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From Molecular Models
to Continuum Mechanics

X. Blanc, C. Le Bris & P.-L. Lions

Abstract

We present here a limiting process allowing us to write some continuum me-
chanics models as a natural asymptotic of molecular models. The approach is based
on the hypothesis that the macroscopic displacement is equal to the microscopic
one. We carry out the corresponding calculations in the case of two-body energies,
including higher order terms, and also in the case of Thomas-Fermi type models.

1. Introduction

It is commonly admitted in the continuum mechanics literature that the stored
energy of an elastic crystal is of the form:

E(u) =
∫

�

E(∇u(x))dx, (1)

where � ⊂ R3 is the reference configuration of the solid, and u is the deformation
to which the solid is subjected. Moreover, the stored-energy density E is assumed
to reflect the microscopic symmetries of the crystal [2,3,15,22,49], in addition to
the standard frame invariance [16,30]. In other words, denoting by G the invariance
group of the underlying crystalline structure, we have:

∀M ∈ M3×3+ , ∀Q ∈ G, ∀R ∈ SO(3), E(RMQ) = E(M), (2)

where M3×3+ denotes the set of three-by-three matrices having positive determinant,
on which the energy density E is supposed to be defined. This invariance property
is at the origin of many important properties of crystalline solids, as well as math-
ematical difficulties in the use of energies of the form (1). See for instance [15,20,
22,32,49]. However, an exact expression, or even an approximation for E is rarely
available [48]. Closely linked with this problem is the question of the associated
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functional space: To what space A should u belong in order to properly define the
minimization problem

IA = inf
{E(u), u ∈ A

}
?

The definition of A should include, in addition to regularity properties, suitable
boundary conditions.

In order to answer these questions, a rigorous derivation of (1) and (2) is needed,
starting from the atomic level, since it is the scale at which the crystalline lattice is
present. A standard approach to this kind of problem is �-convergence [19], which
assumes implicitly that at an intermediate level, the microscopic (or mesoscopic)
deformation, which is not necessarily equal to the macroscopic deformation u,
should locally minimize the energy. Roughly speaking, this approach consists in
setting a microscopic version of the minimization problem IA in terms of the mi-
croscopic deformation uε, depending on the interatomic distance ε. If we let this
distance go to zero, this yields a (weak) limit deformation u = u0 together with
an energy, possibly of the form (1). However, it is far from clear what should be
the microscopic counterpart of IA: what regularity should the deformation exhibit
at this level, and how should the boundary conditions (which are by nature macro-
scopic) be translated microscopically? This kind of strategy is used in [11,36,37]
in the case of a two-body finite-range energy. In [23], the case of a more complex
microscopic model is considered.

Another (and seemingly more naive) approach is the following: the whole point
is in fact to link the macroscopic deformation u appearing in (1) with the defor-
mation truely experienced by the atoms of the solid, that is, a sort of microscopic
deformation. Since this link is far from being clear physically, let us assume the
simplest link, that is, equality. This is the approach used in [4,5], and also the one we
adopt here. Let us emphasize that we are aware of the lack of physical justification
of this assumption [24]. With a view to tackling more realistic cases in the future,
the present work seems to us a necessary and useful preliminary mathematical step,
before we can relax the present simplifying assumptions.

Let us give the example of a two-body interaction, in order to fix the ideas: the
energy E({Xi}) of N identical atoms of positions Xi is then given by

E({Xi}) =
∑

1�i<j�N

W(Xi − Xj), (3)

where W is the interaction potential. Let us now assume that a solid is defined by a
domain �, and a lattice �, and that the interatomic distance is equal to ε > 0, which
in the end will tend to zero. Assuming that the solid experiences a deformation u,
which is a C∞ diffeomorphism defined on �, then the positions of the atoms of the
deformed solid are

Xi = u(X0
i ), {X0

i }1�i�N = ε� ∩ �,

the set of points {X0
i } being the reference state. Consequently, the energy per atom

of the deformed configuration is:

E(u(ε� ∩ �)) = 1

2N

∑
i |=j∈�∩ 1

ε
�

W(u(εi) − u(εj)). (4)
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Fig. 1. The reference configuration and the deformed one

Next, considering the potential W , its characteristic length δ should be com-
parable with ε. In other words, considering the reference configuration, which
minimizes the energy (3), its atomic spacing should be proportional to δ. (This is
clear since if {X0

i } is a ground state for W , {δX0
i } is a ground state for W( ·

δ
).) We

will however also study other cases apart from the ε = δ case, that is, cases when
ε � δ and δ � ε, respectively. The total energy of the deformed system is thus
equal to

Eε,δ(u) = 1

2N

∑
i |=j∈�∩ 1

ε
�

W0

(
u(εi) − u(εj)

δ

)
, (5)

where N = #(�∩ 1
ε
�) is the total number of atoms, and W0 is the rescaled potential,

and does not depend on ε nor on δ. The energy E appearing in (1) should then be
the limit, as ε and δ go to zero, of Eε,δ:

E(u) = lim
ε,δ→0

Eε,δ(u). (6)

Despite the seemingly crude assumption we make in this strategy (namely,
that the microscopic deformation is equal to the macroscopic one), there are some
advantages to be found in this approach.

First of all, the above limiting process (6) is clearly not linked with the fact
that the energy originates from a two-body interaction. Indeed, we will see in
Section 3 below that more complex microscopic models, taking (at least partially)
the quantum nature of the electrons into account, give rise to the same kind of
convergence results. This allows us to hope that similar results will hold for more
complex microscopic theories.

Another point is that since it is a mere limiting process, involving no �-
convergence properties, we may very well go further: considering the limit as a
zero-order term in the development of the energy with respect to ε, it is possible to
compute the next orders. This is what is done in Theorem 3.
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In addition, let us point out that for numerical purposes, this approach gives a
way of computing the sum (4) in the limit ε → 0, which is the exact expression
of the energy, u being the microscopic deformation. Of course, its link with the
macroscopic one is still unknown, but independently of this link, the above limit
(6) may be seen as a good approximation in the case where ε is small, hence N

large, circumventing any direct computation of (4), which indeed may be out of
reach of computer facilites for very large N [17,35].

Finally, let us point out that our approach is intimately linked with the concept
of a thermodynamic limit [27,12], as explained in Section 3, which is a �-limit
process, although normally not presented as such.

The article is organized as follows: Section 2 gives the computation of the limit
(6), together with the corresponding development, up to order two with respect to
ε (Theorem 3). Section 3 then studies the limit (6) in the case of some quantum
models, namely Thomas-Fermi type theories. Let us emphasize that the use of these
simplified models is only for mathematical purposes: the same problem with more
sophisticated models should be addressed, but it seems for now beyond our reach,
technically. We give a few possible extensions of the present work in Section 4,
while the last section is devoted to the derivation of a few simple properties of the
computed elastic energies. We hope to come back to these questions in the near
future.

Most of the results detailed here have been announced in [9].

2. The simplest case: two-body potentials

We present here the homogenization scheme described in Section 1 in the sim-
plest case, that is, when the microscopic energy is defined by a two-body potential.
In other words, we study the limit (6), with the energy Eε,δ being given by (5), that
is:

Eε,δ(u) = 1

2N

∑
i |=j∈�∩ 1

ε
�

W0

(
u(εi) − u(εj)

δ

)
.

Assuming that the reference configuration is an equilibrium state, i.e., that an infinite
system with minimal energy is periodic, it is physically reasonable to assume that
δ and ε have comparable size, i.e., that in the limit process ε → 0, we should take
δ = ε. We will nevertheless study the other possible cases, that is, when ε � δ or
δ � ε. Note also that the fact that the equilibrium configuration is periodic is not
proven, so far as we know, except in one dimension [8,25,46,33,34,41,43], or in
very simple cases in two dimensions [42].

2.1. Zero-order term

Hereafter, we denote by ε a sequence of positive real numbers converging to
zero, and δ = δ(ε) also going to zero. The property ε � δ means that limε→0

ε
δ(ε)

=
0, and δ � ε means that limε→0

δ(ε)
ε

= 0, these limits being taken along the
corresponding sequence.
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Theorem 1. Consider a periodic lattice � such that its periodic cell Q(�) is of unit
volume: |Q(�)| = 1. Let W0 be a function defined on Rd \ {0}, which is Lipschitz
on the exterior of any ball BR , with R > 0, and such that there exists C � 0 and
a > 0 such that |W0(x)| � C

|x|d+a . Let � be a bounded Lipschitz open subset of

Rd , and let u be a C∞ diffeomorphism defined on �, with values in Rd . Consider
Eε,δ the energy defined by (5). Then the following statements hold:

(i) If ε = δ, then

lim
ε→0

Eε,δ(u) = 1

2|�|
∫

�

∑
j∈�\{0}

W0(∇u(x)j)dx. (7)

(ii) If ε � δ, and if W0 ∈ L1(R3), then

lim
ε→0

(
ε

δ

)d

Eε,δ(u) = 1

2|�|
(∫

R3
W0

) ∫
�

dx

| det(∇u(x))| . (8)

(iii) If δ � ε, and if for some p ∈ R, lim|x|→∞ |x|pW0(x) = a, then

lim
ε→0

(
ε

δ

)p

Eε,δ(u) = 1

2|�|
∫

�

∑
j∈�\{0}

a

|∇u(x)j |p dx. (9)

Proof. We first prove (i). Note that this result seems to be well known, but since
we found no rigorous proof of it in the literature, we provide the reader with one
here. Consider (5), with ε = δ, that is:

Eε,δ(u) = 1

2N

∑
i |=j∈�∩ 1

ε
�

W0

(
u(εi) − u(εj)

ε

)
.

We first split this sum into two sums, using a cut-off radius A > 0, which in the
end will go to infinity:

Eε,δ(u) = 1

2N

∑
|i−j |�A

W0

(
u(εi) − u(εj)

ε

)

+ 1

2N

∑
|i−j |>A

W0

(
u(εi) − u(εj)

ε

)
, (10)

both sums being reduced to couples (i, j) in
( 1

ε
� ∩ �

)2 such that i |= j . The

deformation u being a C∞ diffeomorphism, we have α|i − j | � |u(εi)−u(εj)|
ε

�
β|i−j | for some constants α and β depending only on u. Consequently, the second
sum in (10) is easily seen to vanish as A goes to infinity, uniformly with respect to
ε. Turning to the first term, we use a Taylor expansion to write:

∣∣∣∣u(εi) − u(εj)

ε
− ∇u(εi)(j − i)

∣∣∣∣ � CA2ε,
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where C depends only on u. Next, using the fact that W0 is Lipschitz on the exterior
of any ball, and that αd(�) � α|i − j | � |u(εi)−u(εj)|

ε
for any i and j appearing in

the sum, where d(�) is the minimal distance between two points of the lattice �, we
may write:

∣∣∣∣W0

(
u(εi) − u(εj)

ε

)
− W0

(∇u(εi)(j − i)
)∣∣∣∣ � Cd(α)A

2ε.

