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Abstract. Representing and reasoning about spatial and
temporal information is an important task in many appli-
cations of Artificial Intelligence. In the past two decades nu-
merous formalisms using qualitative constraint networks have
been proposed for representing information about time and
space. Most of the methods used to reason with these con-
straint networks are based on the weak composition closure
method. The goal of this paper is to study some implementa-
tions of these methods, including three well known and very
used implementations, and two new ones.

1 Introduction

Representing and reasoning about spatial and temporal in-
formation is an important task in many applications, such as
geographic information systems (GIS), natural language un-
derstanding, robot navigation, temporal and spatial planning.
Qualitative spatial and temporal reasoning aims to describe
non-numerical relationships between spatial or temporal en-
tities. Typically a qualitative calculus [1, 17, 10, 16, 7] uses
some particular kind of spatial or temporal objects (subsets
in a topological space, points on the rational line, intervals
on the rational line,...) to represent the spatial or temporal
entities of the system, and focuses on a limited range of re-
lations between these objects (such as topological relations
between regions or precedence between time points). Each
of these relations refers to a particular temporal or spatial
configuration. For instance, consider the well-known tempo-
ral qualitative formalism called Allen’s calculus [1]. It uses
intervals of the rational line for representing temporal enti-
ties. Thirteen basic relations between these intervals are used
to represent the qualitative situation between temporal enti-
ties (see Figure 1). For example, the basic relation overlaps
can be used to represent the situation where a first temporal
activity starts before a second activity and terminates while
the latter is still active.
Now the temporal or spatial information about the configu-
ration of a specific set of entities can be represented using a
particular kind of constraint networks called qualitative con-
straint networks (QCNs). Each constraint of a QCN repre-
sents a set of acceptable qualitative configurations between
some temporal or spatial entities and is defined by a set of
basic relations. Given a QCN N , the main problems to be

considered are the following ones: decide whether there exists
a solution of N (the consistency problem), find one or sev-
eral solutions of N ; find one or several consistent scenarios
of N ; determine the minimal QCN of N . In order to solve
these problems, methods based on local constraint propaga-
tion algorithms have been defined, in particular algorithms
based on the ◦-closure method (called also the path consis-
tency method) [2, 4, 8, 9, 6, 5, 18, 15] which is the qualita-
tive version of the path consistency method [14, 12] used in
the domain of classical CSPs. Roughly speaking the ◦-closure
method is a constraint propagation method which consists in
iteratively performing an operation called the triangulation
operation which removes for each constraint defined between
two variables the basic relations not allowed w.r.t. a third
variable. In following the line of reasoning of van Beek and
Manchak [5] and Bessière [6], in this paper we compare dif-
ferent possible versions of the ◦-closure method. The algo-
rithms studied are adapted from the algorithms PC1[14] or
PC2 [11]. Concerning the algorithms issued of PC2 we use dif-
ferent heuristics, in particular heuristics defined in [5] and we
use structures saving pairs of constraints or structures saving
triples of constraints. Moreover we introduce two algorithms
mixing the algorithm PC1 and the algorithm PC2.
This paper is organized as follows. In Section 2, we give some
general definitions concerning the qualitative calculi. Section
3 is devoted to the different ◦-closure algorithms studied in
this paper. After discussing the realized experimentations in
Section 4 we conclude in Section 5.

2 Background on Qualitative Calculi

2.1 Relations

In this paper, we focus on binary qualitative calculi and use
very general definitions. A qualitative calculus considers a fi-
nite set B of k binary relations defined on a domain D. These
relations are called basic relations. The elements of D are the
possible values to represent the temporal or spatial entities.
The basic relations of B correspond to all possible configu-
rations between two temporal or spatial entities. The rela-
tions of B are jointly exhaustive and pairwise disjoint, which
means that any pair of elements of D belongs to exactly one
basic relation in B. Moreover, for each basic relation B ∈ B



there exists a basic relation of B, denoted by B∼, correspond-
ing to the converse of B. The set A is defined as the set of
relations corresponding to all unions of the basic relations:
A = {

