7y wre roughly constant

during rush hours.

Fgs {1.e}. (2) =nd (3]} permit to describe the
dynan{c evolution of traffic flow on  the
mainstream. In ofder te reproduce the traffle
beheviour on cneramps, Ancther equaticn is nesded
vwhich expresses the conservation of vehicles for
anch rfamp queue

lifkﬂ)*is(k]*T.ldifk)—utﬂcﬂ {53

where 1ilk) is the queus length (veh) on ep-ramp |
aL time t = kT, and dllk) Is the corresponding
an~ramp demand whieh is assumed 1o be known.

As we have noted earlisr,
problem based on  META  requires a  high

compataticnal  effort. For this reasen EY
simptified pode! will be developed next,

. eptimal contrel

2.3, Simplified podel

The pain simplification is introduced In the
dynamis gpeed-density relstlonship of HETA. It
consists in neglecting the time constant = In
eq{3}. The porameter exprasses the fact that
drivera adjust their speed with & soall tioe delay
when density changes occur. The physical meaning
af this simplificasien censigts, thus, in assuming
that drivers adjust Inpstanlancously their speed
when any deh#ity chmnges occur By setting v --> O
in &q{3}. one obieins.

v 9!‘1&]/:‘!’1‘91“"7‘1"""““
v (K)aV[p, (k}]e - -
ses Popageorgiou et al. (1988) for more details.

We note that eq{8) does net include the convection
tern. Furthernmore, decelerstion due to  the
existence of an sn-pramp in the sectioh cf dus to a
lane drop is neglected.

tompining (2) and (§). one obtalns a new
sicpiified traffic volume~densiiy relationship

q {ki=Qlp, (k)i= ws 2 (o kDA - p (KIA) (7]

The constant parameter k added inm eqz (3) and (§)
to ilmit the effect of the grasient density term
in cas= of very Jow density values, Is dropped in
=g {7} because it become useless.

Eqsll.a), (5) and {7) constitute the simplified
model, It iz interssting to note that numerical
instability would mpperst If the secend term of
eqi7) would be dropped, see Papageerglou et al,
1889, Furthergore, in view of (7), It becomes
apparent that even under steady-siate cenditlons,
maximum traffic volume is not congcant but depends
on the density gradient.

This paper considers applicaticn of the optimal
contrel  methodalogy to ramp metering on  the
Boulevard Periphérigue de Parig (BPF). The optimal
zontre] problem is formulated on the basis of the
simplified model with 3 km long  space

1

discretization sarples. In what follews, we will
therefore descrlbe the particular charmetepistios
of BPP and will Lthen proceed to the problem of
aggregation of en-ragps wnd offeramps inslyded in
the 3 kz long sections.

2.4.Description of the Boulevard Fériphdrigue de
Farls (BPP)

The BPP i a 35.17 kp long closed ringway. It is a
dual carriegeway bul in thls study we only
consider the inner part of §t. The Inmepr part
includes 34 on-rasps wnd 35 off-racps, of which 8
on~razps and B off-rarps are wOLOTwWAYS,
greatest part of the BFP has 4 lenes except for
the southern stretech (7 kn) which reduces to 3 and
even to 2 lanes,

Although it is similar $9 noreal ootctwnays, the BP
has particular fepturss llke the high denglty of
sn~ramps end off-rampe, the priority of vehicles
entering {rom op~rasps over majnsireaz vehicles,
and the speed limltation of 8O koh,

2.5, Subdivision Into
on-ramp / off-rapp sggregation

sections and

In order to apply the sisplified mode], the BFP s
subdivided inte 12 Seetionz of sobe 3 KB in length
each, Unfortunmtely, thare are zora than one
on~ranp and one offvramp included in each 3 kn
interval of the BPP, as shown !n Fig.l. In the aiz
of pgetting only one zonirgl variable for sach
section, on-ramps of the EPP ere aggregated into
ore par 3 Xm jong Eaction. Af the sams time,
density in each sectlon I5 assuned (o  be
homogenecusly distributed, i.e., we have one state
variable per section. Fimally off-ranps sre aiso,
nggregated inke one of f-ramp par section.

