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SYMMETRY BREAKING IN THE PERIODIC
THOMAS–FERMI–DIRAC–VON WEIZSÄCKER MODEL

JULIEN RICAUD

Abstract. We consider the Thomas–Fermi–Dirac–von Weizsäcker model for
a system composed of infinitely many nuclei placed on a periodic lattice and
electrons with a periodic density. We prove that if the Dirac constant is small
enough, the electrons have the same periodicity as the nuclei. On the other
hand if the Dirac constant is large enough, the 2-periodic electronic minimizer
is not 1-periodic, hence symmetry breaking occurs. We analyze in detail the
behavior of the electrons when the Dirac constant tends to infinity and show
that the electrons all concentrate around exactly one of the 8 nuclei of the unit
cell of size 2, which is the explanation of the breaking of symmetry. Zooming
at this point, the electronic density solves an effective nonlinear Schrödinger
equation in the whole space with nonlinearity u7{3 ´ u4{3. Our results rely
on the analysis of this nonlinear equation, in particular on the uniqueness and
non-degeneracy of positive solutions.
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2 J. RICAUD

1. Introduction

Symmetry breaking is a fundamental question in Physics which is largely dis-
cussed in the literature. In this paper, we consider the particular case of electrons
in a periodic arrangement of nuclei. We assume that we have classical nuclei lo-
cated on a 3D periodic lattice and we ask whether the quantum electrons will
have the symmetry of this lattice. We study this question for the Thomas–Fermi–
Dirac–von Weizsäcker (TFDW) model which is the most famous non-convex model
occurring in Orbital-free Density Functional Theory. In short, the energy of this
model takes the form

ż

K
|∇?ρ|2 ` 3

5
cTF

ż

K
ρ

5
3 ´

3

4
c

ż

K
ρ

4
3 `

1

2

ż

K
pG ‹ ρqρ´

ż

K
Gρ, (1.1)

where K is the unit cell, ρ is the density of the electrons and G is the periodic
Coulomb potential. The non-convexity is (only) due to the term ´ 3

4c
ş

ρ
4
3 . We

refer to [18, 13, 5, 4, 57] for a derivation of models of this type in various settings.
We study the question of symmetry breaking with respect to the parameter

c ą 0. In this paper, we prove for c ą 0 that:
‚ if c is small enough, then the density ρ of the electrons is unique and has

the same periodicity as the nuclei, that is, there is no symmetry breaking;
‚ if c is large enough, then there exist 2-periodic arrangements of the electrons

which have an energy that is lower than any 1-periodic arrangement, that
is, there is symmetry breaking.

Our method for proving the above two results is perturbative and does not
provide any quantitative bound on the value of c in the two regimes. For small c
we perturb around c “ 0 and use the uniqueness and non degeneracy of the TFW
minimizer, which comes from the strict convexity of the associated functional. This
is very similar in spirit to a result by Le Bris [27] in the whole space.

The main novelty of the paper, is the regime of large c. The ρ
4
3 term in (1.1)

favours concentration and we will prove that the electronic density concentrates at
some points in the unit cell K in the limit c Ñ 8 (it converges weakly to a sum
of Dirac deltas). Zooming around one point of concentration at the scale 1{c we
get a simple effective model posed on the whole space R3 where all the Coulomb
terms have disappeared. The effective minimization problem is of NLS-type with
two subcritical power nonlinearities:

JR3pλq “ inf
vPH1

pR3
q

||v||2
L2pR3q“λ

"
ż

R3

|∇v|2 ` 3

5
cTF

ż

R3

|v|
10
3 ´

3

4

ż

R3

|v|
8
3

*

. (1.2)

The main argument is that it is favourable to put all the mass of the unit cell at
one concentration point, due to the strict binding inequality

JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q

that we prove in Section 3.1. Hence for the 2-periodic problem, when c is very large
the 8 electrons of the double unit cell prefer to concentrate at only one point of
mass 8, instead of 8 points of mass 1. This is the origin of the symmetry breaking
for large c. Of course the exact same argument works for a union of n3 unit cells.

Let us remark that the uniqueness of minimizers for the effective model JR3pλq
in (1.2) is an open problem that we discuss in Section 2.2. We can however prove
that any nonnegative solution of the corresponding nonlinear equation

´∆Qµ ` cTFQµ
7
3 ´Qµ

5
3 “ ´µQµ

is unique and nondegenerate (up to translations). We conjecture (but are unable
to prove) that the mass

ş

Qµ
2 is an increasing function of µ. This would imply
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uniqueness of minimizers and is strongly supported by numerical simulations. Un-
der this conjecture we can prove that there are exactly 8 minimizers for c large
enough, which are obtained one from each other by applying 1-translations.

The TFDW model studied in this paper is a very simple spinless empirical the-
ory which approximates the true many-particle Schrödinger problem. The term
´ 3

4c
ş

ρ
4
3 is an approximation to the exchange-correlation energy and c is only deter-

mined on empirical grounds. The exchange part was computed by Dirac [9] in 1930
using an infinite non-interacting Fermi gas leading to the value cD :“ 3

a

6q´1π´1,
where q is the number of spin states. For the spinless model (i.e. q “ 1) that we
are studying, this gives 3

4cD « 0.93, which is the constant generally appearing in
the literature. It is natural to use a constant c ą cD in order to account for correla-
tion effects. On the other hand, the famous Lieb-Oxford inequality [35, 42, 26, 43]
suggests to take 3

4cD ď 1.64. It has been argued in [50, 52, 29] that for the classical
interacting uniform electron gas one should use the value 3

4c « 1.44 which is the
energy of Jellium in the body-centered cubic (BCC) Wigner crystal and is imple-
mented in the most famous Kohn-Sham functionals [51]. However, this has recently
been questioned in [31] by Lewin and Lieb. In any case, all physically reasonable
choices lead to 3

4c of the order of 1.
We have run some numerical simulations presented later in Section 2.3, using

nuclei of (pseudo) charge Z “ 1 on a BCC lattice of side-length 4Å. We found
that symmetry breaking occurs at about 3

4c « 2.48. More precisely, the 2-periodic
ground state was found to be 1-periodic if 3

4c À 2.474 but really 2-periodic for
3
4c Á 2.482. The numerical value 3

4c « 2.48 obtained as critical constant in our
numerical simulations is above the usual values chosen in the literature. However,
it is of the same order of magnitude and this critical constant could be closer to 1
for other periodic arrangements of nuclei.

There exist various works on the TFDW model for N electrons on the whole
space R3. For example, Le Bris proved in [27] that there exists ε ą 0 such that
minimizers exist for N ă Z ` ε, improving the result for N ď Z by Lions [46]. It
is also proved in [27] that minimizers are unique for c small enough if N ď Z. Non
existence if N is large enough and Z small enough has been proved by Nam and
Van Den Bosch in [48].

On the other hand, symmetry breaking has been studied in many situations. For
discrete models on lattices, the instability of solutions having the same periodicity as
the lattice is proved in [14, 49] while [22, 37, 23, 40, 39, 41, 12, 15] prove for different
models (and different dimensions) that the solutions have a different periodicity
than the lattice. On finite domains and at zero temperature, symmetry breaking
is proved in [54] for a one dimensional gas on a circle of finite length and in [53]
on toruses and spheres in dimension d ď 3. On the whole space R3, symmetry
breaking is proved in [2], namely, the minimizers are not radial for N large enough.