S

B : B ⊆ B}. It is customary to represent an element
B1 ∪ . . . ∪ Bm (with 0 ≤ m ≤ k and Bi ∈ B for each i such
that 1 ≤ i ≤ m) of A by the set {B1, . . . , Bm} belonging to
2B. Hence we make no distinction between A and 2B in the
sequel. There exists an element of A which corresponds to the
identity relation on D, we denote this element by Id. Note that
this element can be composed of several basic relations. Now
we give some well known examples of calculi to illustrate this
definition.
The Allen’s calculus. As a first example, consider the well
known temporal qualitative formalism called Allen’s calculus
[1]. It uses intervals of the rational line for representing tempo-
ral entities. Hence D is the set {(x−, x+) ∈ Q×Q : x− < x+}.
The set of basic relations consists in a set of thirteen bi-
nary relations corresponding to all possible configurations of
two intervals. These basic relations are depicted in Figure 1.
Here we have B = {eq, b, bi, m,mi, o, oi, s, si, d, di, f, fi}.
Each basic relation can be formally defined in terms of
the endpoints of the intervals involved; for instance, m =
{((x−, x+), (y−, y+)) ∈ D×D : x+ = y−}. The set {b, m} ∈ 2B

corresponds to the relation b ∪ m of A. Moreover, we have
Id = {eq}.
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Figure 1. The basic relations of the Allen’s calculus.

The point algebra. As second example, consider a tem-
poral qualitative formalism weaker than the Allen’s calcu-
lus, namely the point algebra. It uses points of the rational
line for representing temporal entities. Hence D is the set Q.
The set of basic relations consists in three binary relations
corresponding to all possible configurations of two points :
B = {precedes, follows, same} with precedes = {(x, y) ∈
D × D : x < y}, follows = {(x, y) ∈ D × D : x > y}
and same = {(x, y) ∈ D × D : x = y}. Moreover, we have
Id = {same}.
The Meiri’s calculus. Meiri [13] considers temporal qual-
itative constraints on both intervals and points. These con-
straints can correspond to the relations of a qualitative for-
malism defined in the following way. D is the set of pairs

of rational numbers: {(x, y) : x ≤ y}. The pairs (x, y) with
x < y correspond to intervals and the pairs (x, y) with
x = y correspond to points. Hence, we define to particular
basic relations on D : eqi = {((x, y), (x, y)) : x < y} and
eqp = {((x, y), (x, y)) : x = y} composing Id. These basic re-
lations allow to constraint an object to be an interval or a
point. In addition of these basic relations, the basic relations
of the Allen’s calculus and those ones of the point algebra are
added to B. To close the definition of B we must include the
ten basic relations corresponding to the possible configura-
tions between a point and an interval, see 2 for an illustration
of these basic relations.
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Figure 2. The basic relations of the Meiri’s calculus concerning
a point X and an interval Y .

2.2 Fundamental operations

As a set of subsets, A is equipped with the usual set-theoretic
operations including intersection (∩) and union (∪). As a
set of binary relations, it is also equipped with the oper-
ation of converse (∼) and an operation of composition (◦)
sometimes called weak composition or qualitative composi-
tion. The converse of a relation R in A is the relation of A
corresponding to the transpose of R; it is the union of the
converses of the basic relations contained in R. The compo-
sition A ◦ B of two basic relations A and B is the relation
R = {C : ∃x, y, z ∈ D, x A y, y B z and x C z}. The composi-
tion R ◦S of R, S ∈ A is the relation T =

S

A∈R,B∈S
{A ◦B}.

Computing the results of these various operations for relations
of 2B can be done efficiently by using tables giving the results
of these operations for the basic relations of B. For instance,
consider the relations R = {eq, b, o, si} and S = {d, f, s} of
Allen’s calculus, we have R∼ = {eq, bi, oi, s}. The relation
R ◦ S is {d, f, s, b, o, m, eq, si, oi}. Consider now the relations
R = {b∗, s∗} and S = {b} of the Meiri’s calculus, we have
R ◦ S = {b∗} whereas S ◦R = {}.