Using this inequality in (10), we thus have:

∣∣∣∣Eε,δ(u) − 1

2N

∑
i∈�∩ 1

ε
�

∑
0<|i−j |�A

W0
(∇u(εi)(j − i)

)∣∣∣∣

� Cd(α)A
2+dε + R(A), (11)

where R(A) corresponds to an upper bound of the second term of (10), and may
thus be chosen equal to R(A) = 1

2N

∑
|i−j |>A

C
|i−j |d+a � C

Aa , where C are various
constants independent of ε. Next, the sum in (11) may be written as

1

2N

∑
i∈�∩ 1

ε
�

∑
0<|j |�A

W0
(∇u(εi)j

)
,

where the sum over j is restricted to j ∈ � (as in (11)). Then, using the regularity
of u, we may write |∇u(εi)j | � α|j |, where α does not depend on ε and i.
Consequently, the sum over j is, up to a term going to zero as A goes to infinity,
uniformly with respect to ε, the sum over the whole lattice:

∣∣∣∣Eε,δ(u) − 1

2N

∑
i∈�∩ 1

ε
�

∑
j∈�\{0}

W0
(∇u(εi)j

)∣∣∣∣ � Cd(α)A
2+dε + C

Aa
.

The last step is to point out that, since N = #ε� ∩ �, the sum over i is a Riemann
sum, converging to the desired integral since the function x 	→ ∑

j |=0 W0(∇u(x)j)

is Lipschitz on �. Choosing A = ε− d
2 −1, and then letting ε go to zero, we prove (i).

Let us now prove (ii). For the sake of simplicity, we restrict ourselves to the
case of a finite-range potential, the generalization to the present case being only a
technical matter, similar to the cut-off trick in the proof of (i). We then have, for
i, j ∈ � ∩ 1

ε
�,

|u(εi) − u(εj)|
δ

� α
ε

δ
|i − j |

for some constant α depending only on u. Consequently, given i ∈ � ∩ 1
ε
�, the

number of terms in the sum over j contributing to the energy is of order δd

εd , in view

of the inequality |i − j | � C δ
ε
. Therefore, we easily show, using the fact that W0
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and u are Lipschitz, that

∣∣∣∣ε2d
∑

i |=j∈�∩ 1
ε
�

W0

(
u(εi) − u(εj)

δ

)

−
∫

�

∫
�

W0

(
u(x) − u(y)

δ

)
dxdy

∣∣∣∣ � C
(ε

δ
+ ε

)
δd,

where C depends only on W0, u and �. Now, changing variables in the integral,
we have

∫
�

∫
�

W0
(u(x) − u(y)

δ

)
dxdy

=
∫

u(�)

∫
u(�)

W0
( ξ−η

δ

)
| det(∇u(u−1(ξ))) det(∇u(u−1(η)))|dξdη.

Next, we use the fact that as δ goes to infinity,
1

δd
∫

Rd W0
W0(

·
δ
) converges to a

Dirac mass at zero, so that

lim
δ→0

1

δd

∫
u(�)

∫
u(�)

W0
( ξ−η

δ

)
| det(∇u(u−1(ξ))) det(∇u(u−1(η)))|dξdη

=
(∫

Rd

W0

) ∫
u(�)

dξ

| det(∇u(u−1(ξ)))|2

=
(∫

Rd

W0

) ∫
�

dx

| det(∇u(x))| .

Putting all this together, we thus have:

lim
ε�δ→0

Nε2d

δd
Eε,δ(u) = 1

2

(∫
Rd

W0

) ∫
�

dx

| det(∇u(x))| .

Observing that, at leading order, N ≈ |�|
|Q(�)|εd , where |Q(�)| is the volume of the

unit cell of �, this proves (ii).
We next prove (iii): fixing a positive parameter α (which in the end will go to

zero), we know that for |x| large enough, |W0(x)− a
|x|p | � α

|x|p . Using the regularity
of y, we thus have, for ε

δ
large enough,

∣∣∣∣W0

(
u(εi) − u(εj)

δ

)
− aδp

|u(εi) − u(εj)|p
∣∣∣∣ � Cαδp

|i − j |p ,

where C depends only on u. Hence, we deduce easily that∣∣∣∣
(

ε

δ

)p

Eε,δ(u) − 1

2N

∑
i |=j

aεp

|u(εi) − u(εj)|p
∣∣∣∣ � Cα

1

2N

∑
i |=j

1

|i − j |p

� Cα
∑

j∈�\{0}

1

|j |p . (12)
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We next apply (i) with W0(x) = 1
|x|p to conclude that the second term of the right-

hand side of (12) converges to the desired formula. It only remains to point out that
(12) is valid for any α > 0, as long as ε

δ
is chosen large enough, which concludes

the proof. ��

Remark 2. The regularity assumption we have made on u could be slightly re-
laxed. Indeed, u being a C1 diffeomorphism is clearly sufficient to make the above
proof available. However, and although this assumption is reasonable (see [16]),
the Taylor expansion we use here could not be carried out if only lower regularity
was assumed. If for example we allow jumps in the gradient, it might be possible
to obtain a concentration of energy on the jump set (see [11]).

2.2. Higher order terms

We have studied in Subsection 2.1 the limit of the energy as ε and δ go to zero,
that is, the zero-order term of a development of this energy in powers of ε. We give
now a derivation of higher order terms of this development, limiting ourselves to
order two, although the computations could be carried out at any order.

Before stating this result in Theorem 3 below, we need a definition. Let � be a
piecewise C1 open bounded set, and let x ∈ ∂�. Denote by �(x) the tangent plane
at x, and define the non-negative measure µ�(x),� on R+ by

µ�(x),� = lim
ε→0

(
εd−1

∑
k∈Aε(�(x))

Nε(k)δk

)
, (13)

with Aε(�(x)) = {d(i, 1
ε
�(x)), i ∈ � ∩ 1

ε
(�(x)− ∩ �)}, the number is Nε(k) =

#{i ∈ �∩ 1
ε
(�(x)− ∩�), d(i, 1

ε
�(x)) = k}, and the set �(x)− = {z+ ν(x)t, t ∈

(−∞, 0), z ∈ �(x)}, where ν(x) is the outer normal of � at x.

Theorem 3. Let W0 be a function defined on Rd \ {0}, such that for all x |= 0,
W0(x) = W0(−x), which is smooth on the exterior of the ball BR , for any R > 0,
and such that there exists C � 0, R0 > 0 and a > 2 satisfying

∀k ∈ N, ∀x ∈ (BR0)
c, |DkW0(x)| � C

|x|d+k+a
. (14)

Let � be a piece-wise C1 open bounded subset of Rd , and let u be a C∞ diffeo-
morphism defined on �, with values in Rd . Assume in addition that there exists a
sequence εn > 0 converging to zero such that, for all integers n, #(εn�∩�) = |�|

εd
n

,

and that |Q(�)| the volume of the unit cell of the lattice � is equal to one. Consider
Eδ,ε the energy defined by (5). Then, restricting ε to the sequence εn the following
statements hold:
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(i) If δ = ε, then

Eε,δ(u) = 1

2|�|
∫

�

∑
j∈�\{0}

W0(∇u(x)(j)) dx

− ε

2|�|
∫

∂�

(∫ ∞

0

∑
j∈�, jν�k

W0(∇u(x)j)dµ�(x),�(k)

)
dσ(x)

− ε2

24|�|
∫

�

∑
j∈�\{0}

D2W0(∇u(x)j)(D2u(x)(j, j),D2u(x)(j, j)) dx

+ ε2F1(u) + o(ε2),

(15)

where �(x) is the tangent plane of ∂� at x, the non-negative measure dµ�,�(k)

is defined by (13), and F1 contains only boundary terms;
(ii) If ε � δ, and if W0 ∈ L1(R3), then

(
ε

δ

)d

Eε,δ(u) =
∫

Rd W0

2|�|
∫

�

dx

| det(∇u(x))|
− ε

|�|
∫

∂�

∫ ∞

0

(∫ ∞

k

W0(∇u(x)z)dµ�(x),�(z)

)
dydσ(x)

− ε2

24|�|
∫

�

∫
Rd

D2W0(∇u(x)y)(D2u(x)(y, y),

D2u(x)(y, y)) dydx

+ ε2F2(u) + o(ε2),

(16)

the measure dµ�(x),� being defined by (13), and the term F2(u) containing only
boundary terms.

Let us point out that, although formulas (15) and (16) seem rather complicated,
in the special case where � is the unit cube of Rd , and the lattice � is equal to Zd ,

the plane �(x) is exactly the face of the cube to which x belongs, and the measure
dµ�(x),Zd is easily computed to be

∑
p�1 δp, the sum involving only p ∈ N.

Consequently, in this case, the integrand of the second term of (15) reads:
∑
k�1

∑
j∈Zd , jn�k

W0(∇u(x)j),

which may be interpreted, when ∇u is the identity matrix, as the surface energy of a
crystal. In a more general setting, the measure dµ�(x),� may be seen as the average
number of points in � and in the half-space containing � which are at distance k

from �(x).

Proof. We only give the proof of (i), the proof of (ii) following the same line
of arguments. For the sake of simplicity, we assume that the constant a of (14)

9



satisfies a > 8. This is only a technical assumption, which allows us to simplify the
argument below. We will next indicate how to deal with the general case (a > 2).

We use a cut-off radius A > 0, as in the proof of Theorem 1, writing

Eε,δ(u) = 1

2N

( ∑
i∈�∩ 1

ε
�

∑
0<|i−j |<A

W0

(u(εi) − u(εj)

ε

)

+
∑

i∈�∩ 1
ε
�

∑
|i−j |�A

W0

(u(εi) − u(εj)

ε

))
, (17)

where all the sums over j concern only j ∈ �. Using (14), the second sum is easily
bounded by a term of the form C

Aa , so that, taking A = ε−β , with 2
a

< β < 1
4 ,

which is possible since a > 8, this sum is of strictly lower order than ε2. Next, we
use a Taylor expansion of the expression W0

(u(εi)−u(εj)
ε

)
:

W0

(
u(εi) − u(εj)

ε

)
= W0

(∇u(εi)(j − i)
) + ε

2
∇W0

(∇u(εi)(j − i)
)

× (
D2u(εi)(j − i, j − i)

)

+ ε2
[

1

8
D2W0

(∇u(εi)(j − i)
)

× (
D2u(εi)

(
j − i, j − i

)
, D2u(εi)

(
j − i, j − i

))

+ 1

6

(∇u(εi)(j − i)
)
D3u(εi)

(
j − i, j − i, j − i

)]

+ ε3

72
D2W0

(∇u(εi)(j − i)
)

×(
D2u(εi)(j − i, j − i), D3u(εi)(j − i, j − i, j − i)

)

+ O

(
ε3A4

|j − i|d+a+1

)
,

(18)

where the term O
(

ε3A4

|j−i|d+a+1

)
involves constants depending only on W0, u and �.

Since the term depending on j may be summed up over � uniformly with respect
to i, this will lead, when summed up with respect to i and j , to a quantity of order
O(ε3A4) = o(ε2). We next study the term of order three: we need to show that,
summed with respect to i and j , it remains of lower order than ε2. For this purpose,
we estimate it as follows, setting j ′ = j − i:

∣∣∣∣∣∣
∑

0<|j ′|<A

D2W0
(∇u(εi)(j ′)

) (
D2u(εi)(j ′, j ′), D3u(εi)(j ′, j ′, j ′)

)∣∣∣∣∣∣
�

∑
0<|j ′|<A

C

|j ′|d+a+2 |j ′|5 =
∑

0<|j ′|<A

C

|j ′|d+a−3 � C

Aa−3 . (19)
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This shows that the third-order term in (18) is of order ε3

Aa−3 , which is negligible

compared to ε2, thanks to the definition of A. We may thus write the energy as:

Eε,δ(u) = 1

2N

∑
i∈�∩ 1

ε
�

∑
0<|i−j |<A

[
W0

(
∇u(εi)(j − i)

)

+ ε

2
∇W0

(
∇u(εi)(j − i)

)(
D2u(εi)

(
j − i, j − i

))

+ ε2

6
∇W0

(
∇u(εi)(j − i)

)
D3u(εi)

(
j − i, j − i, j − i

)

+ ε2

8
D2W0

(
∇u(εi)(j − i)

)

×
(

D2u(εi)
(
j − i, j − i

)
, D2u(εi)

(
j − i, j − i

))]
+ o(ε2).