Flg.1 : sketsh of the BEFPP

{or order to preserve the malin characteristics of
tiafic flow, the !mportance of ench on-ramp is
taken into stcount in the aggregmtlion procedure.
More precizely, Important panps (which have the
highest traffic voiume) have beenr conserved In
their location wherens less [epoftBnt Taops are
grouped with the important ¢nes. Moreover, & remp
focated st the entry [resp. exit) of a section can
s grouped with the ones located st the exit of
“the previpus (resp. antry =f the next] one. For
example, Fig.2 shows 8 3.2 kn long sectlon
Including 3 an-rawps and 3 of f-raeps,

AN,

aspiign RY  RY 51 R §2 §3  seclmn
-1 negtlon | 9]

Fig.2 : 3.2 kn long section of the BFP

The—"



By Imspection of the usual traffie  volumes
entering by these ramps, we found out that R3 i3
the wost important one, Thus, the traffic state of
tae section in the simplified podel corresponds to
the real traffic stmte downstrean of R). On the
other hand, the on—ramps R1 mnd RZ provide a much
lower treffic volume and moracver thelr effect on
painstream §= roughly cancelled by the next exit
5. In sumeary, Lhe siretch betwsen Riand S2 is
the main bettleneck of this secticn and therefore

a ressorxble simplificatlon i3 the one glven by
Fig. 3.
51 AmRZ-AY O s2483 -
aeciisn asction | InatETiON

1=1 3

Fig.3 : Example of on-remp/off~rarp sggregation

Furthermore, since there are off-ranps in the exit
of Lhe previousz section, $1 is grouped with them.
Similer arguments apply t¢ aggregation of emeh of
the twolve sactions iG the sinplified model,

. 2.6, Similation 1esis

The time interval T should be choseh T ¢ LA (g},

in ordsr to guarantes numerlcal model stability.
In our ease, the smallest sectien iz 2.5 ka laong
and free speed egurlz 80 kash, which gives T < 1.7
mn. Thus, T 1% chogen to b= 1 om.

In crder to make suts that Lhe zodel preserves -

sufficient =ceuracy even with such a2 rude
spacertime discretization. we have parformed =
eipulatien test. Singe real traffic data for the
whele of BPP were not aveilable for eomparison,
Enother simiation has been effectuated with the
paspogcopic traffic flow mode! META,

3.7, Traffic simiation using HETA

To. apply META, the EPP l= subdlvided inta 7O
sections of some 500 m in length, each including
st mest sne oneramp end one of f-ramp. Since the
ghortest section i 330 n long and scvording te
eq{B), the time interval gheuid be T <13.5 5. A 10
s sapple is choseén for tlpe diserstizatien.

The model parsneters are v‘_, 'pr.-r' v, T, £.,4, and

5. ihe sane pormmeter values ars used for all road
sections., A)l parsmeter values are taken from
Papageorgiou, 1588, whers parabster estimation was
baged on rea} trafflc data collected from & km of
the BPP, Thegs values nare :

v 20 veh/km ;

v = 35 kat/h ;
x = 40 veh kb ;

pm_- a7.3 veh/kn/lane |
r = 0.01, g =23 &=0,7

The simuletion is perforned for a 10 hours peried
(from € p.2. t¢ & 8.® ) vhich Includes congestion
creatien and diseppearence for two ruch howrs
periods [the morning and the afternoon peanks ).

2.8, Sippiified model similatien test

The simplified sodel tneludes three porameters,
ramely iwo parameters of the fundamental dimgrem
(vr, and pm_) and the anticipaiion paramster v.

In this paper, the fundsnental dingram used for
all sectigns i5 the gsame ®S for applicatioh of-
META. i.e..v‘,tso kesh wnd o, = 37.3 veh/Emslane

e

4

jg uzed. Perameter ¢ is adjusted so as to reach
bert agreewcnt with the msult.& provided by HETA.
This leads to & value v = 43 ka'/h.