2.3 Qualitative Constraint Networks

A qualitative constraint network (QCN) is a pair composed
of a set of variables and a set of constraints. The set of vari-
ables represents spatial or temporal entities of the system. A
constraint consists of a set of acceptable basic relations (the
possible configurations) between some variables. Formally, a
QCN is defined in the following way:

Definition 1 A QCN is a pair N = (V, C) where:



• V = {v1, . . . , vn} is a finite set of n variables where n is a
positive integer;

• C is a map which to each pair (vi, vj) of V ×V associates a
subset C(vi, vj) of the set of basic relations: C(vi, vj) ∈ 2B.
In the sequel C(vi, vj) will be also denoted by Cij . C is such
that Cii ⊆ Id and Cij = C∼

ji for all vi, vj ∈ V .

With regard to a QCN N = (V, C) we have the following
definitions: A solution of N is a map σ from V to D such that
(σ(vi), σ(vj)) satisfies Cij for all vi, vj ∈ V . N is consistent
iff it admits a solution. A QCN N ′ = (V ′, C′) is a sub-QCN

of N if and only if V = V ′ and C′
ij ⊆ Cij for all vi, vj ∈ V . A

QCN N ′ = (V ′, C′) is equivalent to N if and only if V = V ′

and both networks N and N ′ have the same solutions. The
minimal QCN of N is the smallest (for ⊆) sub-QCN of N
equivalent to N . An atomic QCN is a QCN such that each
Cij contains a basic relation. A consistent scenario of N is a
consistent atomic sub-QCN of N .
Given a QCN N , the main problems to be considered are
the following problems: decide whether there exists a solution
of N ; find one or several solutions of N ; find one or several
consistent scenarios of N ; determine the minimal QCN of N .
Most of the algorithms used for solving these problems are
based on a method which we call the ◦-closure method. The
next section is devoted to this method.

3 The ◦-closure method and associated
algorithms

3.1 Generalities on the ◦-closure method

In this section we introduce the path ◦-closure property and
give the different implementations of this method studied in
the sequel. Roughly speaking the ◦-closure method is a con-
straint propagation method which consists in iteratively per-
forming the following operation (the triangulation operation):
Cij := Cij ∩ (Cik ◦ Ckj), for all variables vi, vj , vk of V , until
a fixed point is reached. Just no satisfiable basic relations are
removed from these constraints with this method. In the case
where the QCN obtained in this way contains the empty rela-
tion as a constraint, we can assert that the initial QCN is not
consistent. However, if it does not, we cannot in the general
case infer the consistency of the network. Hence the QCN ob-
tained in this way is a sub-QCN of N which is equivalent to
it. Moreover, the obtained QCN is ◦-closed, more precisely it
satisfies the following property: Cij ⊆ Cik ◦ Ckj for all vari-
ables vi, vj , vk of V . Note that this property implies the (0, 3)-
consistency of the resulting QCN (each restriction on 3 vari-
ables is consistent). For several calculi, in particular for the
Allen’s calculus defined on the rational intervals, the (0, 3)-
consistency implies the 3 consistency or path consistency [11].
It is why sometimes there exists a confusion between the ◦-
closure property and the path consistency property.

3.2 Studied Algorithms

There are two well known algorithms in the literature for en-
forcing the path-consistency of discrete CSPs [11, 14], namely
the PC1 and the PC2 algorithms. These algorithms have been
adapted on several occasions to the binary qualitative case in
order to enforce ◦-closure [2, 19, 8, 3, 6].
A possible adaptation of PC1 to the qualitative case is

the function WCC1 defined in Algorithm 1. WCC1 checks
all triples of variables of the network in a main loop. It
starts again this main loop until no changes occur. For each
triple of variables the operation of triangulation is made by
the function revise. Note that in this function the call of
updateConstraints(Cij, R) allows to set the constraint Cij

with the new relation R and to set the constraint Cij with
R∼. For particular situations, the treatment corresponding
to lines 7–9 can be avoided. For example, for the QCNs de-
fined from relations of the Allen’s calculus this treatment is
an useless work in the following cases : Cik = B, Ckj = B,
i = k, k = j or i = j. This is respectively due to the facts
that B ◦ R = R ◦ B = B for all non empty relation R ∈ A,
Id is composed by a basic relation (eq) and Id ⊆ R ◦ R∼

for all non empty relation R. Note that these properties are
not always true for another calculus, see the Meiri’s calculus
for example. It is why we introduce a conditional statement
at line 6 allowing to avoid fruitless work by defining a good
predicate skippingCondition ad hoc to the qualitative cal-
culus used. For example, in the case of the Allen’s calculus,
skippingCondition could be defined by the following instruc-
tion: return (Cik == B or Ckj == B or i == k or k ==
j or i == j). For this calculus this skipping condition can
be more elaborated, see [5]. The time complexity of WCC1 is
O(|B| ∗ n5) whereas its spatial complexity is O(|B| ∗ n3).