(20)

We now notice that, since the missing terms sum up to a lower order term, we may
sum up over all j ∈ �\{i} in the terms of order ε2. We may in fact do the same thing
for the term of order ε. Indeed, the missing terms may be estimated as follows:

∣∣∣∣ε2
∑

|j |�A

∇W0

(
∇u(εi)j

)
D2u(εi)

(
j, j

)∣∣∣∣ �
∑

|j |�A

Cε|j |2
|j |d+1+a

= O

(
ε

Aa−1

)
= o(ε2), (21)

from the definition of A. This estimate is valid for i far enough from the boundary
of 1

ε
�, since otherwise the sum is truncated not at A, but at d(i, 1

ε
�c). On the other

hand, these terms are easily seen, through the same kind of estimate, to be boundary
terms of higher order.

We leave the first term as it stands for now, dealing with it afterwards. The other
terms are easily seen to be Riemann sums, converging, up to higher order boundary
terms, to the corresponding integrals. We thus have:

Eε,δ(u) = 1

2N

∑
i∈�∩ 1

ε
�

∑
0<|i−j |<A

W0

(
∇u(εi)(j − i)

)

+ ε

4|�|
∫

�

∑
j∈�\{0}

∇W0
(∇u(x)j

)(
D2u(x)(j, j)

)
dx

+ ε2
[

1

6|�|
∫

�

∑
j∈�\{0}

∇W0(∇u(x)j)D3u(x)(j, j, j)dx

+ 1

8|�|
∫

�

∑
j∈�\{0}

D2W0(∇u(x)j)(D2u(x)(j, j), D2u(x)(j, j))dx

]

+ ε2F1(u) + o(ε2), (22)
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where F1(u) is a boundary term. Integrating by parts the first part of the term of
order ε2, we easily see that it is exactly the corresponding term of (15). Turning to
the term of order ε, we see that its integrand is an exact derivative with respect to
x, so that it is equal to

∫
�

∑
j∈�\{0}

∇W0
(∇u(x)j

)(
D2u(x)(j, j)

)
dx

=
∫

∂�

∑
j∈�\{0}

W0(∇u(x)j)(jn)dσ(x). (23)

Using the fact that W0(x) = W0(−x), together with the fact that the set � \ {0}
is symmetric with respect to 0, we see that this term cancels. We now deal with
the term of order zero: it will naturally give the zero-order term of (15), and also
approximating terms of order 1 and 2 a priori. The point here is to show that these
terms give the boundary term of (15). Denoting by E0

ε,δ(u) the zero-order term of
(22), we write:

E0
ε,δ(u) = 1

2N

∑
i∈�∩ 1

ε
�

∑
j∈�\{0}

W0(∇u(εi)j)dx

− 1

2N

∑
i∈�∩ 1

ε
�

∑
j |∈ 1

ε
�

W0(∇u(εi)(j − i))

− 1

2N

∑
i∈ 1

ε
�

∑
j∈ 1

ε
�∩BA(i)c

W0(∇u(εi)(j − i)). (24)

Here, all the sums are restricted to points belonging to �. The third term is easily
bounded as follows:∣∣∣∣ 1

2N

∑
i∈�∩ 1

ε
�

∑
j∈ 1

ε
�∩BA(i)c

W0(∇u(εi)(j − i))

∣∣∣∣ � C
∑

|j |>A

1

|j |a+d
� C

Aa
= o(ε2).

The two remaining terms will respectively give the terms of order zero and one in
(15). In order to prove this claim for the first term, we denote by f the function
f (x) = ∑

j |=0 W0(∇u(x)j), and write it as:

ε3

2|�|
∑

i∈�∩ 1
ε
�

f (εi) = 1

2|�|
∫

�

f (x)dx

+ 1

2|�|
∑

i∈�∩ 1
ε
�

∫
εi+εQ(�)

(f (εi) − f (x))dx,

+
∑

i∈�∩ 1
ε
�

∫
(εi+εQ(�))∩�c

f

−
∑

i∈�∩ 1
ε
�c

∫
(εi+εQ(�))∩�

f, (25)
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where Q(�) is the primitive unit cell of �. We next make a Taylor expansion of the
second term, writingf (εi)−f (x) = ∇f (εi)(i−x)−D2f (εi)(x−i, x−i)+O(ε3).

The first term of this expansion is linear with respect to x − i, and thus cancels
when integrated over i + Q(�). We thus have

ε3

2|�|
∑

i∈�∩ 1
ε
�

f (εi) = 1

|�|
∫

�

f (x)dx

− ε5

2|�|
∑

i∈�∩ 1
ε
�

∫
Q(�)

D2f (εi)(y, y)dy + O(ε3).

We recognize here again in the second term a Riemann sum, so that it may be re-
placed, up to terms which are negligible before ε2, by the quantity
ε2

∫
�

∫
Q(�)

D2f (x)(y, y)dydx. This term being an integral of a derivative with

respect to x, it will give only a boundary term of order ε2. We now turn to the last
terms of (25), which are boundary terms, since they clearly involve only terms such
that d(i, 1

ε
∂�) < 2ε. Next, we notice that each term of this difference is a Riemann

sum of the boundary, and thus may be replaced, up to boundary terms of order ε2,
by the corresponding integrals, which are equal.

We finally deal with the remaining term, that is, the second term of (24). Since
the treatment of this term is rather delicate, we provide a proof in the case when �

is a polyhedron. The extension to the general case follows the same argument with
some straightforward technical adaptations that we omit. The first point is that, since
j is restricted to belong to 1

ε
�c, using once again that ∇u−1 is bounded uniformly

on �, we may reduce this sum to terms which are not far from the boundary:

− 1

2N

∑
i∈�∩ 1

ε
�

∑
j |∈ 1

ε

W0
(∇u(εi)(j − i)

)

= − 1

2N

∑
i∈�∩∂ε�

∑
j |∈ 1

ε
�

W0
(∇u(εi)(j − i)

) + o(ε2),

where ∂ε� = {y ∈ 1
ε
�, d(y, ∂( 1

ε
�)) < 1√

ε
}. This expression shows that this is

going to be a boundary term. Next, we separate the boundary of � into P different
faces, denoted by �p, with 1 � p � P . We now consider only one face, putting all
of them together in the end:

E�p(u) = − 1

2N

∑
i∈�∩�ε

p

∑
j+i∈�∩ 1

ε
�c

W0
(∇u(εi)j

)
,

where �ε
p is the set of points in 1

ε
� which are at a distance smaller than 1√

ε
from

1
ε
�p. Now, considering the set to which j belongs, it may be described, up to a

term of order ε2, by the constraints j ∈ � and (j + i − π 1
ε
�p

(i))n � 0, where n

is the outer normal of the face �p, and π 1
ε
�p

is the orthogonal projection on the

13



hyper-plane 1
ε
�p. Now, since d(i, 1

ε
�p) = (π 1

ε
�p

(i)− i)n, this property also reads

jn � d(i, 1
ε
�p). Hence,

E�p(u) = − εd

2|�|
∑

i∈�∩�ε
p

∑
j∈�, jn�d(i, 1

ε
�p)

W0
(∇u(εi)j

) + O(ε2).

We next approximate, up to order ε, the sum over j by the same one where εi is
replaced by π�p(εi). This may be done using a Taylor expansion, and the correcting
term is shown to be of order ε2 when summed up with respect to i using the fact
that a > 2. The term we want to treat now is thus:

E�p(u) = − εd

2|�|
∑

i∈�∩�ε
p

∑
j∈�, jn�d(i, 1

ε
�p)

W0
(∇u(π�p(εi))j

) + O(ε2).

Assume for a while that ∇u is constant and equal to F on �p. We now define the set
A

p
ε (�p) = {d(i, 1

ε
�p), i ∈ � ∩ �ε

p}, and N p
ε (k) = #{i ∈ �ε

p ∩ �, d(i, 1
ε
�p) =

k}, and using this notation, we write the above energy as

E�p(u) = − εd

2|�|
∑

k∈A
p
ε (�p)

N p
ε (k)

∑
j∈�, jn�k

W0
(
Fj

) + O(ε2).

It only remains to point out that the number N p
ε (k) is equal to the number |�p|Nε(k)

appearing in (13), up to a correcting term of order ε2−d . Here |�p| is the (d − 1)-
dimensional measure of the face �p. We therefore conclude, in this special case,
that

E�p(u) = −ε|�p|
2|�|

∫ ∞

0

( ∑
j∈�, jn�k

W0(∇u(x)j)

)
dµ�p,�(k),

which matches exactly the second term of (15). Here, x is any point of �p. In
order to finish the proof, we only need to point out that if ∇u is not a constant on
�p, a similar but more tedious analysis leads to the second term of (15) through
a Riemann sum over �p. Next, using an approximation of � by a polyhedron, we
conclude the proof in the general case.

We now explain how the above argument may be adapted to the case where
a � 8. Note that the points where we have used the assumption a > 8 concern only
the bulk term, and not the surface terms. In the bulk term, the point is the choice of β,
i.e., of A, the cut-off radius used in (17). We need β > 2

a
so that the remainder term

in (17) be of order strictly lower than ε2. If a � 8, this implies that the remainder of
(18) is no more of order o(ε2). Hence, we need to expand at an order higher than 2,
say q. And the remainder, which is of order O( εqAq+1

|j−i|d+a+1 ), leads, when summed up

over j , to a term of order O(εq−1−βq). Hence, if β is chosen strictly lower than 1,
which is possible since a > 2, this term is of order strictly lower than ε2 for q large
enough. Then we only have to deal with the additional terms of the development,
which we do using their exact expression, as was done in (19) for the term of order
three. ��
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Note that, as is clear in the above proof, the development could be carried on
at any order. However, even the surface term of order ε is a little cumbersome to
establish, and its expression seems to be difficult to use except in special cases.
This indicates that higher order surface terms are likely to be hard to compute and
to use. On the contrary, if we only look for bulk terms, the development is within
reach. (In such a case, the assumption (14) would involve a > q, q being the order
at which we want to develop.)

Another point is that the term of order ε is a boundary term, even if the assump-
tion W0(x) = W0(−x) is dropped. However, in this case, the right-hand side of
(23) would appear in addition to the term of (15).

Finally, let us point out that this order-one term shows a minus sign because (and
it is apparent in the above proof) it is the correction of the bulk term of order zero,
to which we have added terms so as to have the whole sum over � when x is close to
the boundary. It may be therefore interpreted as the opposite of the surface energy
of the crystal. However, this interpretation is subjected to the assumption that the
atoms are distributed on the lattice � even near the boundary. This assumption is
highly questionable, since it is known that relaxation effects near the boundary may
change or even destroy the periodicity locally. These effects might be of same order
as the surface energy we have derived.

3. Thomas-Fermi type models

We deal in this Section with Thomas-Fermi type models, where the quantum
nature of the electrons is (partially) taken into account, whereas the nuclei are
supposed to be classical particles.