Compurison with simvlation results of YETA showed
that the Bimplifled wmodel reproduces congestion
zrentien In the saze locations. However there 15 a
3% an time delny and  werecver congestlon
propagetion is not everywhere equivalent to the
results obtalned by META.

Although the Introdused simplifications may mppear
fairly rode, we would like to make the folloving
rematks L
e

(1) The simplified oedel i not needed for
simulation but for control purposes, Accuracy
requirecents are therefore less preoncunced. Slnce,
the sippilfied model does repreduce the wain
congestians, We expest that the resulilng optimal
eontrol will seek to avold them by adequate
ramp-patering measures.

{11) Ropustress of the resulting contrzl will be
gonsiderably enhanced i the optlmal control
regults are used ng desired values (set values)
for inferior local control leops.

(511} The efficacy of the resulting control way be
tested by sipulation studies on the basis of META.
However thege tests were not svallable st the tiae
of the writing of this paper.

(1v} Simplifications sim st reducing  ithe
conputational effort regujired for the splutien of
the optimal contro}l problen, There 16 &an apparsnt
trade~off of aseuracy vertus computatlonsl effort
le.g. sections nay be chosen to be 3 ke or 1 ko or
500 o long) which will be considersd in future
investigations.

2, SYSTEM CONSTRAINTS

Cptinal specification of on-ramp volures must be
perforoed subjoct Lo some consirmints, Due to the

- geozmetrle “chiracteristiss of the snirance PFanps,

there 15 a maximum on-razp volume value which
cannot be exceded

ul{k] 'Y (s}

1, mase

On the other hand, too low rates of on-ramp
volupes Jead waiting drivers to Judge the metering
slgnel to be malfunctioning. Hence & reasonable
lower limit should be pased

ult,k: By o » 0 (10}

Pesides these input volume consiraints which are
constant for each on-ramp, thers are sone other
spnstraints which depend upon the traffic state
either on the mainsitreas of on ths entTance ramp,
First, the queuve length cannot be negatlive :ll{kl

e 0. Substituting thls in eq. (B}, we cbtain

\li(kd) = di(klﬂ t(l:!t").'

=umllilk)) St H)
Second, the density at the wain sirest sectlon
nlso cunnot  be  hegmtive :pllk) & 0, By

subrtitution In {(1.n) one obtalns:

uilk) H -{Alﬂ!.p!(k)-(l-flJql_l(kl*qilk)
- “mn(Pl(k” (12}



Sunmarizing equaticns (B), {10], {11) and {12),

the adniszible conlrol region for on-ramp valumes
is given by :

BAX I“i.nln'“

£ minfu

!p*lk)}l 1 ullkl
liilkll

nin
1, max’ Yman (13)
Mareover # maximun gueuve length should not be
exceecded, else interferense with traffic n
surfuce streets could escur

liik} sl (14}

1.pax

Firally, a pmowimun {raffic density value Is
ioposed by the geometrie characteristics of the
meinstream :

plfk) {15}

§ Py mex
Constraints {14), (15) will be considered in 2
smooth way In order to guerentee that the
admissible regien of the optimisation problem can
not be squal to the zerm set. This eoujd mrise
2.8 due to genstraints (B}, (14) and dus to
e3.{5] for n gurficlently high demand,

4. CCNTROL CBJECTIVE

Sevara) control objectives for freeway traffic
have been propesed Dy various regearchers,
Hiniemization of the total tine spent by all
drivers on the ringway system (78] seerg to be the
mest  gultable one {see Papageorgicu, 18B3for
detalls). Tetal iime spent ingiudes the total
trevel time on the ringway itaell and the total
wvalting time at the oneramps. Minimizatlon of
tetal time spent on  the ringuay loplles
ainimization of delays caused by congestions and
is thus a suitable requirecent In order to pravent
or #liminate coanpestions. '.’s Is given by

£ N
T,aT T T lpikl.a,+ 1,0k
8 7By B0 N

(i8)

vhere K 15 the flxed eptiamlzation horizon. The
first term of eq.{18) represents the tetal travel
time for & given time horlzon KT, the second term
correspands to the total waiting time for the same
tine horizon KT.