Algorithm 1

Function WCC1(N ), with N = (V, C).
1: repeat
2: change← false
3: for i← 1 to n do
4: for j ← i to n do
5: for k← 1 to n do
6: if not skippingCondition(Cik, Ckj) then
7: if revise(i, k, j) then
8: if Cij == ∅ then return false
9: else change← true

10: until not change

11: return true

Function revise(i, k, j).
1: R← Cij ∩ (Cik ◦ Ckj)
2: if Cij ⊆ R then return false
3: updateConstraints(Cij , R)
4: return true

The functions WCC2 P and WCC2 T defined in respectively
Algorithm 2 and Algorithm 3 are inspired by PC2. WCC2 P

handles a list containing pairs of variables corresponding to
the modified constraints which must be propagated whereas
WCC2 P handles a list containing triples of variables corre-
sponding to the operations of triangulation to realize. The
using of triples instead of pairs allows to circumscribe more
precisely the useful triangulation operations. In the previous
algorithms proposed in the literature, the exact nature of the
list manipulated is not very clear, this list could be a set,
a queue or still a stack. In WCC2 P and WCC2 T the na-
ture of the list is connected with the nature of the object
heuristic which is commissioned to handle it. The main task
of heuristic consists in the insertion of a pair or a triple of
variables in the list. It must compute a location in the list
and places it. If the pair or the triple is already in the list it



can insert it or do nothing. The method next always consists
in removing and returning the first element of the list. In the
sequel we will describe the used heuristics with more details.
The predicate skippingCondition, like in WCC1, depends on
the qualitative calculus used. For the Allen’s calculus and for
most of the calculi skippingCondition(Cij) can be defined
by the following instruction: return (Cij == B). The time
complexity of WCC2 P and WCC2 T is O(|B| ∗ n3) whereas
the spatial complexity of WCC2 P is O(n2) and this one of
WCC2 T is O(n3).

Algorithm 2

Function WCC2 P(N , heuristic), with N = (V, C).
1: Q← ∅
2: initP (N , Q, heuristic)
3: while Q 6= ∅ do
4: (i, j)← heuristic.next(Q)
5: for k← 1 to n do
6: if revise(i, j, k) then
7: if Cik == ∅ then return false
8: else addRelatedPathsP (i, k, Q, heuristic)
9: if revise(k, i, j) then

10: if Ckj == ∅ then return false
11: else addRelatedPathsP (k, j, Q, heuristic)
12: done
13: end while
14: return true

Function initP(N , Q, heuristic).
1: for i← 1 to n do
2: for j ← i to n do
3: if not skippingCondition(Cij) then
4: addRelatedPathsP (i, j, Q, heuristic)

Function addRelatedPathsP(i, j, Q, heuristic).
1: heuristic.append(Q, (i, j))

Algorithm 3

Function WCC2 T(N ), with N = (V, C).
1: Q← ∅
2: initT (N , Q, heuristic)
3: while Q 6= ∅ do
4: (i, k, j)← heuristic.next(Q)
5: if revise(i, k, j) then
6: if Cij == ∅ then return false
7: else addRelatedPathsT (i, j, Q, heuristic)
8: end while
9: return true

Function initT(N, Q, heuristic).
1: for i← 1 to n do
2: for j ← i to n do
3: if not skippingCondition(Cij) then
4: addRelatedPathsT (i, j, Q, heuristic)

Function relatedPathsT(i, j, Q, heuristic).
1: for k← 1 to n do
2: if not skippingCondition(Cjk) then
3: heuristic.append(Q, (i, j, k))
4: if not skippingCondition(Cki) then
5: heuristic.append(Q, (k, i, j))
6: done

Despite these different complexities, WCC2 P and WCC2 T

can perform worse than WCC1. This is mainly due to the fact
that WCC2 P and especially WCC2 T must make an expen-
sive initialization of the list Q (line 2). This step can take
more time than the subsequent processing of the elements of
the list, in particular for no consistent QCNs. This is why
we introduce the functions WCCMixed P and WCCMixed T

(see Algorithm 4 and Algorithm 5) to remedy this drawback.
Roughly, these functions realize a first step corresponding to
a first loop of WCC1 and then continues in the manner of
WCC2 P and WCC2 T.