The paper is organized as follows. We present our main results for the periodic
TFDW model and for the effective model, together with our numerical simulations,
in Section 2. In Section 3, we study the effective model JR3pλq on the whole space.
Then, in Section 4, we prove our results for the regime of small c. Finally, we prove
the symmetry breaking in the regime of large c in Section 5.

2. Main results

For simplicity, we restrict ourselves to the case of a cubic lattice with one atom
of charge Z “ 1 at the center of each unit cell. We denote by LK our lattice which
is based on the natural basis and its unit cell is the cube K :“

“

´ 1
2 ; 1

2

˘3, which
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contains one atom of charge Z “ 1 at the position R “ 0. The Thomas–Fermi–
Dirac–von Weizsäcker model we are studying is then the functional energy

EK,cpwq “

ż

K
|∇w|2 ` 3

5
cTF

ż

K
|w|

10
3 ´

3

4
c

ż

K
|w|

8
3 `

1

2
DKp|w|

2, |w|2q ´

ż

K
GK|w|

2,

(2.1)
on the unit cell K. Here

DKpf, gq “

ż

K

ż

K
fpxqGKpx´ yqgpyq dy dx,

where GK is the K-periodic Coulomb potential which satisfies

´∆GK “ 4π

˜

ÿ

kPLK

δk ´ 1

¸

(2.2)

and is uniquely defined up to a constant that we fix by imposing min
xPK

GKpxq “ 0.
We are interested in the behavior when c varies of the minimization problem

EK,λpcq “ inf
wPH1

perpKq
||w||2

L2pKq“λ

EK,cpwq, (2.3)

where the subscript per stands for K-periodic boundary conditions. We want to
emphasize that even if the true K-periodic TFDW model requires that λ “ Z
(see [7]), we study it for any λ in this paper.

Finally, for any N P Nzt0u, we denote by N ¨K the union of N3 cubes K forming
the cube N ¨K “

“

´N
2 ; N2

˘3. The N3 charges are then located at the positions

tRju1ďjďN3 Ă

"ˆ

n1 ´
N ` 1

2
, n2 ´

N ` 1

2
, n3 ´

N ` 1

2

˙
ˇ

ˇ

ˇ

ˇ

ni P NX r1;N s

*

.

2.1. Symmetry breaking. The main results presented in this paper are the two
following theorems.

Theorem 1 (Uniqueness for small c). Let K be the unit cube and cTF , λ be two
positive constants. There exists δ ą 0 such that for any 0 ď c ă δ, the following
holds:
i. The minimizer wc of the periodic TFDW problem EK,λpcq in (2.3) is unique,

up to a phase factor. It is non constant, positive, in H2
perpKq and the unique

ground-state eigenfunction of the K-periodic self-adjoint operator

Hc :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2 ‹GKq.

ii. The NK-periodic extension of the K-periodic minimizer wc is the unique min-
imizer of all the NK-periodic TFDW problems EN ¨K,N3λpcq, for any integer
N ě 1. Moreover

EN ¨K,N3λpcq “ N3EK,λpcq.

Theorem 2 (Asymptotics for large c). Let K be the unit cube, cTF , λ be two
positive constants, and N ě 1 be an integer. For c large enough, the periodic
TFDW problem EN ¨K,N3λpcq on N ¨ K admits (at least) N3 distinct nonnegative
minimizers which are obtained one from each other by applying translations of the
lattice LK. Denoting wc any one of these minimizers, there exists a subsequence
cn Ñ8 such that

cn
´ 3

2wcn

´

R`
¨

cn

¯

ÝÑ
nÑ8

Q, (2.4)
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strongly in LplocpR3q for 2 ď p ă `8, with R the position of one of the N3 charges
in N ¨K. Here Q is a minimizer of the variational problem for the effective model

JR3pN3λq “ inf
uPH1

pR3
q

||u||2
L2pR3q“N

3λ

"
ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3

*

, (2.5)

which must additionally minimize

SpN3λq “ inf
v

"

1

2

ż

R3

ż

R3

|vpxq|2|vpyq|2

|x´ y|
dy dx´

ż

R3

|vpxq|2

|x|
dx

*

, (2.6)

where the minimization is performed among all possible minimizers of (2.5). Fi-
nally, when cÑ8, EN ¨K,N3λpcq has the expansion

EN ¨K,N3λpcq “ c2JR3pN3λq ` cSpN3λq ` opcq. (2.7)

Theorem 1 will be proved in Section 4 while Section 5 will be dedicated to the
proof of Theorem 2. The leading order in (2.7)

EN ¨K,N3λpcq “ c2JR3pN3λq ` opc2q

together with the strict binding inequality JR3pN3λq ă N3JR3pλq for N ě 2, proved
later in Proposition 13 of Section 3, imply immediately that symmetry breaking
occurs.

Corollary 3 (Symmetry breaking for large c). Let K be the unit cube, cTF , λ be
two positive constants, and N ě 2 be an integer. For c large enough, symmetry
breaking occurs:

EN ¨K,N3λpcq ă N3EK,λpcq.

Although the leading order is sufficient to prove the occurrence of symmetry
breaking, Theorem 2 gives a precise description of the behavior of the electrons,
which all concentrate at one of the N3 nuclei of the cell N ¨K. A natural question
that comes with Theorem 2 is to know if c needs to be really large for the symmetry
breaking to happen. We present some numerical answers to this question later in
Section 2.3.

Remark (Generalizations). For simplicity we have chosen to deal with a cubic
lattice with one nucleus of charge 1 per unit cell, but the exact same results hold in
a more general situation. We can take a charge Z larger than 1, several charges (of
different values) per unit cell and a more general lattice than Z3. More precisely,
the K-periodic Coulomb potential GK appearing in (2.1), in both DK and

ş

G|w|2,
should then verify

´∆GK “ 4π

˜

ÿ

kPLK

δk ´
1

|K|

¸

,

and the term
ş

KGK|w|
2 should be replaced by

ş

K
řNq
i“1 ziGKp¨ ´Riq|w|

2 where zi and
Ri and the charges and locations of the Nq nuclei in the unit cell K.

Finally, in Theorem 2, denoting by z` :“ max1ďiďNqtziu ą 0 the largest charge
inside K and by N` ě 1 the number of charges inside K that are equal to z`, the
location R would now be one of the N`K3 positions of charges z` — which means
that the minimizer concentrate on one of the nuclei with largest charge — and S
would be replaced by

Spλq “ inf
v

"

1

2

ż

R3

ż

R3

|vpxq|2|vpyq|2

|x´ y|
dy dx´ z`

ż

R3

|vpxq|2

|x|
dx

*

.
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Remark (Model on R3). In this paper, we study the TFDW model for a periodic
system, because such orbital-free theories are often used in practice for infinite sys-
tems. However, Theorem 2 can be adapted to the TFDW model in the whole space
R3, with finitely many nuclei of charges z1, . . . , zn and λ ď

ř

i zi electrons, using
similar proofs. In the limit c Ñ 8, the λ electrons all concentrate at one of the
nuclei with the largest charge z` :“ maxtziu and solve the same effective problem.
Therefore, uniqueness does not hold if there are several such nuclei of charge z`.

2.2. Study of the effective model in R3. We present in this section the effective
model in the whole space R3. We want to already emphasize that the uniqueness
of minimizers for this problem is an open difficult question as we will explain later
in this section.