Ustng enly the total tlee Epent AS B gosl funation
may lead te discentinuous ([bang bang) optimal
sontrel trajectories which cannot be acceapted for
on-ranp traffic volumes, Therefore, n tersm which
panaiize the tespora]l variations of the input
variabies is added to the cost funstien

K
et 48 L Hut)=ulk~-1) 12 (17}
k=0 ]

where J is the cost functlon to be -ininizemslﬂ.
s » welghting parxmeter.

in order to consider state wvariable constraints

[14) and {5}, pemalty fuctions are sdded to the
wagio cost function [17):

. X N z
J=de TOTAH 52. [wl(lm*l‘(kl)l
k=0 i=} 2

- sa.[wltpm-p,lk}n } [18)
where win) 18
COmpOREnts:

& vecter penalty function with

¢, [n] = min (D.om,)
l 4

an8 B,.8 ¢ 1 are weighting parmaeters. IL is well

known that higher wvalues of the weighting
paraseters . lead Lo shortrer exeeding of
constrainis (14] and (15) snd jower convergence
rate.

5, CONTROL PROBLEM FORMULATION

The non=lineer cptimlzaticn probiem {P)} solved In
this paper ig formulmted o3 following

{P): Given mn initial ecnditlon of siate variables
pIC), 1{0) and predicted trajectsriss dik), 7{(k).
k = 0,.,. ¥~1. Find the eptimsl on-ramp
trejectories uik), k » C,,,.k-1 which minimize the
augmented perforsance index {3B), subject to the
sinpiified codel equations (Ia}, (B) & (7) snd to
the inegualjty constraints (13).

In order to selve this problen we uss the discrate
saximun principle,

B. SOLUTION OF THE OFTIMIZATION PROBLEM

6.1. General problem forwulstion

Opitima}l control problez (P} fornulated above
belongs to the follaving geheranl class of optimal
ecentrol problems @ Minimize

k=1
Jomoofx(Xy) ¢+ P elxfk).ulk), k] {i8)
kni
subject to the state equation
wik+l) = £{x{k},ulki. k) ¥=0,...K~1 i
®{01 = %y 21}
and the contrel censtraints
u k) = ulkd s um(x{kll (22)

where X € R” and u € R® are the state and control
vectors raspactively,#, ¢ and { wmre non-linear

differantiable functions, and K I3 the fixed
optizizaticn horizon.
In ercer for a ocontrol  trajectory lo bd
admissible, 14 must satlefy the equajlity
constralnts (20) and (21} and the inequalities
{(22). For the Inequality constraints [22), we
introduce

| .

h {xlkl.u(k].k)-u(k)*u“n(x(k)J {23)
. 2
%a'- h (x(kl.ulk).kl-um{x(kil-u{k) {2z

hand . E® ars assuped te be continuously
differentinble funstions. It is clear that eg4n(22)
is satisfled when

i Bl (et ulk),k) = 0 {28
o fdRLuik)k) e 0 (26)
Consequently, &n adaissible trajectory. BuUSt now

satisfy egni20}, (21), (25) and (25).
6.2. Solutien aigeritha
We introduce the Harjltonian:

3 =t i)t oo S0 2
where Lhe u-guuentls gx{k).u[k!‘;k) sre supressed in
functions H,&,f.k°.h" for convenlence;: T denotes

transpose, A 13 the costate vector and g end
are Lagrange multipliers,



The sdjolnt variables A € B” satisfy:
Atk) wabrdxik) » &7 8xik), AlKe1)

+ sh' T suik). 0K

v & ek 1 ik] (28)
- k=0,.,..K1
MK = 89/8x(K) (28]

Application of the discrete Eaximum prinslple
requires that, for an optimal centrol,