Algorithm 4

Function WCCMixed P(N ), with N = (V, C).
1: Q← ∅
2: initMixedPair(N , Q, heuristic)
3: while Q 6= ∅ do
4: (i, j)← heuristic.next(Q)
5: for k ← 1 to n do
6: if revise(i, j, k) then
7: if Cik == ∅ then return false
8: else addRelatedPathsPair((i,k), Q, heuristic)
9: if revise(k, i, j) then

10: if Ckj == ∅ then return false
11: else addRelatedPathsP (k,j, Q, heuristic)
12: done
13: end while
14: return true

Function initMixedP(N , Q, heuristic).
1: change← false
2: for i← 1 to n do
3: for j ← i to n do
4: for k ← 1 to n do
5: if not skippingCondition(Cik, Ckj)
6: if revise(i, k, j)then
7: if Cij == ∅ then return false
8: else change← true
9: done

10: if (change) addRelatedPathsP (i, j, Q, heuristic)
11: done

4 Experimentation

4.1 Generated instances

To evaluate the performances of the proposed algorithms we
randomly generate instances of qualitative constraint net-
works. A randomly generated QCN will be characterized by
five parameters:

• an integer n which corresponds to the number of variables
of the network;

• a qualitative calculus algebra which is the used qualitative
calculus;

• a real nonTrivialDensity which corresponds to the probal-
ity of a constraint to be a non trivial constraint (to be
different of B);

• a real cardinalityDensity which is the probality of a basic
relation to belong to a non trivial given constraint;

• a flag type which indicates if the generated network must
be forced to be consistent by adding a consistent scenario.



Algorithm 5

Function WCCPCMixedTriple(N ), with N = (V, C).
1: Q← ∅
2: initMixedTriple(N , Q, heuristic)
3: while Q 6= ∅ do
4: (i, k, j)← heuristic.next(Q)
5: if revise(i, k, j) then
6: if Cij == ∅ then return false
7: else addRelatedPathsT (i, j, Q, heuristic)
8: end while
9: return true

Function initMixedT(N , Q, heuristic).
1: change← false
2: for i← 1 to n do
3: for j ← i to n do
4: for k ← 1 to n do
5: if not skippingCondition(Cik, Ckj)
6: if revise(i, k, j)then
7: if Cij == ∅ then return false
8: else change← true
9: done

10: if (change) addRelatedPathsT (i, j, Q, heuristic)
11: done

The different algorithms have been implemented with the help
of the JAVA library QAT1. We have conducted an extensive
experimentation on a PC Pentium IV 2,4GHz 512mo under
Linux. The experiences reported in this paper concern QCNs
of the Allen’s calculus generated with a nonTrivialDensity

equals to 0.5 . Performances are measured in terms of the
number of revise operations (numberOfRevises), in terms of
cpu time (time), in terms of the number of maximum elements
in the list (max).

4.2 Heuristics

Almost of the algorithms proposed in the later section use a
list which contains the elements (pairs or triples) to be propa-
gated. To improve the efficiency of the algorithms we have to
reduce the number of these elements. When a constraint be-
tween (i,j) changes we must add all the elements which can be
affected by this modification. The order that these elements
are processed is very important and can reduce dramatically
the number of triangulation operations. The set of the exper-
imented heuristics contains the different heuristics proposed
in [5]. The main task of a heuristic consists in the insertion
of a pair or a triple of variables in the list after computing its
location. If the pair or the triple is already in the list it can
insert it or do nothing depending on its policy. All heuritics
experimented remove and return the first element of the list.
In general, given an heuritics, more it reduces the number of
triangulation operations more its time cost and spatial cost
are important.