We first present the Thomas-Fermi-von Weizsäcker (TFW) model, define it for
molecules, and then explain how it translates into TFW theory for infinite periodic
(solid-state) systems through the thermodynamic limit process [12]. We also show
the link between this thermodynamic limit process and the present homogenization
scheme.

3.1. Presentation of the models

We briefly present in this subsection the Thomas-Fermi-von Weizsäcker (TFW)
model, recalling that everything we are going to do for this model is clearly adapt-
able to Thomas-Fermi (TF), and even to Thomas-Fermi-Dirac-von Weizsäcker
model. We refer to [26] for details on these models.

The TFW energy is defined, for a set of M nuclei of positions {Xi}1�i�M and
charges {Zi}1�i�M , and a set of electrons defined by their total density ρ � 0 (such

15



that
√

ρ ∈ H 1(R3)), by

ETFW({Xi, Zi}, ρ) = h̄2

m

(∫
R3

|∇√
ρ|2 +

∫
R3

ρ5/3
)

+ e2

4πε0

(
−

M∑
i=1

∫
R3

Ziρ(x)

|x − Xi |dx + 1

2

∫
R3

ρ(x)ρ(y)

|x − y| dxdy

+ 1

2

∑
i |=j

ZiZj

|Xi − Xj |
)

,

(26)

where h̄ is Planck’s constant, e the elementary charge, m the mass of an electron and
ε0 the dielectric permittivity constant. Note that the TFW model is usually stated

in a unit system where the coefficients h2

m
and e2

4πε0
of (26) are both equal to 1,

but here we need to scale the characteristic length of the model with respect to the
atomic spacing, as was done in Section 2 for two-body energies. Let us also point
out that we have skipped here dimensionless constants which should appear in front
of the first two terms of (26) (see [39] for the details), since they are mathematically
irrelevant here.

The integer N being the total number of electrons, the density ρ is subjected to
the constraint

∫
ρ = N . When the electrons are in their ground state, they minimize

the above energy, i.e., they are a solution of the minimization problem

ETFW({Xi, Zi}) = inf

{
ETFW({Xi, Zi}, ρ), ρ � 0,

√
ρ ∈ H 1(R3),

∫
R3

ρ = N

}
. (27)

Here, we assume that we are dealing with a set of N identical atoms, and fix the
nuclear charge to Zi = 1, although none of these assumptions are limitations. The
important assumption is that the nuclei are periodically distributed, that is, as in
Section 2, {Xi} = ε� ∩ �, where � is the periodic lattice on which the nuclei are
distributed, ε the inter-atomic distance, and � the Lipschitz open set defining the
solid we are studying.

We next point out that the characteristic length of the system is easily shown by

a dimensional analysis to be δ = h̄24πε0
e2m

. Hence, setting E0 = h2

m
, (26) translates

into

ETFW
δ ({Xi}, ρ) =E0

[∫
R3

|∇√
ρ|2 +

∫
R3

ρ5/3 + 1

δ

(
−

M∑
i=1

∫
R3

ρ(x)

|x − Xi |dx

+ 1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x − y| dxdy + 1

2

∑
i |=j

1

|Xi − Xj |
)]

,

(28)
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and (27) similarly. Assuming now that the set of nuclei {Xi} = ε�∩� is deformed
by a C∞ diffeomorphism u, we thus define

ETFW
ε,δ (u) = 1

N
inf

{
ETFW

δ (u(ε� ∩ �), ρ), ρ � 0,

√
ρ ∈ H 1(R3),

∫
R3

ρ = N

}
, (29)

where N is the total number of nuclei (equal to the number of electrons), that is,
N = #(ε� ∩ �). Equation (29) is the equivalent of (5) in the present case of TFW
theory.

We recall that given a set of any finite nuclei {Xi}1�i�N , the minimization
problem (27) has a unique solution ρ. We refer to [6] for the proof of this result.
The function ETFW

ε,δ (u) is thus well defined by (29).

3.2. Infinite periodic systems

The problem of the thermodynamic limit of the above (TFW) model is closely
linked with the problem we are dealing with here. Indeed, setting ρ̃(x) = ε3ρ(εx)

and changing variables in (28), we get

ETFW
δ (u(ε� ∩ �), ρ)

= E0

[
1

ε2

(∫
R3

|∇√
ρ̃|2 +

∫
R3

ρ̃5/3
)

+ 1

δε

(
−

∑
i∈�∩ 1

ε
�

∫
R3

ρ̃(x)

|x − u(εi)
ε

|dx

+ 1

2

∫
R3

∫
R3

ρ̃(x)ρ̃(y)

|x − y| dxdy + 1

2

∑
i |=j∈�∩ 1

ε
�

1

|u(εi)−u(εj)
ε

|
)]

.

(30)

In the special case where the function u is linear, u(εi)
ε

simplifies to u(i), so that
the problem we address here is exactly the problem of finding the limit of the
ground-state TFW energy as the set of nuclei fills in the lattice u(�), which is the
thermodynamic limit problem for the TFW model, as dealt with in [12,13], given
the fact that the constants involved in (30) scale properly, namely 1

ε2 ∼ 1
δε

, i.e.,
δ ∼ ε, which is the equivalent of (i) of Theorem 1. We thus recall here the results of
[12]: it is possible to define the (renormalized) TFW energy of an infinite periodic
system in which the nuclei are distributed on a lattice � and the electronic density
ρ̃ is such that

√
ρ̃ ∈ H 1

per(�), the set of functions in H 1
loc which are �-periodic, by:

ETFW(ρ̃, �) =
∫

Q(�)

|∇√
ρ̃|2 +

∫
Q(�)

ρ̃5/3 −
∫

Q(�)

ρ̃G�

+ 1

2

∫
Q(�)

∫
Q(�)

ρ̃(x)G�(x − y)ρ̃(y)dxdy, (31)
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where Q(�) is the primitive unit cell (or any unit cell) of the lattice �, and G� may
be seen as the �-periodic version of the Coulomb potential, and is defined by the
following:

−�G� = 4π
(
δ0 − 1

|Q(�)|
)

in Q(�),

G� is �−periodic, lim|x|→0

(
G�(x) − 1

|x|
) = 0.

(32)

We then have the following theorem (see [12]):

Theorem 4 (Thermodynamic limit of the TFW model, [12]). Let � be an open
Lipschitz bounded subset of R3. Denote by ETFW(� ∩ 1

ε
�, ρ̃) the rescaled TFW

energy, that is, (30) with E0 = ε2, δ = ε and u = Id:

ETFW
(

� ∩ 1

ε
�, ρ̃

)
=

∫
R3

|∇√
ρ̃|2 +

∫
R3

ρ̃5/3 −
∑

i∈�∩ 1
ε
�

∫
R3

ρ̃(x)

|x − i|dx

+1

2

∫
R3

∫
R3

ρ̃(x)ρ̃(y)

|x − y| dxdy + 1

2

∑
i |=j∈�∩ 1

ε
�

1

|i − j | . (33)

And define

ETFW
(

� ∩ 1

ε
�

)
= 1

N
inf

{
Eε(� ∩ 1

ε
�, ρ̃), ρ̃ � 0,

√
ρ̃ ∈ H 1(R3),

∫
R3

ρ̃ = N

}
,

with N = #(� ∩ 1
ε
�). Then, it follows that

lim
ε→0

ETFW
(

� ∩ 1

ε
�

)
= ETFW(�),

where ETFW(�) is defined by the following minimization problem:

ETFW(�) = inf

{
ETFW(�, ρ̃), ρ̃ � 0,

√
ρ̃ ∈ H 1

per(�),

∫
Q(�)

ρ̃ = 1

}
, (34)

the periodic energy ETFW(�, ρ̃) being defined by (31).
In addition, the solution ρ̃ε of the minimization problem ETFW(� ∩ 1

ε
�) con-

verges to the solution of ETFW(�), uniformly on any set of the form ( 1
ε

− γε)�,
where 1 � γε � 1

ε
.

The proof of Theorem 4 as presented in Chapter 5 of [12] is based on the
convergence and uniqueness of the solution of the Euler-Lagrange equation of
minimization problems ETFW(� ∩ 1

ε
�) and ETFW(�). The first one converges in

some sense to the second, so that their solutions also converge. This is why we now
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write down the Euler-Lagrange equation of the minimization problem defining
ETFW

ε,δ (u) (29). Setting v = √
ρ̃, it reads:

−�v + 5

3
v7/3 +

(
v2 ∗ 1

|x| −
∑

i∈�∩ 1
ε
�

1

|x − i| + θ

)
v = 0,

where θ is the Lagrange multiplier associated with the constraint
∫

ρ̃ = N . Setting
φ = −v2 ∗ 1

|x| + ∑
i∈�∩ 1

ε
�

1
|x−i| − θ, we thus have:

−�v + 5
3v7/3 − φv = 0,

−�φ = 4π

( ∑
i∈�∩ 1

ε
�

δi − v2
)

. (35)

In the periodic case, the sum over � ∩ 1
ε
� is replaced by a sum over the whole of

�. Note that as ε goes to 0, the system (35) converges to the periodic one. Our aim
in the following subsection is to adapt the proof of Theorem 4 to the case when u

is not a linear transformation, but a general C∞ diffeomorphism.

3.3. Convergence theorem

We give in this subsection the equivalent of Theorem 1, together with its proof:

Theorem 5. Let � be a Lipschitz open set of R3, and let u be a C∞ diffeomeorphism
defined on �, and � a periodic lattice. Suppose that the volume of the primitive unit
cell of � is normalized, i.e |Q(�)| = 1. Consider the energy Eε,δ(u) defined by (28),
(29). Then, the following statements hold:

(i) If ε = δ, and if E0 = ε2, then there is a convergence:

lim
ε→0

Eε,δ(u) = 1

|�|
∫

�

ETFW(∇u(x)�)dx, (36)

where ETFW is the rescaled TFW energy defined by (34), (31), (32).
(ii) If ε � δ, and if E0 = ε2, then there is a convergence:

lim
ε→0

Eε,δ(u) = 1

|�|
∫

�

dx

| det(∇u(x))|2/3 . (37)

(iii) If δ � ε, and if E0 = δ2, then Eε,δ(u) converges to a constant independent of
u. This constant may be identified as the rescaled atomic TFW energy [27].

Proof. The ingredients of the present proof are mainly present in [12]. We never-
theless provide them for the sake of completeness. We start with the proof of (i). We
denote by ρ the solution of the minimization problem (28), (29) defining Eε,δ(u),
and by ρ̃ the rescaled electronic density, that is, ρ̃(x) = ε3ρ(εx). The proof will
be carried out in three steps:
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Step 1. We have the convergence

lim
ε→0

∥∥∥∥ρ̃
(· + 1

ε
u(εi)

) − ρ∇u(εi)�

∥∥∥∥
L∞(∇u(εi)Q(�))

= 0, (38)

which is uniform with respect to i ∈ � ∩ ( 1
ε

− 1√
ε
)�. Here, for any periodic lattice

�′, the density ρ�′ is the corresponding TFW electronic density, i.e., the solution of
(34), (31), (32).