The functional to be considered is

u ÞÑ JR3puq “

ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3 (2.8)

and the minimization problem (2.5) is

JR3pλq “ inf
uPH1

pR3
q

||u||2
L2pR3q“λ

JR3puq. (2.9)

The first important result for this effective model is about the existence of min-
imizers and the fact that they are radial decreasing. We state those results in the
following theorem, the proof of which is the subject of Section 3.1.

Theorem 4 (Existence of minimizers for the effective model in R3). Let cTF ą 0
and λ ą 0 be fixed constants.
i. There exist minimizers for JR3pλq. Up to a phase factor and a space translation,

any minimizer Q is a positive radial strictly decreasing H2pR3q-solution of

´∆Q` cTF |Q|
4
3Q´ |Q|

2
3Q “ ´µQ. (2.10)

Here ´µ ă 0 is simple and is the smallest eigenvalue of the self-adjoint operator
HQ :“ ´∆` cTF |Q|

4
3 ´ |Q|

2
3 .

ii. We have the strictly binding inequality

@ 0 ă λ1 ă λ, JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q. (2.11)

iii. For any minimizing sequence pQnqn of JR3pλq, there exists txnu Ă R3 such that
Qnp¨´xnq strongly converges in H1pR3q to a minimizer, up to the extraction of
a subsequence.

An important result about the effective model on R3 is the following result
giving the uniqueness and the non-degeneracy of positive solutions Q to the Euler–
Lagrange equation (2.10) for any admissible µ ą 0. The proof of this theorem is
the subject of Section 3.2.

Theorem 5 (Uniqueness and non-degeneracy of positive solutions). Let cTF ą 0.
If 64

15cTFµ ě 1, then the Euler–Lagrange equation (2.10) has no non-trivial solution
in H1pR3q. For 0 ă 64

15cTFµ ă 1, the Euler–Lagrange equation (2.10) has, up to
translations, a unique nonnegative solution Qµ ı 0 in H1pR3q. This solution is
radial decreasing and non-degenerate: the linearized operator

L`µ “ ´∆`
7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3 ` µ (2.12)

with domain H2pR3q and acting on L2pR3q has the kernel

KerL`µ “ span tBx1
Qµ, Bx2

Qµ, Bx3
Qµu . (2.13)
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Note that the condition 64
15cTFµ ě 1 comes directly from Pohozaev’s identity,

see e.g. [3].

Remark. The linearized operator Lµ for the equation (2.10) at Qµ is

Lµh “ ´∆h`
´

cTF |Qµ|
4
3 ´ |Qµ|

2
3

¯

h`

ˆ

2

3
cTF |Qµ|

4
3 ´

1

3
|Qµ|

2
3

˙

ph` h̄q ` µh.

Note that it is not C-linear. Separating its real and imaginary parts, it is convenient
to rewrite it as

Lµ “

ˆ

L`µ 0
0 L´µ

˙

,

where L`µ is as in (2.12) while L´µ is the operator

L´µ “ ´∆` cTF |Qµ|
4
3 ´ |Qµ|

2
3 ` µ “ HQµ ` µ. (2.14)

The result about the lowest eigenvalue of the operator HQ in Theorem 4 exactly
gives that KerL´µ “ span tQµu. Hence, Theorem 5 implies that

KerLµ “ span

"ˆ

0
Qµ

˙

,

ˆ

Bx1
Qµ

0

˙

,

ˆ

Bx2Qµ
0

˙

,

ˆ

Bx3Qµ
0

˙*

.

The natural step one would like to perform now is to deduce the uniqueness of
minimizers from the uniqueness of Euler–Lagrange positive solutions as it has been
done for many equations [34, 60, 28, 10, 11, 55]. An argument of this type relies
on the fact that µ ÞÑ Mpµq :“ ||Qµ||

2
L2pR3q

is a bijection, which is an easy result
for models with trivial scalings like the nonlinear Schrödinger equation with only
one power nonlineartity. However, for the effective problem of this section, we are
unable to prove that this mapping is a bijection, proving the injection property
being the issue.

In [24], Killip, Oh, Pocovnicu and Visan study extensively a similar problem
with another non-linearity including two powers, namely the cubic-quintic NLS on
R3 which is associated with the energy

ż

R3

1

2
|∇u|2 ` 1

6
|u|6 ´

1

4
|u|4. (2.15)

They discussed at length the question of uniqueness of minimizers and could also
not solve it for their model. An important difference between (2.15) and effective
problem of this section is that the map µ ÞÑ Mpµq is for sure not a bijection in
their case. But it is conjectured to be one if one only retains stable solutions [24,
Conjecture 2.6].

If we cannot prove uniqueness of minimizers, we can nevertheless prove that for
any mass λ ą 0 there is a finite number of µ’s in p0; 15

64cTF
q for which the unique

positive solution to the associated Euler–Lagrange problem has a mass equal to
λ and, consequently, that there is a finite number of minimizers of the TFDW
problem for any given mass constraint.

Proposition 6. Let λ ą 0 and cTF ą 0. There exist finitely many µ’s for which
the mass Mpµq of Qµ is equal to λ.

Proof of Proposition 6. By Theorem 4, we know that for any mass constraint λ P
p0,`8q, there exist at least one minimizer to the corresponding JR3pλq minimiza-
tion problem. Therefore, for any λ P p0,`8q, there exists at least one µ such
that the unique positive solution Qµ to the associated Euler–Lagrange equation is
a minimizer of JR3pλq and thus is of mass Mpµq “ λ. We therefore obtain that
´

0; 15
64cTF

¯

Q µ ÞÑ Mpµq P p0;`8q is onto. Moreover, this map is real-analytic
since the non-degeneracy in Theorem 5 and the analytic implicit function theorem
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give that µ ÞÑ Qµ is real analytic. The map M being onto and real-analytic, then
for any λ P p0;`8q there exists a finite number of µ’s, which are all in

´

0; 15
64cTF

¯

,
such that the mass Mpµq of the unique positive solution Qµ is equal to λ. �

We have performed some numerical computations of the solution Qµ and the
results strongly support the uniqueness of minimizers since M was found to be
increasing, see Figure 1.

0.00 0.05 0.10 0.15 0.20 0.25

10
-22

10
-16

10
-10

10
-4

100

10
8

c=1.

Figure 1. Plot of µ ÞÑ ln pMpµqq on
´

0; 15
64cTF

¯

.

Conjecture 7. The function
ˆ

0;
15

64cTF

˙

Ñ p0;`8q

µ ÞÑMpµq

(2.16)

is strictly increasing and one-to-one. Consequently, for any 0 ă µ ă 15
64cTF

, there
exists a unique minimizer Qµ of JR3pλq, up to a phase and a space translation.

Remark. It should be possible to show that the energy µ ÞÑ JR3pQµq is strictly
decreasing close to µ “ 0 and µ “ µ˚, and real-analytic on p0, µ˚q. Using the
concavity of λ ÞÑ JR3pλq (see Lemma 11) one should be able to prove that the
function λ ÞÑ µpλq is increasing and continuous, except at a countable set of points
where it can jump. From the analyticity there must be a finite number of jumps
and we conclude that λ ÞÑ JR3pλq has a unique minimizer for all λ except at these
finitely many points.

Remark. Following the method of [24], one can prove there exist C,C 1 ą 0 such
that Mpµq “ Cµ

3
2 ` opµ

3
2 qµÑ0` and Mpµq “ C 1pµ ´ µ˚q

´3 ` o
`

pµ´ µ˚q
´3

˘

µÑµ´
˚

where µ˚ “ 15
64cTF

.