3H/5u = O
from this condition and dus to the fact that the
Lagrange multipllers ere equal to zero If the

contrel varisbles cc noi jie on the corresponding
conElraints, we obtaln .

pikieain {0, ~38/8utk]) » 3£TsBulk). Alket) } (30)
and

pllklemin { O, &8/Bulk) + &7 dulk}.alke1) } (31}

Furthermore we defipe the gradient of J with
respect to u{k) on tha equailty constraints
surface

glk) = E&/8ulk) + Er7r8ulk}.Alk+1) (32}

The compenent N'} of the projected gradient with
respect t& the mdmissible contrel region (22) g
given hy:

7, (ke {gi{kl 1t wliki=0 ang W3k

o otherwise (33}

In enslegy to'the L2 epece of ceht!inuous-time
systems, we define the scalar produes of two
vector trajectories o(k), §(k}, k=0,..,K - 1, as
follows:

K-1 1
[nlk}.&{k)] = ¥ ninl'g(x) (34)
k=l

Furthermesrs, we defdne a8 saturatien
functien (satin}) with somponents:

vector

S M N e

sntL(ﬂJ =N e LA

sat‘(nl * 9

ain
etherwise

With abn\re. definitions, the necessary conditicons
of -eptimnlity are given by (203, (21}, (28), (23),
(303, (311, (32), (33). Hy30, H,S0 mnd

71“:1 =0 V1, ¥k (35}

Hente i these equations are satisfled, a
statlonary point of the optimal contral problem
has been found. If the siete functions f, h are
1ineor and the objective functicnal J is conwvex, =
these conditlens becowe neceseary end sufTiclent -
[Schoeffler, 1871]. -

The necessary eondltlions for optimaiity constitute
a TPEVP. A well-known algorithmical structure fer
direct solution ef the TPBYP 1§ glven in Sage,
(18B8), sce also Pepigeorgiou & Mayr [1SBB). Some
modifications are Introduced to this algorithm in
order to take jnte account inequality constralnts,
The algorithm used ¢nn be described as follows.

Step 1:
trajectory u

Seject an wmduigsible initial

k), k = Qu.vyRe1: get 1 = 0.
Step 21 Usllnf uwik), x4k}, x = 0,...K=2,
caleulnte (h'}'(k) and (W)Y(k}) from (23) ane
[24); Bolys {20) from ipitisl condition (2]} te
obtain - X (k*1}; beginning from the term*nal
condition {29), calculate simulatancusly 'y ()
and (p") (k) and Al“"” fron(30], (31} and (28),
respectively; k ] :—1,..’..5.
Step 3: Using w k], x'(k}, A'(ke1), (') (k) ana
(]‘.t] (k). kl' O....K-1, calcuimte the gragients
g {k) nnd 7 (k) from (32} and (33), respactively.
Step 4: Specify mn gearch directlon P (k), k =
0,...E-1. Step 5: -.p:;ly a one-dimensicnal seaﬁ:;:l:h
reutine elong the P-directien ta ebtain '’ ';
foe., Ju'l) . min 7 Isat {u'e «'P*)] where ¢

iz the mealar step length. Step 61 I for e given
scalar e > O, ly (kl,y (x}] < ¢ holds. stop;’

othervwise, set l=i+l &nd go back to step 2,

control

[}

Several lelchniques for sspecifylng a search
direction P in step 4 c&n be applied. A= a first
appreach, n conjugate gradient tschnigues is used;
::?mpurlsans with cther pathods forthe
P'=specification may be effestuated in the future.
Appendix A provides the squations for calculating
the semrch direstion P' on the basis of the
Fletcher«Resves formula. Strategies for restarting
the algorithm whonever & gufficient negativity
conditlen ik not fulfilled are also described in
Appendix &, The ona-dizengisnal search routine
aspplied to step § i5 based on parabolic and cuble
interpolations and is described in Appendix B.