In order to show (38), we argue by contradiction (this proof is an adaptation
of that of Theorem 5.9 in [12]). Assuming that it does not hold, we deduce the
existence of some xε ∈ ∇u(εi)Q(�) such that∣∣∣∣v(xε + u(εi)

ε
) − v∇u(εi)�(xε)

∣∣∣∣ � α > 0

for some α independent of ε, where v = √
ρ̃, and v∇u(εi)� = √

ρ∇u(εi)�. Using
the regularity of u, we point out that the sequence xε is compact, so that, up to a
subsequence, we may assume that it converges to some x0 ∈ ⋃

0<ε�1
⋃

i∈�∩ 1
ε
�

∇u(εi)Q(�). We recall now that v satisfies the Euler-Lagrange equation of the
minimization problem (28), (29), that is, the equivalent of (35):

−�v + 5

3
v7/3 − φv = 0,

−�φ = 4π

( ∑
j∈�∩ 1

ε
�

δ u(εj)
ε

− v2
)

,
(39)

where the effective potential φ may also be defined by

φ =
∑

j∈�∩ 1
ε
�

1

|x − u(εj)
ε

| − v2 ∗ 1

|x| − θ,

the constant θ being the Lagrange multiplier associated with the constraint
∫

v2 =
N in (29).

Using elliptic regularity results, it is then possible, using the method of [12]
(Propositions 3.8 and 3.12), to show that there exists a constant C independent of
ε such that

‖v‖L∞(R3) + ‖φ‖L
p
unif (R

3) + ‖φ‖L∞( 1
ε
�c) � C, (40)

for any p < 3. Inserting this information in the first equation of (39), this also
implies that v is uniformly continuous on R3, uniformly with respect to ε. Hence,
for a sufficiently small ε, we have

∣∣∣∣v
(
x0 + u(εi)

ε

) − v∇u(εi)�(x0)

∣∣∣∣ � α

2
. (41)

Now, the bounds we have on v and φ are valid for v(· + u(εi)
ε

) and φ(· + u(εi)
ε

),
and thus allow us to assume, using elliptic regularity and Rellich’s theorem, that
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they converge, up to a subsequence once more, to some v and φ in L∞
loc(R

3) and
L

p
loc(R

3), respectively. We also point out that εi belongs to �, which is compact,
so that we may assume that it converges to some y ∈ �. We thus have:

v
(· + u(εi)

ε

) −→ v in L∞
loc(R

3),

φ
(· + u(εi)

ε

) −→ φ in L
p
loc(R

3),

εi −→ y ∈ �.

We may then pass to the limit in the system satisfied by v
(·+ u(εi)

ε

)
and φ

(·+ u(εi)
ε

)
,

that is,

−�v
( · +u(εi)

ε

) + −5

3
v
( · +u(εi)

ε

)7/3 − φv
( · +u(εi)

ε

) = 0,

−�φ
( · +u(εi)

ε

) =
∑

j∈�∩ 1
ε
�

δ u(εj)
ε

− u(εi)
ε

− v
( · +u(εi)

ε

)2
.

Note here that the measure
∑

j∈�∩ 1
ε
� δ u(εj)

ε
− u(εi)

ε

converges inD′(R3) to the measure∑
j∈� δ∇u(y)j , because limε→0 d(i, 1

ε
�c) = +∞. Therefore, we have:

−�v + 5
3v7/3 − φ − v = 0,

−�φ = 4π

(∑
j∈�

δ∇u(y)j − v2
)

.

This system has a unique solution (v∇u(y)�, φ∇u(y)�) in L∞(R3) × L1
unif(R

3), ac-
cording to Theorem 6.5 of [12], and therefore we should have v = v∇u(y)�. We now
reach a contradiction with (41) if we can pass to the limit in (41), that is, if vM� is
a continuous function of the matrix M . This result is easily shown by repeating the
same argument as above. This completes the proof of (38).

Step 2. We have the convergence

lim
ε→0

∥∥∥∥φ
(· + u(εi)

ε

) − φ∇u(εi)�

∥∥∥∥
L∞(∇u(εi)Q(�))

= 0, (42)

which is uniform with respect to i ∈ ( 1
ε

− 1√
ε
)�. Here, for any lattice �′, φ�′ is the

effective potential associated with the density ρ�′ , solution of (34), (31), (32). In
other words, v�′ = √

ρ�′ and φ�′ are the unique solutions in L∞(R3) and L1
unif(R

3)

respectively, of the system

−�v + 5
3v7/3 − φv = 0,

−�φ = 4π

(∑
j∈�′

−δj − v2
)

.

We skip the proof of (42), since it is an easy adaptation of the one of (38).
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Step 3: Convergence of the energy. We are now in position to show the desired
convergence result. In order to do so, we split the expression of the energy into
different terms, which we treat separately. We first show:

E1(ρ̃) := 1

N

∫
R3

ρ̃5/3 −→ 1

|�|
∫

�

(∫
∇u(x)Q(�)

ρ
5/3
∇u(x)�(z)dz

)
dx, (43)

as ε → 0. We separate this integral into a sum of integrals over domains which
will, in the end, converge to the unit cell ∇u(x)Q(�) = Q(∇u(x)�) :

E1(ρ̃) := 1

N

∑
j∈�∩ 1

ε
�

∫
1
ε
u(εj+εQ(�))

ρ̃5/3 + 1

N

∑
j∈�∩ 1

ε
�c

∫
1
ε
u(εj+εQ(�))

ρ̃5/3.

We begin by dealing with the first sum. We have
∫

1
ε
u(εj+εQ(�))

ρ̃5/3 =
∫

1
ε
(u(εj+εQ(�))−u(εj))

ρ̃5/3(z + 1

ε
u(εj))dz

=
∫

∇u(εj)Q(�)

ρ
5/3
∇u(εj)�(z)dz + o(1),

uniformly with respect to j ∈ ( 1
ε

− 1√
ε
)� according to (38) and the fact that∣∣∇u(εj)Q(�) \ 1

ε

(
u(εj + εQ(�)) − u(εj)

)∣∣ + ∣∣ 1
ε

(
u(εj + εQ(�)) − u(εj)

) \
∇u(εj)Q(�)

∣∣ converges to 0 uniformly with respect to j ∈ ( 1
ε

− 1√
ε

)
�. Hence,

using the fact that ρ̃ is bounded independently of ε to show that boundary terms
j ∈ 1

ε
� \ ( 1

ε
− 1√

ε
)� make a negligible contribution, we deduce that

E1(ρ̃) = 1

N

∑
j∈�∩ 1

ε
�

∫
∇u(εj)Q(�)

ρ
5/3
∇u(εj)� + 1

N

∑
j∈�∩ 1

ε
�c

∫
1
ε
u(εj+εQ(�))

ρ̃5/3 + o(1).

The first sum may be identified as the Riemann sum converging to the desired
integral. Hence, in order to conclude the proof of (43), we only need to show that
the second sum converges to 0. In order to do so, we point out that the same argument
as above allows us to show that

1 = 1

N

∫
R3

ρ̃

= 1

N

∑
j∈�∩ 1

ε
�

∫
∇u(εj)Q(�)

ρ∇u(εj)� + 1

N

∑
j∈�∩ 1

ε
�c

∫
∇u(εj)Q(�)

ρ̃ + o(1)

= 1 +
∫

1
ε
�c

ρ̃ + o(1),

so that

lim
ε→0

∫
1
ε
�c

ρ̃ = 0. (44)
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This, together with the fact that ρ̃ is uniformly bounded in R3, allows us to show
that

∫
1
ε
�c ρ̃5/3 = o(1), concluding the proof of (43).

We now turn to the second term of the energy, and show the following conver-
gence:

E2(ρ̃) := 1

N

∫
R3

|∇√
ρ̃|2 −→ 1

|�|
∫

�

(∫
∇u(x)Q(�)

|∇√
ρ∇u(x)�|2

)
dx. (45)

We proceed here in the same way as for (43), showing first that the exterior contri-
bution is negligible. In order to do so, we recall that, using the same notation as in
Step 1, we have

−�v + 5

3
v7/3 − φv = 0,

so that, multiplying this equation by v and integrating over 1
ε
�c, we have

1

N

∫
1
ε
�c

(−�v)v = 1

N

∫
1
ε
�c

φρ̃ − 1

N

∫
1
ε
�c

5

3
ρ̃5/3 = o(1),

according to (40) and (44). Next, we use elliptic regularity to show that
1
N

∫
∂( 1

ε
�)

v ∂v
∂n

= o(1), thereby proving that

lim
ε→0

1

N

∫
1
ε
�c

|∇v|2 = 0.

Now, using elliptic regularity here again, it can easily be seen that ∇v is bounded
in L2

unif(R
3), so that

E2(ρ̃) = 1

N

∑
j∈�∩( 1

ε
− 1√

ε
)�

∫
1
ε
u(εj+εQ(�))

|∇v|2 + o(1).

Following the proof of (43), what we need here in order to conclude the proof is
the following convergence result:∥∥∥∥∇v − ∇v∇u(εi�)

∥∥∥∥
L2(∇u(εi)Q(�))

−→ 0 as ε → 0,

uniformly with respect to i ∈ ( 1
ε

− 1√
ε
)�. This result is easily proved using (38)

and (42) and the first equation of (39). This allows to conclude the proof of (45).
We finally deal with the electrostatic terms of the energy, which is more intricate

than (43) and (45). We recall that the electrostatic energy reads:

1

N

(
−

∑
i∈�∩ 1

ε
�

∫
R3

ρ̃(x)

|x − u(εi)
ε

|dx + 1

2

∫
R3

∫
R3

ρ̃(x)ρ̃(y)

|x − y| dxdy

+ 1

2

∑
i |=j∈�∩ 1

ε
�

ε

|u(εi) − u(εj)|
)

= − 1

2N

∫
R3

φρ̃ + 1

2N

∑
i∈�∩ 1

ε
�

(
lim

x→ u(εi)
ε

(
φ(x) − 1

|x − u(εi)
ε

|
))

. (46)
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Here we have used the definition of φ, that is, φ = ∑
i∈�∩ 1

ε
�

1
|x− u(εi)

ε
| − ρ̃ ∗ 1

|x| − θ.

We may deal separately with each term of the right-hand side of (46). The first term
is easily treated using the same arguments as for (43), based on (38), (42) and (40),
showing:

E3(ρ̃) := − 1

2N

∫
R3

φρ̃ −→ − 1

2|�|
∫

�

(∫
∇u(x)Q(�)

φ∇u(x)�ρ∇u(x)�

)
dx (47)

as ε → 0. We now deal with the last term of (46), and show the following:

E4(ρ̃) := 1

2N

∑
i∈�∩ 1

ε
�

(
lim

y→ u(εi)
ε

(
φ(y) − 1

|y − u(εi)
ε

|
))

−→ 1

2|�|
∫

�

(
lim
y→0

(
φ∇u(x)�(y) − 1

|y|
))

dx (48)

as ε → 0. Here again, we copy the proof of (43), separating into terms i ∈ ( 1
ε

−
1√
ε
)� and those belonging to 1

ε
� \ ( 1

ε
− 1√

ε
)�. For the first part, the use of (42)

allows us to conclude. In order to show that the remaining terms are negigible, i.e.,
that

1

N

∑
i∈�∩( 1

ε
�\ 1√

ε
�)

(
lim
y→0

(
φ(y + u(εi)

ε
) − 1

|y|
)) = o(1), (49)

we use the second equation of (39), and (40), getting
∣∣∣∣−�

(
φ(x + u(εi)

ε
) − 1

|x|
)∣∣∣∣ � C

on some ball Bα , with α > 0 and C independent of i and ε, provided ε is sufficiently
small. Hence, using the fact that φ is bounded in L1

unif(R
3) and the mean value

inequality, this implies that
∣∣∣∣φ(x + u(εi)

ε
) − 1

|x|
∣∣∣∣ � C ∀x ∈ Bα.