This conjecture onM is related to the stability condition on pL`µ q´1 that appears
in works like [61, 19]. Indeed, differentiating the Euler–Lagrange equation (2.10)
with respect to µ, we obtain that L`µ p

dQµ
dµ q “ ´Qµ which thus leads to

d
dµ

ż

Qµ
2
“ 2

B

Qµ,
dQµ
dµ

F

“ ´2
A

Qµ,
`

L`µ
˘´1

Qµ

E

.

Thus our conjecture is that xQµ,
`

L`µ
˘´1

Qµy ă 0 for all 0 ă µ ă 15
64cTF

and this
corresponds to the fact that all the solutions are local strict minimizers.



SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL 9

Theorem 8. If Conjecture 7 holds then, for c large enough, there are exactly N3

nonnegative minimizers for the periodic TFDW problem EN ¨K,N3λpcq.

The proof of Theorem 8 is the subject of Section 5.4.

2.3. Numerical simulations. The occurrence of symmetry breaking is an impor-
tant question in practical calculations. Concerning the general behavior of DFT on
this matter, we refer to the discussion in [59] and the references therein.

Our numerical simulations have been run with a constant cW “ 0.186 in front
of the gradient term (see [36] for the choice of this value) and using the software
PROFESS v.3.0 [8] which is based on pseudo-potentials (see Remark 9 below): we
have used a (BCC) Lithium crystal of side-length 4Å (in order to be physically
relevant as the two first alkali metals Lithium and Sodium organize themselves on
BCC lattices with respective side length 3.51Å and 4.29Å) for which one electron
is treated while the two others are included in the pseudo-potential, simulating
therefore a lattice of pseudo-atoms with pseudo-charge Z “ λ “ 1. The relative gain
of energy of 2-periodic minimizers compared to 1-periodic ones is plotted in Figure 2.
Symmetry breaking occurs at about 3

4c « 2.48. More precisely, minimizing the 2 ¨K

0 1 2 3 4

´8 %

´6 %

´4 %

´2 %

0 %

(a) 0 ď 3
4
c ď 4

2.44 2.46 2.48 2.5

´0.06 %

´0.04 %

´0.02 %

0 %

(b) Zoom: 2.435 ď 3
4
c ď 2.515

Figure 2. Relative gain of energy 8EK,λpcq´E2¨K,8λpcq
8EK,λpcq

.

problem and the 1 ¨K problem result in the same minimum energy (up to a factor 8)
if 3

4c À 2.474 while, for 3
4c Á 2.482, we have found (at least) one 2-periodic function

for which the energy is lower than the minimal energy for the 1 ¨K problem. Note
that changing cW would affect the critical value of the Dirac constant at which
symmetry breaking occurs but the value of cW does not affect the mathematical
proofs (which are presented with cW “ 1 for convenience).

The plots of the computed minimizers presented in Figure 3 visually confirm
the symmetry breaking. They also suggest that the electronic density is very much
concentrated. However, since the computation uses pseudo-potentials, only one
outer shell electron is computed and the density is sharp on an annulus for these
values of c.

The numerical value of the critical constant 3
4c « 2.48 obtained in our numerical

simulations is outside the usual values 3
4c P r0.93; 1.64s chosen in the literature.

However, it is of the same order of magnitude and one cannot exclude that symmetry
breaking would happen inside this range for different systems, meaning for different
values of Z and/or of the size of the lattice.

Remark 9 (Pseudo-potentials). The software PROFESS v.3.0 that we used in our
simulations is based on pseudo-potentials [21]. This means that only n outer shell
electrons among the N electrons of the unit cell are considered. The N ´ n other
ones are described through a pseudo-potential, together with the nucleus. Mathe-
matically, this means that we have λ “ n and that the nucleus-electron interaction
´N

ş

KGK|w|
2 is replaced by ´

ş

KGps|w|
2 where the K-periodic function Gpspxq be-

haves like n{|x| when |x| Ñ 0. All our results apply to this case as well. More
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(a) 3
4
c “ 3

4
3.35 3

b

3
π
« 2.474 (b) 3

4
c “ 3

4
3.36 3

b

3
π
« 2.482 (c) 3

4
c “ 3

4
3.50 3

b

3
π
« 2.585

Figure 3. Electron density for Z “ 1 and length side 4Å. Same
"dark-blue to white to dark-red" density scale for (a), (b) and (c).
(a) The computed 2-periodic minimizer is still 1-periodic.
(b-c) The computed 2-periodic minimizer is not 1-periodic.

precisely, we only need that Gpspxq ´ n{|x| is bounded on K. We emphasize that
the electron-electron interaction DK is not changed by this generalization, and still
involves the periodic Coulomb potential GK.

3. The effective model in R3

This section is dedicated to the proof of Theorem 4 and Theorem 5. We first
give a lemma on the functional JR3 , which has been defined in (2.8).

Lemma 10. For cTF , λ ą 0 and u P H1pR3q such that ||u||22 “ λ, we have

JR3puq ě ||∇u||2L2pR3q ´
15

64

λ

cTF
. (3.1)

Proof of Lemma 10. It follows from

3

5
cTF |u|

10
3 ´

3

4
|u|

8
3 “

˜

c

3

5
cTF |u|

10
3 ´

c

3

4
|u|

8
3

¸2

ě ´
15λ

64cTF
|u|2.

�

We deduce from this some preliminary properties for the effective model in R3.

Lemma 11 (A priori properties of JR3pλq). Let cTF and λ be positive constants.
We have

´
15

64

λ

cTF
ă JR3pλq ă 0. (3.2)

The function, λ ÞÑ JR3pλq is continuous on r0;`8q and negative, concave and
strictly decreasing on p0;`8q.

Proof of Lemma 11. The negativity of JR3pλq is obtained by taking ν large enough
in the computation of JR3pν´

3
2upν´1¨qq. Lemma 10 gives the lower bound in (3.2),

which implies the continuity at λ “ 0. Moreover, after scaling, we have

JR3pλq “ λ inf
uPH1

pR3
q

||u||2
L2pR3q“1

"

λ´
2
3 ||∇u||2L2pR3q `

3

5
cTF ||u||

10
3

L
10
3 pR3q

´
3

4
||u||

8
3

L
8
3 pR3q

*

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“:F pλ´2{3q
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where t ÞÑ F ptq is concave on r0;`8q, since a ÞÑ infupafpuq ` gpuqq is concave
for all f, g, hence continuous on p0;`8q on which it is also negative (because JR3

is negative) and non-decreasing. The continuity of F gives that λ ÞÑ JR3pλq is
continuous as well. Moreover, if f is a concave non-decreasing negative function,
then λ ÞÑ λfpλ´2{3q is concave strictly decreasing on p0,8q, which proves that our
energy J is concave. To prove that, one can regularize f by means of a convolution
and then compute its first two derivatives. �

3.1. Proof of Theorem 4. We divide the proof into several steps for clarity.

Step 1: Large binding inequality.

Lemma 12. Let cTF ě 0 be a constant. Then

JR3pλq ď JR3pλ1q ` JR3pλ´ λ1q, @ 0 ď λ1 ď λ (3.3)

Proof of Lemma 12. The inequality (3.3) is obtained by computing JR3pϕ ` χq
where ϕ and χ are two bubbles of disjoint compact supports and of respective
masses λ1 and λ´ λ1. �

Remark. The strict inequality in (3.3), which is important for applying Lions’
concentration-compactness method, actually holds and is proved later in Proposi-
tion 13.