The described nlgorithn i3 known to be inssnsitive
uath respect to paor initial guees trajectories
u (k). Alternative zethods, such as
quasi-linearization, are known to suifer by
divergence preblems {f the initial pguess
trajectory s far from the optima) solutien
trajectory [Sege, 1388},

T APPLICATION TO THE BOULEVARD PERIPHERIQUE OF
PARIS :

A ftest of the optimal control strategy 1s
performed on the basis of m 80 min demand scepario
collected from the BPP. Dus te  incomplete
inforpation provided by the detector loops
instailed on the BFP, the utllised demand values
are ppproxisations of the real ones.

7.1 No-conirol case

In erder to compare the optita)l control gelutlon
with the no-control case, a sizulatlon of trarfic
flow on ths BPP with a matuyral distributicn eof
traffic depand 15 perforsed. ¥hem no  on-ramp
metering strategy is spplied to the ringway, the
entring procedure say be described by:

uitk! = min iu_'[p:{k)l. dllk! + ll(k)ffl ()

wvhers u  {p) is equal to the saxioun en-ramp

volume value given by eq.{8) if the trarflae is
fluid In the ringpway section: If a congestien 1s
present on the mxinstreas, umtpl} . decrenses

according te tha relation:

tp‘m-a [ y

17),&r

u (p‘(k))=u’_m.-ln{ 1, ¥ (37)

] o
hlpi.n: ﬁ'Ipl WEP

The maximum on-ramp voluse fixed by the geomstrie
characteristics of the sntrance rasp Is agsumed to
be u m-:ﬁno vah/h If the entrance 18 a noarsal



rasp; it 1s set equal ta 3200 wveh/h 1T the
eptrance 1s a motorway, The maximum gdensity p_“ls

get eqgual Lo 100 veh/km/lane.
Equationz {35) and (35) make clear that an on-ramp

fqueue mhy b ercated sven without ramp oetering
peasures, nasely if the demand dzl becomen higher

than ihe on-remp capacity um‘lpl). Far the BFP,
this is particulariy the ¢ese sn the melorsey
ranps  which experience queuss of gseveral

kiloreters durling rush hours due to the cengestion
en the BFP.

The initial density and queus jength values are
asgured to be the same for the dsrt‘r-em. ringway
BBCLIONS resp. oh-ramps:

e, (0] = 100 vehskm ; 1 (D] = 50 veh

Flgures 4 and 5 depict slmulatton results for
trafflc densitles and queve Jengihs on the 12
ringway GCections and the 12 of-remps for the
no=tontre)] case.

TRAFFIC DENBITIES
He=Cnntrol

Flg.S.
7.2 Cptimal control case

The resulting on-ranp volume itrajectoriss of the
nowcontrol case mre used &S an initial pgusss for
the aptimal contrel algorithm. The paxizum queue
Jength is set equal te 400 veh for = norma) remp
and BOD veh for a motorwey entrance. The maximum
queve length of an eggregated ramp iz given by the
sum of ihe maximum quowe lengths  of the
corresponding real ramps.

The sample time interval s chosen Telmin, the
welghting factors of the optimization objective
function [iB) are

taken:

-4 -2 -3
ﬂl- 107 Ezb 10°° ana BJ& 5.10

44

The value of the total tims spent for the Initizl
guess (no-controll 18 9870 veh.xin., The whole
objective functlon hag nearly the same valyve since
the three cother terss wre vory small, The totel
times spent ls reduced by the optimlzatisn to B944
veh.zin after 25 1lterations which tock 4 min 46

sec CFY tice on a slow DPSE/S2 biprocessor under &

zultica system. A further redyced valus T =5288
»

veh.h is ocbinined after 118 iterationr which

corresponds ta 20 min 5§ sec CPU tipe on the sane
digite! computer,

Simuletien tesuits for the optimal densities and
queus  lengthe for the 20 win traffic denmend
SCEN&rio are depicted on figures B mnd 7.