This estimate allows us to conclude that (49) holds, ending the proof of (48).
Now we only have to collect (43), (45), (47) and (48), and point out that, for all

x ∈ �,

−
∫

∇u(x)Q(�)

G∇u(x)Q(�)ρ∇u(x)�

+ 1

2

∫
∇u(x)Q(�)

∫
∇u(x)Q(�)

ρ∇u(x)�(z)G∇u(x)�(z − y)ρ∇u(x)�(y)dydz

= −1

2

∫
∇u(x)Q(�)

φ∇u(x)�ρ∇u(x)� + 1

2
lim
y→0

(
φ∇u(x)�(y) − 1

|y|
)

,

to conclude the proof of (i).
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We now prove (ii). Here again, we first rescale the density ρ, setting ρ̃(x) =
ε3ρ(εx). The energy may then be written as:

Eε,δ(u) = 1

N

[∫
R3

|∇√
ρ̃|2 +

∫
R3

ρ̃5/3 + ε

δ

(
−

∑
j∈�∩ 1

ε
�

∫
R3

ρ̃(x)

|x − u(εj)
ε

|

+ 1

2

∫
R3

∫
R3

ρ̃(x)ρ̃(y)

|x − y| dxdy + 1

2

∑
i |=j∈�∩ 1

ε
�

ε

|u(εi) − u(εj)|
)]

.

Next, we follow exactly the steps of the proof of (i), except that here, ε and δ appear
as parameters in the system satisfied by v = √

ρ̃ and φ = ∑
j∈�∩ 1

ε
�

1
|x− u(εj)

ε
| −v2 ∗

1
|x| + δ

ε
θ. We give the main ingredients, skipping their proofs since they involve the

same arguments as above:

‖v‖L∞(R3) + ε

δ

(‖φ‖L
p
unif (R

3) + ‖φ‖L∞( 1
ε
�c)

)
� C,

for any p < 3, and

lim
ε�δ→0

∥∥∥∥ρ̃
(· + u(εi)

ε

) − ε

|u(εi + εQ(�))|
∥∥∥∥

L∞(∇u(εi)Q(�))

= 0,

lim
ε�δ→0

∥∥∥∥ε

δ
φ
(· + u(εi)

ε

) − ε2/3

|u(εi + εQ(�))|2/3

∥∥∥∥
L2(∇u(εi)Q(�))

= 0,

uniformly with respect to i ∈ � ∩ ( 1
ε

− 1√
ε
)�. With these convergence results, we

can then easily show that all terms of the energy converge to 0 except the term∫
ρ̃5/3, which converges to the desired quantity.

Let us now prove (iii). Here again, it is possible to study the convergence of the
density and deduce from it the convergence of the energy. But we will provide an
alternate and more direct proof using the fact that we are dealing with a minimization
problem. Once again we rescale ρ, but here the rescaling parameter will be δ instead
of ε. We thus set ρ̃(x) = δ3ρ(δx). Then, the energy reads:

Eε,δ(u) = 1

N

(∫
R3

|∇√
ρ̃|2 +

∫
R3

ρ̃5/3 −
∑

j∈�∩ 1
ε
�

∫
R3

ρ̃(x)

|x − u(εj)
δ

|

+ 1

2

∫
R3

∫
R3

ρ̃(x)ρ̃(y)

|x − y| dxdy + 1

2

∑
i |=j∈�∩ 1

ε
�

δ

|u(εi) − u(εj)|
)

= 1

N
ETFW

(u(ε� ∩ �)

δ

)
,
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the term ETFW
(

u(ε�∩�)
δ

)
denoting the solution of the minimization problem

ETFW
(u(ε� ∩ �)

δ

)
= inf

{
ETFW(

u(ε� ∩ �)

δ
, ρ̃), ρ̃ � 0,

√
ρ̃ ∈ H 1(R3),

∫
R3

ρ̃ = N

}
, (50)

the energy ETFW
(

u(ε�∩�)
δ

, ρ̃
)

being the rescaled TFW energy (33).
Let now ρ0 be a non-negative, radial, compactly supported, smooth function of

total mass 1. Using the function η(x) = ∑
j∈ u(ε�∩�)

δ
ρ0(x − j) as a test function for

the minimization problem (50), we have:

Eε,δ(u) � 1

N
ETFW(u(ε� ∩ �)

δ
, η

)
.

We now point out that, for ε
δ

large enough, the terms of the sum defining η have
disjoint supports, so that we have

∫
R3

|∇√
η|2 +

∫
R3

η5/3 = N

∫
R3

|∇√
ρ0|2 + N

∫
R3

ρ
5/3
0 .

Next, in order to compute the electrostatic terms, we point out that sinceρ0 is radially
symmetric, has compact support and total mass 1, the function ρ0 ∗ 1

|x| − 1
|x| has

its support included in the support of ρ0. Therefore, we have, if ε
δ

is large enough,

− 1

2

∑
j∈�∩ 1

ε
�

∫
R3

η(x)

|x − u(εj)
δ

|dx + 1

2

∫
R3

∫
R3

η(x)η(y)

|x − y| dxdy

= −1

2

∫
R3

η(x)
∑

j∈�∩ 1
ε
�

(
1

|x − u(εj)
δ

| −
(
ρ0 ∗ 1

|x|
)(

x − u(εj)

δ

))
dx

= N

2

∫
R3

ρ0(x)
(

− 1

|x| + ρ0 ∗ 1

|x|
)
dx.

Similarly,

− 1

2

∑
j∈�∩ 1

ε
�

∫
R3

η(x)

|x − u(εj)
δ

|dx + 1

2

∑
i |=j∈�∩ 1

ε
�

δ

|u(εi) − u(εj)|

= −N

2

∫
R3

ρ0(x)

|x| dx.

Collecting these computations, we thus have:

Eε,δ(u) �
∫

R3
|∇√

ρ0|2 +
∫

R3
ρ

5/3
0 −

∫
R3

ρ0(x)

|x| dx

+ 1

2

∫
R3

∫
R3

ρ0(x)ρ0(y)

|x − y| dxdy (51)
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for any smooth radially symmetric ρ0 � 0 having compact support. We now define
the TFW atomic energy:

ITFW
at (λ) = inf

{
ETFW

at (ρ), ρ � 0,
√

ρ ∈ H 1(R3),

∫
R3

ρ = λ

}
, (52)

with

ETFW
at (ρ) =

∫
R3

|∇√
ρ|2 +

∫
R3

ρ5/3 −
∫

R3

ρ(x)

|x| dx

+ 1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x − y| dxdy. (53)

This minimization problem has been studied in [6], where it is shown to have a
unique minimizer for all λ � λc, for some λc > 1, which is radially symmetric.
Hence, in (51), we may use a sequence of functions ρ0 converging to the unique
minimizer of (52), getting

lim sup
δ�ε→0

Eε,δ(u) � ITFW
at (1). (54)

It only remains for us to prove the reverse inequality. In order to do so, we come
back to the function ρ which achieves the minimum defining Eε,δ(u), and the
corresponding rescaled density ρ̃ = δ3ρ(δx). Setting v = √

ρ̃, we write down the
Euler-Lagrange equation satisfied by v, that is,

−�v + 5
3v7/3 − φv = 0,

−�φ = 4π

( ∑
j∈�∩ 1

ε
�

δ u(εj)
δ

− v2
)

.

Using this system of equations, it is possible to adapt the method introduced in [12]
(Propositions 3.8, 3.10 and 3.12) in order to have

‖v‖L∞(R3) + ‖φ‖L
p
unif (R

3) � C,

for any p < 3, with C independent of ε and δ. Using elliptic regularity and Rellich’s
theorem, we may thus assume that for all j ∈ � ∩ 1

ε
�,

√
ρ̃(· + u(εj)

δ
) converges

weakly in H 1
loc(R

3) and strongly in L2
loc(R

3) to some vj = √
ρj . Fixing a radius

R > 0, we have, for ε
δ

large enough:

lim inf
δ�ε→0

∫
B√

ε
δ

(
u(εj)

δ
)

|∇√
ρ̃|2 � lim inf

δ�ε→0

∫
BR(

u(εj)
δ

)

|∇√
ρ̃|2 �

∫
BR

|∇√
ρj |2,

and similarly for
∫

ρ5/3. Hence, letting R go to infinity, we have

lim inf
δ�ε→0

1

N

(∫
R3

|∇√
ρ̃|2 +

∫
R3

ρ5/3
)

� lim inf
ε→0

1

N

∑
j∈�∩ 1

ε
�

(∫
R3

|∇√
ρj |2 +

∫
R3

ρ
5/3
j

)
.
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Next, we use the bounds we have on φ and ρ, finding that �
(
φ − 1

|x− u(εi)
δ

|
)

is

bounded in L∞
(
B√

ε
δ

)
, so that φ

(
x + u(εj)

δ

) − 1
|x| converges in L∞

loc(R
3) to some

φj − 1
|x| ∈ L∞(R3) such that φj satisfies −�φj = δ0 − ρj . We now point out that

the method used in [7] (Propositions 4.2 and 4.3) is easily adapted to the present
case, and yields:

max
(
φ(x), |v(x)|4/3) � C

|x − u(εi)
δ

|2 +
∑

j∈�∩ 1
ε
�

C

|x − u(εj)
δ

|4 ,

for all x such that |x − u(εi)
δ

| � infj∈�∩ 1
ε
�\{i} |x − u(εj)

δ
|. This allows us to pass to

the limit in the term − ∫
ρφ, getting

lim inf
δ�ε→0

1

N

(
−

∫
R3

ρ̃φ

)
= lim inf

δ�ε→0

1

N

∑
j∈�∩ 1

ε
�

(
−

∫
B√

δ
ε

(
u(εj)

δ
)

ρ̃φ

)

= lim inf
ε→0

1

N

∑
j∈�∩ 1

ε
�

(
−

∫
R3

ρjφj .

)
.

Finally, it is easy to adapt the proof of Step 2 of (i) in order to show that the
convergence of φ(x + u(εj)

δ
) − 1

|x| to φj − 1
|x| is uniform with respect to j ∈

� ∩ ( 1
ε

− 1√
ε

)
�, getting

lim
1

N

∑
j∈�∩ 1

ε
�

lim
x→0

(
φ

(
x + u(εj)

δ

)
− 1

|x|
)

= lim
1

N

∑
j∈�∩ 1

ε
�

lim
x→0

(
φj (x) − 1

|x|
)

.

Hence, pointing out that φj = 1
|x| −ρj ∗ 1

|x| +θj , for some constant θj , we deduce that

− 1
2

∫
R3 ρjφj + 1

2 limx→0(φj − 1
|x| ) =− ∫

ρ(x)
|x| dx+ 1

2

∫ ∫ ρ(x)ρ(y)
|x−y| dxdy. Gathering

all these results, we have

lim inf
δ�ε→0

Eε,δ(u) � lim inf
ε→0

1

N

∑
j∈�∩ 1

ε
�

ETFW
at (ρj ) � lim inf

ε→0

1

N

∑
j∈�∩ 1

ε
�

ITFW
at (λj ),

with λj = ∫
ρj . Now, the function ITFW

at (λ) is convex non-increasing with respect
to λ ∈ R+. Since in addition 1

N

∑
λj � 1, we conclude that

lim inf
δ�ε→0

Eε,δ(u) � ITFW
at (1). (55)

This concludes the proof of (iii). ��
Remark 6. Let us point out that the method used in the proof of (iii), based on
variational methods, could be used in the proof of (i) and (ii) as well. However,
although it seems more natural, it would be considerably more delicate.
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4. Possible extensions

We indicate in this section some direct consequences of the above results, and
natural extensions of them. There are mainly two types of extensions: those con-
cerning the microscopic model (the electronic problem), and those concerning the
geometry of the atoms.