Step 2: For any λ ą 0, JR3pλq has a minimizer. This is a classical result
to which we will only give a sketch of proof (for a detailed proof, see [56]). First,
by rearrangement inequalities, we have JR3pvq ě JR3pv˚q for every v P H1pR3q.
Therefore, one can restrict the minimization to nonnegative radial decreasing func-
tions. By the compact embedding H1

radpR3q ãÑ LppR3q, for 2 ă p ă 6, we find

JR3pλ1q ďJR3pQq ď lim inf JR3pQnq “ JR3pλq (3.4)

for a minimizing sequence Qn á Q and where λ1 :“ ||Q||
2
L2pR3q ď λ. Then, JR3

being strictly decreasing by Lemma 11, λ1 “ λ and the limit is strong in L2pR3q,
hence inH1pR3q by classical arguments. This proves that the limitQ is a minimizer.

Step 3: Any minimizer is in H2pR3q and solves the E-L equation (2.10).
The proof that any minimizer solves the Euler–Lagrange equation is classical and
implies, together with u P H1pR3q, that u P H2pR3q by elliptic regularity. Moreover,
we have

µ “ ´
||∇Q||2L2pR3q ` cTF ||Q||

10{3

L10{3pR3q
´ ||Q||

8{3

L8{3pR3q

λ
. (3.5)

Step 4: Strict binding inequality.

Proposition 13. Let cTF ą 0 and λ ą 0.

@ 0 ă λ1 ă λ, JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q. (2.11)

In particular, for any integer N ě 2,

JR3pN3λq ă N3JR3pλq ă 0. (3.6)

Proof of Proposition 13. By the same scaling as in Lemma 11, we have

JR3pλq “ λ inf
uPH1

pR3
q

||u||2
L2pR3q“1

"

λ´
2
3 ||∇u||2L2pR3q `

3

5
cTF ||u||

10
3

L
10
3 pR3q

´
3

4
||u||

8
3

L
8
3 pR3q

*

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

“:Fλpuq

. (3.7)
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Let λ ą λ1 ą 0. By Step 2, the minimization problem

inf
uPH1

pR3
q

||u||2
L2pR3q“1

"

||∇u||2L2pR3q `
3

5
cTFλ

1
2
3 ||u||

10
3

L
10
3 pR3q

´
3

4
λ1

2
3 ||u||

8
3

L
8
3 pR3q

*

has a minimizer Qλ1 which, by Step 3, is in H2pR3q thus continuous. In partic-
ular, ||∇Qλ1 ||L2pR3q ą 0 thus Fλ1pQλ1q ą FλpQλ1q, where Fλ is defined in (3.7).
Therefore

JR3pλ1q “ λ1Fλ1pQλ1q ą λ1FλpQλ1q “
λ1

λ
JR3pQλ1pλ

´1{3¨qq ě
λ1

λ
JR3pλq,

and we finally obtain

JR3pλ´ λ1q ` JR3pλ1q ą
λ´ λ1

λ
JR3pλq `

λ1

λ
JR3pλq “ JR3pλq,

as we wanted. �

Step 5: ´µ ă 0. Let us choose v in the minimization domain of JR3p1q. Then,
defining the positive number

α0 “
3

8

||v||
8{3
8{3 λ

1{3

||∇v||22 `
3
5cTF ||v||

10{3
10{3 λ

2{3
,

we can obtain for any λ ą 0 an upper bound on JR3pλq. Namely

JR3pλq ďJR3

´?
λα0

3{2vpα0¨q

¯

“ ´
9

64
λ5{3

||v||
16{3
8{3

||∇v||22 `
3
5cTF ||v||

10{3
10{3 λ

2{3
. (3.8)

Moreover, for all ε and for Q a minimizer to JR3,cpλq, we have

JR3pp1´ εqQq “JR3pQq ` 2ελµ`Opε2q,

which leads, together with (3.3) and the fact that Q is a minimizer of JR3pλq, to

2ελµ`Opε2q ě JR3pp1´ εq2λq ´ JR3pλq ě ´JR3pεp2´ εqλq,

for any ε P p0; 2q. Using this last inequality together with the upper bound (3.8),
we get for any ε P p0; 1q that

2λµ ě
9

64
ε2{3p2´ εq5{3λ5{3

||v||
16{3
8{3

||∇v||22 `
3
5cTF ||v||

10{3
10{3 ε

2{3p2´ εq2{3λ2{3
`Opεq

which leads to µ ą 0 by taking ε small enough.

Step 6: Positivity of nonnegative minimizers. Let Q ě 0 be a minimizer.
By Step 3, 0 ı Q P H2pR3q Ă CpR3q and W :“ cTF |Q|

4
3 ´|Q|

2
3 `µ is in P L8pR3q.

Therefore, the Euler–Lagrange equation gives Q ą 0 thanks to [38, Theorem 9.10].

Step 7: nonnegative minimizers are radial strictly decreasing up to trans-
lations. This step is a consequence of Step 6 and is the subject of the following
proposition.

Proposition 14. Let λ ą 0. Any positive minimizer to JR3pλq is radial strictly
decreasing, up to a translation.
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Proof of Proposition 14. Let 0 ď Q P H1pR3;Rq be a minimizer of JR3pλq. We de-
note by Q˚ its Schwarz rearrangement which is, as mentioned in first part of Step 2,
also a minimizer and, consequently,

ş

R3 |∇Q˚|2 “
ş

R3 |∇Q|2. Moreover, by Step 3
and Step 6, Q ą 0 and Q˚ ą 0 are in H2pR3;Rq and solutions of the Euler–
Lagrange equation (2.10). They are therefore real-analytic (see e.g. [47]) which
implies that |tx|Qpxq “ tu| “ |tx|Q˚pxq “ tu| “ 0 for any t. In particular, the ra-
dial non-increasing function Q˚ is in fact radial strictly decreasing. We then use [6,
Theorem 1.1] to obtain Q˚ “ Q a.e., up to a translation. Finally, Q and Q˚ being
continuous, the equality holds in fact everywhere. �

Step 8: ´µ is the lowest eigenvalue of HQ, is simple, and Q “ z|Q|. It
is classical that the first eigenvalue of a Schrödinger operator ´∆ ` V is non-
degenerate and that any nonnegative eigenfunction must be the first, see e.g. [38,
Chapter 11].

Step 9: Minimizing sequences are precompact up to a translations. Since
the strict binding inequality (2.11) holds, this follows from a result of Lions in [45,
Theorem I.2].

This concludes the proof of Theorem 4.
�

3.2. Proof of Theorem 5. The uniqueness of radial solutions has been proved by
Serrin and Tang in [58]. However, we need the non-degeneracy of the solution. Both
uniqueness and non-degeneracy can be proved following line by line the method
in [32, Thm. 2] (the argument is detailed in [56]). One slight difference is the
application of the moving plane method to prove that positive solutions are radial.
Contrarily to [32] we cannot use [17, Thm. 2] because our function

Fµpyq “ ´cTF y
7
3 ` y

5
3 ´ µy (3.9)

is not C2. However, given that nonnegative solutions are positive, one can show
that they are C8 and, therefore, we can apply [33, Thm. 1.1]. �

4. Regime of small c: uniqueness of the minimizer to EK,λpcq

We first give some useful properties of GK in the following lemma.