4.3 Experimental results

Stack or Queue. The list used to stock the pairs/the triples
can be handles as a stack or a queue, i.e. after the changing

1 This library can be found at http://www.cril.univ-
artois.fr/∼saade/.

Figure 3. Average time for WCC2 P and WCC2 T using the
heuristic basic on consistent QCNs (200 instances per data points,

with n = 50)

of a constraint the pair or the triples corresponding can be
added at the head of the list or at its queue (recall that the
first element of the list is always treat firstly). After the ini-
tialisation of the list, the addition of a pair/a triple is due to
the restriction of a constraint. Intuitively, more this constraint
is added belatedly, more its cardinality is small and more it
will be restrictive for an operation of triangulation. It is why,
the using of the list as a stack (a FIFO structure) must per-
form the using of the list as a queue (a LILO structure). This
is confirmed by our experiences, for example consider Figure
3 in which we use WCC2 P and WCC2 T on forced consistent
networks with the heuristic Basic. Note that for WCCMixed P

and WCCMixed T the difference is not so important. Actually
Basic is not really a heuristic, indeed, it just adds an element
in the list if it is not present and removes the first element
of the list. In the sequel, among the elements which can be
returned from the list, the heuristics always choose the more
recently added (LIFO handling).
Add or not add a pair/a triple. The main task of
heuristic is to add a pairs or a triples when a modification
raises. As the pair/the triple is already in the list, depending
of the used policy, heuristic can or cannot add the pair/the
triple. Adding the element could have a prohibitive cost since
one must remove the element of the list before add it at the
new location. This cost is connected to the heuristic used and
the structure used to implement the list. In our case, roughly
speaking, we use doubly-linked lists or tables of doubly-linked
lists for the more sophisticated heuristics. Moreover, we use
tables with 2/3 entries to check the presence of a pair/a
triple in the list. Actually, the experiences show that remov-
ing and adding the pair/the triple in the case where it is
present avoid sufficient revise operations to be more competi-
tive than the case where nothing is done. See for example Fig-
ure 4 which shows the behaviour of the heuristic cardinality
with these two possible policies (cardinalityMoving for the
systematic addition and cardinalityNoMoving for the addi-
tion in the case where the pair/the triple is not present). For



Figure 4. Average number of revises and average time for WCC2 P and WCC2 T using cardinalityNoMoving and cardinalityMoving

on consistent (top) and no forcing consistent (bottom) QCNs (200 instances per data points, with n = 50)

the methods WCC2 P and WCC2 T cardinalityMoving per-
forms cardinalityNoMoving, in particular before the phase
transition (cardinalityDensity between 0.3 and 0.55). Conern-
ing the no forced consistent instances, from the fact that the
numbers of revises are very near, we have cardinalityMoving

which is lightly better in term of time. For the mixed meth-
ods, cardinalityMoving and cardinalityNoMoving are very
closed in term of time and number of revises. In the sequel we
always use the policy which consists in systematically moving
the present pair or triple.
The better heuristics. We compared all the heuristics
on the different algorithms. Concerning the algorithms ma-
nipulating the pairs we compare the heuristics Basic and
Cardinality previously presented. Moreover we used the
Weight heuristic, this heuristic processes the pair (i, j) fol-
lowing the weight of the constraint Cij in ascending order.
The weight of a constraint is the sum of the weights of the
basic relations composing it. Intuitively, to obtain the weight

of a basic relation B we sum the number of basic relations
present in the table of composition at the line and the col-
umn corresponding to the entry B then we scaled the ob-
tained numbers to give the value 1 at the basic relations with
the smallest numbers, then 2, etc. This method is lightly dif-
ferent from this proposed by van Beek and Manchak [5] but
it is easy to implement it for all qualitative calculi. For the
basic relations of the Allen’s calculus we obtain the weight
1 for eq, 2 for m, mi, s, si, f, fi, 3 for d, di, b, bi and 4 for
o, oi. In addition to these heuristics, we define heuristics cor-
responding to combinations of Cardinality and Weight: the
SumCardinalityWeight heuristic which arranges the pairs
(i, j) following the sum of the cardinality and the weight of
the constraint Cij , the CardinalityWeight heuristic which
arranges the pairs (i, j) following the cardinality of Cij and
then, following the weight of Cij , and WeightCardinality

which arranges the pairs (i, j) following the weight of Cij

and then, following the cardinality of Cij . These heuristics



Figure 5. Average number of revises and average time for the heuristics used with WCC2 P on consistent (top) and no forcing
consistent (bottom) QCNs (200 instances per data points, with n = 50)