4.1. Changing the model describing the electrons

In Section 3, we have dealt with Thomas-Fermi type models. These theories
are very crude compared to the Schrödinger equation, which they are supposed to
approximate. (The approximation of two-body potentials, used in Section 2, is even
worse.)

However, the methods used in this section are intimately linked with the ther-
modynamic limit problem [12,27]. More precisely, it seems that the existence of a
thermodynamic limit allows us to pass to the limit ε = δ → 0, at least in the two
cases of two-body potentials and Thomas-Fermi type models. Hence, formulas (7)
and (36) are likely to be adaptable to other models, such as for instance Hartree-
Fock models [28,29]. In this case, although the thermodynamic limit has not yet
been fully justified, it is possible (see [14]) to derive it formally. Therefore, the
elastic energy

E(u) = 1

|�|
∫

�

EHF(∇u(x)�)dx,

where EHF(�) is the Hartree-Fock energy of the lattice �, defined in [14], is a
good candidate for the elastic Hartree-Fock energy. The same remarks hold for any
quantum model.

In the case of the true Schrödinger equation, the difficulty is, as far as we
know, that there is no derivation, even formally, of any thermodynamic limit of the
model. More precisely, it is clearly possible to derive an energy functional, but the
associated variational space is not so easy to guess [18].

Let us make a final remark about these quantum models: in the case of the
Thomas-Fermi model, that is, when we forget the term

∫ |∇√
ρ|2 in the energy

(26), we have:

ETF({Xi}, ρ) = h̄2

m

∫
R3

ρ5/3 + e2

4πε0

(
−

M∑
j=1

∫
R3

ρ(x)

|x − Xj |dx

+ 1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x − y| dxdy + 1

2

∑
i |=j

1

|Xi − Xj |
)

, (56)

where we have used the same notation as in (26), setting the nuclear charges Zj

to 1. Let us for a while forget the physical constant, and assume that h̄2

m
= 1 and

e2

4πε0
= 1 in the system of units we use. A scaling argument (see [39]) easily shows

that the power 5
3 appearing in (56) is in fact equal to d+2

d
, where d is the dimension
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of the space (three, in our case). Therefore, if we consider the corresponding two-
dimensional model, the power we should use is 2, so that in this case (56) reads:

ETF({Xi}, ρ) =
∫

R2
ρ2 +

M∑
j=1

∫
R2

ρ(x) log(|x − Xj |)dx

− 1

2

∫
R2

∫
R2

ρ(x) log(|x − y|)ρ(y)dxdy

− 1

2

∑
i |=j

log(|Xi − Xj |). (57)

Note that, dealing with a two-dimensional model, we have replaced the three-
dimensional Coulomb potential 1

|x| by the two-dimensional one, namely − log(|x|).
The energy being quadratic with respect to ρ, the Euler-Lagrange equation of the
problem

ETF({Xi}) = inf

{
ETF({Xi}, ρ), ρ � 0, ρ ∈ L1(R2) ∩ L2(R2),

log(2 + |x|)ρ ∈ L1(R2),

∫
R2

ρ = N

}
(58)

is linear with respect to ρ. Assuming neutrality, that is, N = M , it reads

2ρ +
N∑

j=1

log(|x − Xi |) − ρ ∗ log(|x|) + θ = 0, (59)

where θ is the Lagrange multiplier associated with the mass constraint. Now, taking
the Laplacian of this equation, we have

−�ρ + 1

2
ρ = 2π

N∑
j=1

δXj
, (60)

with ρ ∈ L1(R2). This equation is easily solved, using the Yukawa potential in
dimension two, that is the solution W of −�W + 1

2W = 2πδ0 going to zero at

infinity. The potential W is nothing else, in fact, than K0(
|x|√

2
), where K0 is the

Bessel function of the second kind as defined in [1]. Hence, we have the equality

ρ(x) =
N∑

j=1

W(x − Xj). (61)
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We now go back to the expression of the energy (56), and using (59) and (61), we
have

ETF({Xi}, ρ) =
∫

R2
ρ2 + 1

2

∫
R2

ρ(x)

( N∑
i=1

log |x − Xi | − ρ ∗ log |x|
)

dx

+1

2

N∑
j=1

(∫
R2

ρ(x) log |x − Xj |dx −
∑
i |=j

log |Xi − Xj |
)

=
∫

R2
ρ2 + 1

2

∫
R2

ρ(−2ρ − θ)

+1

2

N∑
j=1

(
2ρ + θ + log(| · −Xj |)

)
(Xj )

=
N∑

j=1

(
ρ + 1

2
log(| · −Xj |)

)
(Xj )

=
∑
i |=j

W(Xi − Xj) + N lim
x→0

(
W(x) + 1

2
log(|x|)

)
.

Hence, up to an additive constant, the energy (58) may be expressed in terms of the
two-body potential W : the two-dimensional TF model may be recast into a two-
body model, and therefore enters the scope of Section 2. Incidentally, although the
above computations seem rather basic, we have not found them in the literature.
Note that, according to the proof of (ii) of Theorem 5, the link between the power
p appearing in (37) and the power q appearing in the microscopic energy (26) is
p = q − 1, which ensures that in the present case formulas (8) and (37) become
equivalent.

4.2. Changing the microscopic geometry of the atoms

We now make a few remarks about the microscopic arrangement of the atoms:
so far, we have assumed that they are periodically distributed. Since this assumption
is not always physically satisfactory, the same problem should be addressed in some
other cases.

Our first point is a direct improvement of the preceding sections, and is con-
cerned with polycrystalline materials. In this type of solid, we have a mix of different
lattices �1, �2, . . . �K , with volume ratios a1, a2, . . . , aK . The characteristic length
of this mixing is far larger than the atomic one, and far smaller than the macro-
scopic one. We refer the interested reader to [31,37,38] and the references therein.
Therefore, introducing an intermediate scale γ such that ε � γ � 1 (we deal here
only with the case ε = δ), we need to introduce a tiling of size γ of the set �, for
instance the unit cells of the lattice γ Z3, setting Qj = � ∩ (γQ + γj) for j ∈ Z3,
and Q being the unit cube. Then, separating each Qj into K sets Q1

j , Q2
j , . . . , QK

j

of volume ratios a1, a2, . . . , aK respectively and assuming that in the set Qk
j , the
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atoms are distributed on the set �k , we thus may use exactly the same computations
as those of Theorem 1(i) or Theorem 5(i), getting as elastic energy:

E(u) = 1

|�|
K∑

k=1

∫
�

akE
micro(∇u(x)�k)dx, (62)

where the energy functional Emicro denotes the corresponding rescaled microscopic
energy. We can also allow the coefficients ak to depend on x without any change.
Another possible improvement consists in replacing the measure

∑K
k=1 akδ�k

im-
plicitly used in (62) by any probability measure µ defined in the space of lattices
L3(R3). In this case, the Krein-Milmann theorem allows us to approximate µ by a
sum of Dirac masses as above. The integer K becoming a parameter depending on
ε, and going to infinity as ε → 0, with the condition ε � γ � 1

K
� 1, it is here

again possible to adapt our method, finding:

E(u) = 1

|�|
∫

�

∫
L3(R3)

Emicro(∇u(x)�)dµx(�)dx. (63)

ε

γ

Fig. 2. The limiting process allowing the derivation of (62), with K = 2

Let us point out that the result does not depend on the tiling we choose, as long
as it is sufficiently regular (one can for instance replace the lattice Z3 by any other
lattice in the above argument).

The point here is in fact that everything we did in the preceding sections extends
to this situation, except that we have created interfaces between the grains of each
lattice (the cubes Qk

j in the present case). Now, the condition ε � γ implies that the
bulk in each Qj is far more important energetically than these interfaces. However,
this remark allows us to predict that this presence of different phases should trigger
additive terms in the higher order expansion (Theorem 3), and in particular a bulk
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term of order one accounting for these grain boundaries. Worst of all, this term will
probably exhibit a dependence on the tiling used. Hence, the expansion at higher
order should involve a tiling which is consistent with the physics of grain boundary
contacts. All this is clearly beyond our reach today.

It should be noted that in the proof of Theorem 1 (and implicitly in that The-
orem 5), the important feature about periodicity is translation invariance. Indeed,
the crucial point, appart from the Taylor expansion, is the fact that for any lattice
�, we have:

∀i ∈ �,
∑

j∈�\{i}
W0(j − i) =

∑
j∈�\{0}

W0(j),

as long as W0 decays fast enough at infinity. We cannot break this property without
breaking translation invariance. Conversely, if a sort of translation invariance holds,
for instance in the case of almost periodic systems (see [10,44]), it is possible to
adapt our argument. Indeed, in this case, we would find the same kind of result:

E(u) = 1

|�|
∫

�

EW0(∇u(x)�)dx,

where EW0(∇u(x)�) denotes the two-body energy of the almost periodic set
∇u(x)�, that is,

EW0(�) = lim
R→∞

1

#(BR ∩ ∇u(x)�)

∑
i |=j∈BR∩∇u(x)�

W0(i − j),

which exists because �, hence ∇u(x)�, is almost periodic. Note that this quantity
does not depend on the center of the ball BR , even in the case when this center
depends on R. This property of existence and uniqueness of an average energy
seems to be the crucial one in order to use the method of Theorem 1. Of course,
even some sets which are not almost periodic enjoy this property (think for instance
of the set Z3 \ {0}), and the question of the characterization of such sets seems to
be open.

5. Convexity and related properties of the homogenized energy

We make here a few remarks about the homegenized energies we have obtained
in Section 2 and Section 3. These are only basic remarks, and we hope to come
back to them in a more general setting in the near future. Starting with the zero-
order terms (7), (8), (36) and (37), we then study higher order terms obtained in
Theorem 3.

5.1. Zero-order term

We start with the zero-order terms (7), (8), (36) and (37), first pointing out that
each of them exhibits the invariance (2), and in particular,

∀M ∈ M3×3+ , ∀Q ∈ GL3(Z), E(MQ) = E(M). (64)
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Here M3×3+ denotes the set of 3-by-3 matrices having positive determinant, and
GL3(Z) the set of matrices having integer entries, positive determinant, and whose
inverses have integer entries (this set is also equal to the set of matrices having
integer entries and determinant equal to ±1). Equation (64) simply expresses the
fact that the lattice defining the microscopic structure of the solid is invariant under
a change of basis. Note that this remains valid in the high-density limit because
| det Q| = 1.

A first point is that this invariance prevents any growth at infinity of the energy,
therefore excluding the use of standard tools of the calculus of variations. This,
however, is not such a big limitation compared to some remarked on in [15] and
[22], where it is stated that the invariance (64) prevents any quasiconvexity proper-
ty. We provide here a simple proof of this fact in the case of a radially symmetric
two-body interaction, referring to [21] and [22] for a more general result.