Lemma 15 (The periodic Coulomb potential GK). The function GK ´ | ¨ |
´1 is

bounded on K. Thus, there exits C such that for any x P Kzt0u, we have

0 ď GKpxq ď
C

|x|
. (4.1)

In particular, GK P L
ppKq for 1 ď p ă 3. The Fourier transform of GK is

pGKpξq “ 4π
ÿ

kPL˚
K zt0u

δkpξq

|k|2
` δ0pξq

ż

K
GKpxq dx (4.2)

where L ˚
K is the reciprocal lattice of LK. Hence, for any f ı 0 for which DKpf, fq

is defined, we have DKpf, fq ą 0.

Proof of Lemma 15. The first part follows from the fact that

lim
xÑ0

GKpxq ´ |x|
´1 “M P R,

see [44, VI.2]. The expression of the Fourier transform is a direct computation. �
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4.1. Existence of minimizers to EK,λpcq. In order to prove Theorem 1, we need
the existence of minimizers to EK,λpcq, for any c ě 0, which is done in this section.

Proposition 16 (Existence of minimizers to EK,λpcq). Let K be the unit cube and,
cTF ą 0, λ ą 0 and c ě 0 be real constants.
i. There exists a nonnegative minimizer to EK,λpcq and any minimizing sequence
pwnqn strongly converges in H1

perpKq to a minimizer, up to extraction of a sub-
sequence.

ii. Any minimizer wc is in H2
perpKq, is non-constant and solves the Euler–Lagrange

equation
´

´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2 ‹GKq
¯

wc “ ´µwcwc, (4.3)

with

µwc “ ´
||∇wc||22 ` cTF ||wc||

10{3
10{3 ´ c ||wc||

8{3
8{3 `DKp|wc|

2, |wc|
2q ´

@

GK, |wc|
2
D

L2pKq

λ
.

(4.4)
iii. Up to a phase factor, a minimizer wc is positive and the unique ground-state

eigenfunction of the self-adjoint operator, with domain H2
perpKq,

Hwc :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2 ‹GKq.

Since the problem is posed on a bounded domain, this is a classical result to
which we only give a sketch of proof. For a detailed proof, see [56]. Note that for
shortness, we have denoted ||¨||p “ ||¨||LppKq.

Sketch of proof of Proposition 16. In order to prove i., we need the following result
that will be useful all along the paper, and is somewhat similar to Lemma 10.

Lemma 17. There exist positive constants a ă 1 and C such that for any c ě 0,
cTF , λ ą 0 and any u P H1

perpKq with ||u||
2
2 “ λ, we have

EK,cpuq ě a ||∇u||2L2pKq ´
15

64

λ

cTF
c2 ´ λC. (4.5)

Proof of Lemma 17. As in Lemma 10 (but on K) we have

3

5
cTF ||u||

10
3

L
10
3 pKq

´
3

4
c ||u||

8
3

L
8
3 pKq

ě ´
15

64

λ

cTF
c2.

Moreover, for any ε ą 0, we have
ˇ

ˇ

ˇ

ż

K
GK|u|

2
ˇ

ˇ

ˇ
ď ε ||u||

2
L6pKq ` λCε.

Indeed GK “ 1t|¨|ăruGK ` 1Kzt|¨|ăruGK P L
3
2 pKq ` L8pKq, by (4.1), and r can be

chosen such that
ˇ

ˇ

ˇ

ˇ1t|¨|ăruGK
ˇ

ˇ

ˇ

ˇ

L
3
2 pKq

ď ε to obtain the claimed inequality. The above

results, together with Sobolev embeddings and DKpu
2, u2q ě 0, gives

EK,cpuq “ ||∇u||2L2pKq `
3

5
cTF ||u||

10
3

L
10
3 pKq

´
3

4
c ||u||

8
3

L
8
3 pKq

`
1

2
DKpu

2, u2q ´

ż

K
GKu

2

ě ||∇u||2L2pKq ´
15

64

λ

cTF
c2 ´ ε ||u||

2
L6pKq ´ λCε

ě p1´ εSq ||∇u||2L2pKq ´
15

64

λ

cTF
c2 ´ λpCε ` εSq

for any ε ą 0 and where S is the constant from the Sobolev embedding. Choosing
ε such that εS ă 1 concludes the proof. �
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The above result together with the fact that H1pKq is compactly embedded in
LppKq for 1 ď p ă 6 (since the cube K is bounded) and with Fatou’s Lemma implies
the existence of a minimizer and the strong convergence inH1pKq of any minimizing
sequence. Moreover, the convexity inequality for gradients (see [38, Theorem 7.8])
implies the existence of a nonnegative minimizer and concludes the proof of i.

To prove that any minimizer wc is in H2
perpKq, we write

´∆wc “ ´cTF |wc|
4
3wc ` c|wc|

2
3wc `GKwc ´ p|wc|

2 ‹GKqwc ´ µcwc

and prove that the right hand side is in L2pKq, which will give wc P H2
perpKq by

elliptic regularity for the periodic Laplacian. We note that |wc|
4
3wc and |wc|

2
3wc

are in L2pKq, by Sobolev embeddings, since wc P H1
perpKq which also gives, together

with GK P L
2pKq by Lemma 15, that |wc|2 ‹GK P L

8pKq. It remains to prove that
GKwc P L

2pKq: equation (4.1) and the periodic Hardy inequality on K give

||GKwc||L2pKq ď C
ˇ

ˇ

ˇ

ˇ| ¨ |´1wc
ˇ

ˇ

ˇ

ˇ

L2pKq ď C 1 ||wc||H1
perpKq

.

Finally, since GK is not constant, the constant functions are not solutions of the
Euler–Lagrange equation hence are not minimizers. This concludes the proof of ii.

Let wc be a nonnegative minimizer, then 0 ı wc ě 0 is in H2pKq Ă L8pKq and
is a solution of p´∆` Cqu “ pf `GK ` Cqu, with GK bounded below and

f “ ´cTF |wc|
4
3 ` c|wc|

2
3 ´ p|wc|

2 ‹GKq ´ µwc P L
8pKq,

thus p´∆` Cqwc ě 0 for C " 1. Hence, wc ą 0 on K since the periodic Laplacian
is positive improving [38, Theorem 9.10]. Consequently, wc ą 0 verifies Hwcwc “
´µwcwc and this implies that for any u P H1

perpKq it holds

xu, pHwc ` µwcquyL2pKq “ xwc
2,
ˇ

ˇ∇puwc´1q
ˇ

ˇ

2
yL2pKq ě 0.

This vanishes only if there exists α P C such that u “ αwc ae. It proves wc is the
unique ground state of Hwc and concludes the proof of Proposition 16. �

From this existence result, we deduce the following corollary.

Corollary 18. On r0,`8q, c ÞÑ EK,λpcq is continuous and strictly decreasing.

Proof of Corollary 18. Let 0 ď c1 ă c2 and, let w1 and w2 be corresponding mini-
mizers, which exist by Proposition 16. On one hand, we have

EK,λpc2q ď EK,c2pw1q “ EK,λpc1q ´
3

4
pc2 ´ c1q ||w1||

8
3

L
8
3 pKq

ă EK,λpc1q ď EK,c1pw2q “ EK,λpc2q `
3

4
pc2 ´ c1q ||w2||

8
3

L
8
3 pKq

.