are also define for for WCC2 T and WCCMixed T which use
triples instead of pairs. By examining Figure 5, we constate
that the number of revises are very closed for all these heurit-
ics (expected for the Basic heuristic). In term of cpu time, the
heuristics Cardinality, SumCardinalityWeight and Weight

are very closed and are the more performing heuristics. Due
to the using of triples we can define finer heuristics. For ex-
ample, from the heuristic cardinality we have three differ-
ent heuristics: the cardinalityI heuristic which considers the
cardinality of Cij for the triples (i, j, k) and (k, i, j) (simi-
larly to the previous cardinality heuristic), the cardinalityII

heuristic which takes into account the sum of the cardinal-
ity of Cij and the cardinality of Cjk for the triple (i, j, k),
and the sum of the cardinality of Cij and the cardinality
of Cki for the triple (k, i, j), the cardinalityIII heuristic
which takes into account the sum of the cardinality of Cij ,
the cardinality of Cjk and the cardinality of Cik for the
triple (i, j, k), the sum of the cardinality of Cij , the cardi-

nality of Cki and the cardinality of Ckj for the triple (k, i, j).
In a same line of reasoning we split the heuristics weight

and SumCardinalityWeight in six heuristics. By consider-
ing the different versions of the Cardinality heuristic (it is
the same thing for the weight and SumCardinalityWeight

heuristics) we can see that the cardinalityII heuritic makes
the smallest number of revises. Outside the phase transi-
tion it performs the other triple cardianality heuritics in
terms of time. In the phase transition the cardinalityIII

heuristic performs the cardinalityI heuristic and the
cardinalityIII heuristic. In terms of cpu time, the han-
dling with pairs performs the handling with triples.
WCC1/WCC2 P/WCCMixed P/WCC2 T/WCCMixed T Now
we compare all the algorithms we the more competitive
heuristics. We can constate that in general WCC1 is the algo-
rithm the less competitive algorithm, see Figure 7. The most
favorable case for WCC1 is the case where the instances are
inconsistent QCNs. Generally, in particular for the forced con-



Figure 6. Average number of revises and average time for the different cardinality heuristics used with WCC2 T and WCCMixed T on
forced consistent QCNs (200 instances per data points, with n = 50)

sistent instances, the algorithms based on triples make less
revise operations than the algorithms based on pairs. Despit
it we can see that the last ones are more speed than the first
ones. The reason is that the handling of triples is most cost
than the handling of pairs in term of time. Moreover the num-
ber of elements which must be stocked is very important for
the triples contrary to pair case (see the last figures of Figure
7). For the forced consistent instances we can see that the
mixed versions of the algorithms are less performing than the
no mixed versions, note that the difference is not very impor-
tant. Concerning the no forced consistent instances we have
the same result for the cardinality density comprise between
0.5 and 0.6. For the densities strictly greater than 0.6 we have
an inverion and the mixed versions are more competitive. By
examing the number corresponding to the maximum of ele-
ments in the list we can see that the mixed versions reduced
dramatically this number for the triples.

5 Conclusions

In this paper we study empirically several algorithms enforc-
ing the ◦-closure on qualitative constraint networks. The al-
gorithms studied are adapted from the algorithms PC1 and
PC2. Concerning the algorithms issued of PC2 we use differ-
ent heuristics, in particular heuristics defined in [5] and we
use structures saving pairs of constraints or structures saving
triples of constraints. We showed that using triples reduces
dramatically the number of revises compared with an han-
dling with pairs. Despite it, the versions using pairs are more
competitive in term of time. We introduced two algorithms
mixing the algorithm PC1 and the algorithm PC2. These al-
gorithms seem to be a good compromise between a PC1 ver-
sion which consumes lot of time and a PC2 version which
consumes lot of space. Currently, we continue our experimen-
tations on QCNs with a larger size in term of variables and
on other qualitative calculus (in particular on INDU which is

based on 25 basic relations and the cyclic point algebra which
is a ternary calculus).
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Figure 7. Average number of revises, average time and average maximum elements in the list for all algorithms with a competitive
heuristic on consistent (left) and no forcing consistent (right) QCNs (200 instances per data points, with n = 50)