Proposition 7. Let W0 : R+ → R ∪ {+∞} satisfy the following:

(a) W0 is of class C1 on [R, +∞) for any R > 0;
(b) ∃a > 0 / ∀t ∈ [1, +∞), |W0(t)| � C

t3+a and |W ′
0(t)| � C

t4+a , for some
constant C � 0; and

(c) there exists some t0 > 0 such that W ′
0(t0) |= 0, and W0 is monotone on [t0, +∞).

Define the energy
E(M) =

∑
j∈�\{0}

W0(|Mj |)

for some fixed lattice �, and for any matrix M ∈ M3×3+ . Then E is not rank-one
convex, thus not quasiconvex.

Let us point out that the conditions imposed on W0 are fairly general, and
include in particular almost all two-body potentials currently used in solid-state
physics.

Proof. We assume for the sake of simplicity that � = Z3. For any z ∈ R, λ, µ � 0,
we define

A(λ, µ, z) =

λ z 0

0 µ 0
0 0 µ


,

and define the function ϕ(λ, µ, z) = E(A(λ, µ, z)). Assuming for the sake of
contradiction that E is rank-one convex, ϕ is convex with respect to z. Now, we can
easily show, using (64), that ϕ(λ, µ, λn) = ϕ(λ, µ, 0) for any integer n. Hence, ϕ

must be independent of z. Differentiating it with respect to z, we thus find:

0 =
∑
j |=0

W ′
0

(√
(λj1 + zj2)2 + µ2j2

2 + µ2j2
3

)
(λj1 + zj2)j2√

(λj1 + zj2)2 + µ2j2
2 + µ2j2

3

.

We now let λ go to infinity, getting:

0 =
∑

j∈Z2\{0}
W ′

0

(√
(µ2 + z2)j2

1 + µ2j2
2

)
zj2

1√
(µ2 + z2)j2

1 + µ2j2
2

.
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Dividing this equality by z and then taking z to zero, implies that

0 =
∑

j∈Z2\{0}
W ′

0(µ|j |) j2
2

|j | .

Now, choosing µ = t0, we see that all terms of this sum have the same sign, while
some of them are equal to W ′

0(t0) |= 0, which is contradictory. ��
However, in the high-density case, that is,

E(u) = 1

|�|
∫

�

dx

| det(∇u(x))|p , (65)

with p = 1 or p = 2
3 , the function t 	→ 1

tp
being convex in either case with respect

to t on R+, the energy E is polyconvex [3], hence quasiconvex. The energy being
highly degenerate, it is necessary to add confining terms in order to have some
equilibrium state. This kind of problem is dealt with in [40].

Note that in the proof of Proposition 7, we have essentially used the fact that a
convex function cannot be periodic, unless it is a constant. It is a direct consequence
of [21] that a rank-one convex function satisfying (64) must be of the form (65):

Theorem 8 (Fonseca, [21]). Let E be a function defined on M3×3+ , the set of three-
by-three matrices having positive determinant.

(i) Assume that E is bounded below and satisfies (64). Then, E is rank-one convex
if and only if there exists a convex function g : (0, +∞) → R such that

E(F) = g(det F) ∀F ∈ M3×3+ .

(ii) If E satisfies limdet F→0+ E(F) = +∞ and (64), then its lower quasiconvex
envelope QE is equal to its rank-one-convex envelope, and there exists a convex
function g : (0, +∞) → R such that

QE(F) = g(det F) ∀F ∈ M3×3+ .

Therefore, the application of this theorem to the TFW case allows us to conclude
that a result similar to that of Proposition 7 holds in this case. Indeed, should the
corresponding energy be quasiconvex, it would only depend on the determinant of
the gradient deformation, according to (i) above. Hence, using

M =



λ 0 0
0 1√

λ
0

0 0 1√
λ




as a gradient deformation, the corresponding energy should be independent of λ.
This is in contradiction with the fact that as λ goes to zero, the energy goes to
infinity (because a “great amount” of nuclei get closer and closer in the process;
see [7], Proposition 5.2 for a rigourous proof).
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5.2. The boundary term

We now turn to the term of order one in (15) and (16). Here again, we give only
a simple example of the role this term may play.

Consider the case ε = δ, that is (15), discarding all terms of order strictly higher
than 1. Assume in addition that � = Q is the unit cube, and that � = Z3. Then, the
elastic energy reads:

E(u) = 1

2

∫
�

∑
j |=0

W0(∇u(x)j)dx − ε

2

∫
∂�

∑
k�1

∑
j ·n(x)�k

W0(∇u(x)j)dσ (x),

the sums over j being restricted to j ∈ Z3. The consequence of the presence of this
first-order term is the breaking of property (64). Indeed, let us consider the example

u(x) =

 x1 + px2

x2
x3


 ,

where p is an integer. Then, we have

E(u) = 1

2

∑
j |=0

W0(j) − ε

2

∑
k�1

( ∑
|j1|�k

W0(u(j))

+
∑

|j2|�k

W0(u(j)) +
∑

|j3|�k

W0(u(j))

)
.

Observe that the last two sums do not depend on p. We are now going to assume
that the potential W0 is radially symmetric, and satisfies

W0(x) = W0(|x|) < 0 ∀|x| > 1.

Hence, we have

E(u) = A0 − ε

2

∑
k�1

∑
|j1|�k

W0

(√
(j1 + pj2)2 + j2

2 + j2
3

)

� A0 − ε

p∑
k=1

∑
j3∈Z

W0

(√
(p − p)2 + 1 + j2

3

)

� A0 − εp
∑
m∈Z

W0

(√
1 + m2

)
= A0 + εBp,

where A0 does not depend on p, and B > 0 is independent of ε and p. Therefore,
as p goes to infinity, the energy grows like +εp, going to infinity.
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5.3. The second-order term

We now study the second-order term. Let us start with the one-dimensional case
(where ε = δ, that is, (i) of Theorem 3), in which the energy reads, if we neglect
boundary terms and assume that � = (0, 1):

E(u) = 1

2

∫ 1

0

∑
j |=0

W0(u
′(x)j)dx − ε2

24

∫ 1

0

∑
j |=0

j4W0
′′(u′(x)j)(u′′(x))2dx,

(66)

where the sums are over Z \ {0}, since we assume for the sake of simplicity that
the lattice � is equal to Z. Hence, we have an energy of the form

E(u) =
∫ 1

0
E0(u

′(x))dx + ε2h(u′(x))(u′′(x))2dx,

with h(y) = − 1
24

∑
j |=0 j4W0

′′(yj), and E0 is the standard zero-order energy.
Thus, if W0 satisfies the inequality

∀y ∈ R,
∑
j |=0

j4W0
′′(yj) < 0,

then the energy (66) exhibits a convexification term of order 2. The influence of
this term on the energy has been studied in detail in [4] for the case of the pure
displacement problem, that is,

I� = inf
{E(u), u(0) = 0, u(1) = 1 + �

}
,

for some � ∈ R, corresponding to imposing a displacement of length � at the
right end of the solid, the other end remaining still. It is shown in [4] that when
ε = 0, I� exhibits discontinuous critical points, and has no absolute minimizer in a
classical sense. When the second-order term is added, and if h > 0, then bifurcation
phenomena (with only smooth critical points) occur.

Let us now point out that there exist potentials for which the corresponding
quantity h is indeed positive. This is the case for the Morse potential (well suited
for a wide range of materials [45,47]). Indeed, we have the following lemma:

Lemma 9. Consider the Morse potential, that is,

W0(x) = e−2(x−r0) − 2e−(x−r0),

and assume that the charactestic length r0 satisfies r0 < 5 log(5) − 8 log(2) ≈
2.502. Then it follows that

∀y > 0,
∑
j |=0

j4W0
′′(yj) < 0. (67)
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Proof. We have W0
′′(x) = 4e−2(x−r0) − 2e−(x−r0). Hence, since we have

∑
j�1

j4e−αj = e−α 1 + 11e−α + 11e−2α + e−3α

(1 − e−α)5
,

∑
j |=0

j4W0
′′(yj) = 4er0

∑
j�1

(
er02j4e−2yj − j4e−yj

)

= 4er0

(
2er0e−2y 1 + 11e−2y + 11e−4y + e−6y

(1 − e−2y)5

− e−y 1 + 11e−y + 11e−2y + e−3y

(1 − e−y)5

)

= 4er0
e−y

(1 − e−y)5

×
(

2er0e−y 1 + 11e−2y + 11e−4y + e−6y

(1 + e−y)5

− 1 − 11e−y − 11e−2y − e−3y

)
.

Setting t = e−y and t0 = e−r0 , our aim is to show that

ϕ(t) := t (1 + 11t2 + 11t4 + t6)

(1 + t)5(1 + 11t + 11t2 + t3)
< t0 ∀t ∈ (0, 1)

Since t ∈ (0, 1), t2 < t, so that ϕ(t) < t

(1+t)5 . Studying the variations of t 	→
t

(1+t)5 on [0, 1], we find that it has a maximum at 1
4 , where it is equal to 44

55 . Hence,

if t0 > 44

55 , condition (67) is satisfied. This inequality is equivalent to e−r0 > 44

55 ,
that is, r0 < 5 ln 5 + 8 ln 2. ��

On the other hand, it can be shown that the Lennard-Jones potential
(
W0(x) =

1
x12 − 1

x6

)
cannot satisfy (67).

A similar analysis could be carried out in the high-density case, that is, (ii) of
Theorem 3, the second-order term enjoying the same kind of property.

A similar study should be possible in the three-dimensional case, but calcula-
tions are a lot more involved, and it is not clear whether an ellipticity property can
be derived in this case. However, the high-density case is more tractable: looking
at the second-order term of (16), it is possible to change variables in the integral
with respect to y, and obtain:

E2(u) : = − ε2

24|�|
∫

�

∫
R3

D2W0(∇u(x)y)(D2u(x)(y, y), D2u(x)(y, y))dydx

= − ε2

24|�|
∫

�

∫
R3

D2W0(z)
(
M(x, z), M(x, z)

)
dz

| det(∇u(x))| dx

= − ε2

24|�|
∫

u(�)

∫
R3

D2W0(z)
(
N(ξ, z), N(ξ, z)

)
dzdξ,
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where v = u−1,

M(x, z) = D2u(x)(∇u(x)−1z, ∇u(x)−1z),

N(ξ, z) =
( ∇v(ξ)

det ∇v(ξ)

)−1

D2v(ξ)(z, z).

This expression is certainly easier to study. For instance, if we only look for radially
symmetric deformations, then assuming that W0 is radially symmetric, the total
energy is bounded from below by a norm of the second derivative of v, hence by a
norm of the second derivative of u.

The question remains: In the general three-dimensional setting, and both for
(15) and (16), is it possible to find some situations where the second-order bulk
term exhibits ellipticity properties, as was assumed for instance in [5]?
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15. M. Chipot & D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational
Mech. Anal. 103 (1988), 237–277.

16. P. G. Ciarlet, Mathematical theory of elasticity, Studies in Mathematics and Applica-
tions, Vol. 20, Elsevier Science Publishers, 1988.

39



17. F. Cleri, S. R. Philipot, D. Wolf & S.Yip, Atomistic simulations of materials fracture
and the link between atomic and continuum length scales, J. Am. Ceram. Soc. 81 (3)
(1998), 501–516.

18. A. J. Coleman & V. I.Yukalov, Reduced density matrices, Lecture Notes in Chemistry
72, Springer, 2001.

19. G. Dal Maso, An introduction to �-convergence, Progress in Nonlinear Differential
Equations and their Applications 8 Birkhäuser, Boston, 1993
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