This gives that EK,λpcq is strictly decreasing on r0,`8q but also the left-continuity
for any c2 ą 0. Moreover, c2 ÞÑ ||w2||H1pKq is uniformly bounded on any bounded
interval since

EK,λp0q ě EK,λpc2q “ EK,c2pw2q ě a ||∇w2||
2
L2pKq ´

15

64

λ

cTF
c2

2 ´ λC (4.6)

by Lemma 17. Hence, by the Sobolev embedding, we have

EK,λpc2q ă EK,λpc1q ď EK,λpc2q `
3

4
pc2 ´ c1qC1λ

5{6 ||w2||H1pKq ,

which gives the right-continuity and concludes the proof of Corollary 18. �



16 J. RICAUD

4.2. Limit case c “ 0: the TFW model. In order to prove Theorem 1, we need
some results on the TFW model which corresponds to the TFDW model for c “ 0.
For clarity, we denote

E TFW
K pwq :“ EK,0pwq “

ż

K

|∇w|2 ` 3

5
cTF

ż

K

|w|
10
3 `

1

2
DKp|w|

2, |w|2q ´

ż

K

GK|w|
2,

(4.7)
and similarly ETFWK,λ :“ EK,λp0q.

By Proposition 16, there exist minimizers to ETFWK,λ , and we now prove the
uniqueness of minimizer for the TFW model.

Proposition 19. The minimization problem ETFWK,λ admits, up to phase, a unique
minimizer w0 which is non constant and positive. Moreover, w0 is the unique
ground-state eigenfunction of the self-adjoint operator

H :“ ´∆` cTF |w0|
4
3 ´GK ` p|w0|

2 ‹GKq,

with domain H2
perpKq, acting on L2

perpKq, and with ground-state eigenvalue

´ µ0 “
||∇w0||

2
2 ` cTF ||w0||

10{3
10{3 `DKpw

2
0, w

2
0q ´

@

GK, w
2
0

D

L2pKq

λ
. (4.8)

Proof of Proposition 19. By Proposition 16, we only have to prove the uniqueness.
It follows from the convexity of the ρ ÞÑ |∇?ρ|2 (see [36, Proposition 7.1]) and the
strict convexity of ρ ÞÑ DKpρ, ρq. �

4.3. Proof of Theorem 1: uniqueness in the regime of small c. We first
prove one convergence result and a uniqueness result under a condition on min

K
ρ.

Lemma 20. Let tcnun Ă R` be such that cn Ñ c̄. If twcnun is a sequence of re-
spective positive minimizers to EK,λpcnq and tµwcn un the associated Euler–Lagrange
multipliers, then there exists a subsequence cnk such that the convergence

`

wcnk , µwcnk

˘

ÝÑ
kÑ8

pw̄, µw̄q

holds strongly in H2
perpKq ˆ R, where w̄ is a positive minimizer to EK,λpc̄q and µw̄

is the associated multiplier.
Additionally, if EK,λpc̄q has a unique positive minimizer w̄ then the result holds

for the whole sequence cn Ñ c̄:
`

wcn , µwcn
˘

ÝÑ
nÑ8

pw̄, µc̄q .

We will only use the case c̄ “ 0, for which we have proved the uniqueness of the
positive minimizer, but we state this lemma for any c̄ ě 0.

Proof of Lemma 20. We first prove the convergence in H1
perpKq ˆ R. By the con-

tinuity of c ÞÑ EK,λpcq proved in Corollary 18, twcnunÑ8 is a positive minimizing
sequence of EK,λpc̄q. Thus, by Proposition 16, up to a subsequence (denoted the
same for shortness), wcn converges strongly in H1

perpKq to a minimizer w̄ of EK,λpc̄q.
Moreover, for any c, pwc, µwcq is a solution of the Euler–Lagrange equation

´

´∆` cTFwc
4
3 ´ cwc

2
3 ´GK ` pwc

2 ‹GKq
¯

wc “ ´µwcwc.

Thus, as cn goes to c̄, µwcn converges to µ P R satisfying

´∆w̄ ` cTF w̄
7
3 ´ c̄w̄

5
3 ´GKw̄ ` pρ̄ ‹GKqw̄ “ ´µw̄.

In particular, µ “ µw̄. At this point, we proved the convergence in H1
perpKq ˆ R:

`

wcn , µwcn
˘

ÝÑ
nÑ8

pw̄, µw̄q .
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If, additionally, the positive minimizer w̄ of EK,λpc̄q is unique, then any posi-
tive minimizing sequence must converge in H1

perpKq to w̄, so the whole sequence
twcnunÑ8 in fact converges to the unique positive minimizer w̄.

We turn to the proof of the convergence in H2
perpKq. For any cn ě 0, by Propo-

sition 16, wcn is in H2
perpKq thus we have

p´∆´GK ` βq pwcn ´ w̄q “ ´ cTF pwcn
7
3 ´ w̄

7
3 q ` pcn ´ c̄qwcn

5
3 ` c̄

´

wcn
5
3 ´ w̄

5
3

¯

´
`

pwcn
2 ´ w̄2q ‹GK

˘

wcn ´
`

w̄2 ‹GK
˘

pwcn ´ w̄q

´ pµwcn ´ µw̄qwcn ` pβ ´ µw̄q pwcn ´ w̄q “: εn.

The right side εn converges to 0 in L2
perpKq. Moreover, by the Rellich-Kato theorem,

the operator ´∆ ´ GK is self-adjoint on H2
perpKq and bounded below, hence we

conclude that

||wcn ´ w̄||H2pKq “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p´∆´GK ` βq

´1
εn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H2pKq

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p´∆´GK ` βq

´1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKqÑH2
perpKq

||εn||L2pKq ÝÑnÑ8
0.

This concludes the proof of Lemma 20. �

Proposition 21 (Conditional uniqueness). Let K be the unit cube, N ě 1 be
an integer, cTF ą 0, c ě 0 and µ P R be constants. Let w ą 0 be such that
w P H1pN ¨Kq and w is a N ¨K´periodic solution of

´

´∆` cTFw
4
3 ´ cw

2
3 ` pw2 ‹GKq ´GK

¯

w “ ´µw. (4.9)

If min
N ¨K

w ą
´

c
cTF

¯
3
2

, then w is the unique minimizer of EN ¨K,ş
N¨K |w|

2pcq.

Proof of Proposition 21. First, the hypothesis give w P H2
perpN ¨ Kq, by the same

proof as in Proposition 16. Moreover, we have the following lemma.

Lemma 22. Let ρ ą 0 and ρ1 ě 0 such that
?
ρ P H2

perpKq and
?
ρ1 P H1

perpKq.
Then

ż

K

ˇ

ˇ

ˇ
∇
a

ρ1
ˇ

ˇ

ˇ

2

´

ż

K
|∇?ρ|2 `

ż

K

∆
?
ρ

?
ρ
pρ1 ´ ρq ě 0.

Proof of Lemma 22. Using the fact that

?
ρ∆
?
ρ “

?
ρ

2
∇ r?ρ∇pln ρqs “ 1

2
ρ∆pln ρq `

1

4
ρ |∇pln ρq|2

and defining h “ ρ1 ´ ρ, one obtains

ż

N ¨K

ˇ

ˇ

ˇ
∇
a

ρ` h
ˇ

ˇ

ˇ

2

´

ż

N ¨K
|∇?ρ|2`

ż

N ¨K

∆
?
ρ

?
ρ
h “

1

4

ż

N ¨K

ˇ

ˇ

ˇ

ˇ

h∇ρ
ρ
?
ρ` h

´
∇h

?
ρ` h

ˇ

ˇ

ˇ

ˇ

2

ě 0.