TRAFFIC DENSITIES :
Optimnsl Contrel

DN FAMP GUEUE LEMOTHS :
Optimal Gontrod

Fia.7. Hem

wA comparison of the optimal ceontrol results with

H the no-contrel case shows A redustion of 30.8% of
the total time gpent by all drivers in the ringway
Eystenm. An exmoinatlion of filg.B shows that the
optimal control strategy chooses aytomatically
azong the high nunber of possible on-ramp velume
coebinztions the optisal on~ramp distpibution in
space and time s0 as to malntain the differem
sections density near the eritical one. This leads
to an optlmal wtilization of the ringway
Infrastrusture capacity.

Furthermora, comparison between fig. 5 and 7 shows
that application of the optimal centrot
strategy reduces the on-ramp queue lengths and
hence the total waiting time. Reduetion of walting
gqueue langths by applicaticn of rasp metering moy
appear tp be paradexal. In fact, this reduetion iy
a consequentes of the increased throughput on the
salnstreas due to congestion aveldance.

{



8. CONCLUSION

An on-ramp metering strategy based &n opptizal
gentrel theory 15 developed and applisd to Lhe
whele of the Doulevard Periphérique of Paris.

The eptimal contrel algeriths used 12 baged on the
digeraste maxlmum principle ; A Elmplifiaed
=acroscoplc pen [inear traffic flow model with a
rather rude spacestlme diseretization [3 ksl mn)
I used as a basis for the optimsi contrel
appreach. In order Lo test the accugracy of the
simplified model a simuletion test has been
perforped with = more accurate traflc flow medel
for moterways which is called META. Comparison of
the simplified model with META Indicates that the

main  charecteristies of traffle  flow  are
reproduced with suffictent BECUracy fer
optimization purposes.

The performance index copslidered 15 mainly to
minimize thes total tiwe spent in the ringway
system [linclyding the on-ramp gueues), Severa!
technica] and physieal rasirictions which are
present are expressed in form of inequality
cansiraints,

Compariscn between the optipa) controj selutlion
und the no-gontrel case showed & gain of 30.8 %
for the totr]l time spent by all cerivers. IL s
worth neticing that application of the cpiimal
contrel strategy reduce sthe on-ramp queus langths
and eventurlly the on~ramp waiting time.

Results of the oplirmal coniro] etrategy can be
used for a real time application or o3 desired
values (set values) for inferlor local eomtrol
locps. A trade~off of acouracy versus

conputational effort [e.g. space discretization
may ke chesen to be 2 ke or 1 km or 500 m long)
will be considered in future investigstions. Also
the robustness »f the resuiting control will be
testa by sipulation studies on the basig of META.
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AFPENDIX A: EPECIFICATION OF A SEARCH DIRESTION

The search directlen P in step 4 of the described
algorithm can be specified by use af the
Fletcher=Resvas cojugate gradient method
generalized to apply t0 optimal comtrol problems
uith inequajity centrel contrainte. The accurding
equatieny are given below:

P g s gipt™t
with 8% = 0 and

R A aP VA P o Tl B O
AS suggested by PFagursk & Woodside, [1S68), the
reduced gradient vector 1'l is used in cpder for

ihe sesrch directlon component P:nm. to stick en
the Input eonsiraints.: - s

Restarting with &' = © eny tlme wu gufficient
negativity conditicon

(') = - LR PR .
does not hold, 1% known to better results, 8 is &
posltive constant parameter. Periccical resturting
every N iterations has been proposed by Bersekas,
(1874). Both restarting procedures have bean used
in the algorithw presented in this paper.

APPENDIY B: Out Dinpwiion SEanch Roupise

The following one~dimension search routine is
applied in step 5 of Lhe described algorithe.

(1) Assuning constent ©ost - fuhctienal
decrease at each Jteracticn 1 and mpplying
parabolle Interpalation, we get an estimate for
the step o

' jet 1 i
e = ~-2]J - 3 1Al /dalﬂw
{2} 1If for a fixed parameter A

tduu}u‘ /. !d.l/dc:)u = A<

holds, the estimation !s considered satisfactory,
Dthrwise, anether vejue for a, is ecalouleted using

cubfe {nterpolation as described by Fletcher and
Reeves, (iDB4}.