�
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Let w1 be in H1
perpN ¨Kq such that

ş

N ¨K w
2 “

ş

N ¨K |w
1|2 and |w1| ı w. Defining

ρ “ w2 and ρ1 “ |w1|2, this means that
ş

N ¨K h “ 0 where h :“ ρ1 ´ ρ ı 0. We have

EN ¨K,cp|w
1|q ´ EN ¨K,cpwq

“

A´

´∆` cTFw
4
3 ´ cw

2
3 ` w2 ‹GN ¨K ´GN ¨K ` µ

¯

w, hw´1
E

L2pN ¨Kq

`

ż

N ¨K
|∇

a

ρ` h|2 ´

ż

N ¨K
|∇?ρ|2 `

ż

N ¨K

∆
?
ρ

?
ρ
h`

1

2
DN ¨Kph, hq

`
3

5
cTF

ˆ
ż

N ¨K
pρ` hq

5
3 ´ ρ

5
3 ´

5

3
ρ

2
3h

˙

´
3

4
c

ˆ
ż

N ¨K
pρ` hq

4
3 ´ ρ

4
3 ´

4

3
ρ

1
3h

˙

ą

ż

N ¨K
F pρ1q ´ F pρq ´ F 1pρqpρ1 ´ ρq,

with F pXq “ 3
5cTFX

5
3 ´ 3

4cX
4
3 . The above inequality comes from (4.9) together

with Lemma 22 and with DKph, hq ą 0 for h ı 0. Defining now

FXpY q “ F pY q ´ F pXq ´ F 1pXqpY ´Xq,

one can check, as soon as X ě 3

b

c
cTF

, that F 1X ă 0 on p0, Xq and F 1X ą 0 on

pX,`8q. Moreover, F 1Xp0q ă 0 if X ą 3

b

c
cTF

. Thus FX has a global strict

minimum on R` atX and this minimum is zero. Consequently, if min
N ¨K

w ě
`

c
cTF

˘3{2,

then EK,cpw
1q ě EK,cp|w

1|q ą EK,cpwq for any w1 P H1
perpN ¨ Kq such that |w1| ı w

and
ş

N ¨K |w
1|2 “

ş

N ¨K w
2. This ends the proof of Proposition 21. �

We have now all the tools to prove the uniqueness of minimizers for c small.

Proof of Theorem 1. We have already proved all the results of i. of Theorem 1 in
Proposition 16 except for the uniqueness that we prove now. Let pwcqcÑ0` be a
sequence of respective positive minimizers to EK,λpcq. By Proposition 19, EK,λp0q
has a unique minimizer thus, by Proposition 20, wc converges strongly in H2pKq
hence in L8pKq to the unique positive minimizer w0 to EK,λp0q. Therefore, for c
small enough we have

min
K
wc ě

1

2
min
K
w0 ą

ˆ

c

cTF

˙
3
2

and we can apply Proposition 21 (with N “ 1) to the minimizer wc ą 0 to conclude
that it is the unique minimizer of EK,λpcq.

We now prove ii. of Theorem 1. We fix c small enough such that EK,λpcq has
an unique minimizer wc. Then wc being K-periodic, it is N ¨ K´periodic for any
integer N ě 1 and verifies all the hypothesis of Proposition 21 hence it is also the
unique minimizer of EN ¨K,ş

N¨K |wc|
2pcq “ EN ¨K,N3λpcq. �

5. Regime of large c: symmetry breaking

This section is dedicated to the proof of the main result of the paper, namely
Theorem 2. We introduce for clarity some notations for the rest of the paper. We
will denote the minimization problem for the effective model on the unit cell K by

JK,λpcq “ inf
vPH1

perpKq
||v||2

L2pKq“λ

JK,cpvq, (5.1)

where
JK,cpvq “

ż

K
|∇v|2 ` 3

5
cTF

ż

K
|v|

10
3 ´

3

4
c

ż

K
|v|

8
3 . (5.2)
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The first but important result is that we have for JK,λ the existence result equiv-
alent to the existence result of Proposition 16 for EK,λ.

The minima of the effective model and of the TFDW model also verify the
following a priori estimates which will be useful all along this section.

Lemma 23 (A priori estimates on minimal energy). Let K be the unit cube and
cTF ą 0 be a constant. There exists C ą 0 such that for any c ą 0 we have

´λC ´
15

64

λ

cTF
c2 ď EK,λpcq (5.3)

and

´
15

64

λ

cTF
c2 ď JK,λpcq ď ´

3

4

λ
4
3

|K| 13
c`

3

5
cTF

λ
5
3

|K| 23
. (5.4)

Moreover, for all K such that 0 ă K ă ´JR3,λ, there exists c˚ ą 0 such that for
all c ě c˚ we have

´
15

64

λ

cTF
c2 ď JK,λpcq ď ´c

2K ă 0. (5.5)

Proof of Lemma 23. The inequality (5.3) has been proved in Lemma 17, the proof
of which also leads to the inequality

JK,cpvq ě ||∇v||2L2pKq ´
15

64

λ

cTF
c2, (5.6)

hence the lower bound in (5.4). The upper bound in (5.4) is a simple computation
of JK,cpv̄q for the constant function v̄ “

b

λ
|K| , defined on K, which belongs to the

minimizing domain.
To prove (5.5), let K be such that 0 ă K ă ´JR3,λ. Fix f P C8c pR3q such

that K “ ´JR3pfq ą 0. Such a f exists since JR3,λ ă 0 and C8c pR3q is dense
in H1pR3q. Thus, there exists c˚ ą 0 such that for any c ě c˚, the support of
fc :“ c3{2fpc¨q is strictly included in K. This implies, for any c ě c˚, that

JK,λpcq ďJK,cpfcq “

ż

R3

|∇fc|2 `
3

5
cTF

ż

R3

|fc|
10
3 ´

3

4
c

ż

R3

|fc|
8
3 “ c2JR3pfq,

and this concludes the proof of Lemma 23. �

We introduce the notation Kc which will be the dilation of K by a factor c ą 0.
Namely, if K is the unit cube, then

Kc :“ c ¨K :“
”

´
c

2
;
c

2

¯3

. (5.7)

Moreover, we use the notation v̆ to denote the dilation of v: for any v defined on
K, v̆ is defined on Kc by v̆pxq :“ c´3{2vpc´1xq.

A direct computation gives

JK,cpvq “ c2JKc,1pv̆q, (5.8)

for any v P H1
perpKq. Consequently, JK,λpcq “ c2JKc,λp1q and v is a minimizer of

JK,λpcq if and only if v̆ is a minimizer of JKc,λp1q. Finally, when v is a minimizer
of JK,λpcq, we have some a priori bounds on several norms of v̆ which are given in
the following corollary of Lemma 23.

Corollary 24 (Uniform norm bounds on minimizers of JKc,λp1q). Let K be the
unit cube and λ be positive. Then there exist C ą 0 and c˚ ą 0 such that for any
c ě c˚, a minimizer v̆c of JKc,λp1q verifies

1

C
ď ||∇v̆c||L2pKcq , ||v̆c||L10{3pKcq , ||v̆c||L8{3pKcq ď C.
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Proof of Corollary 24. By (5.4) and (5.6), we obtain for c large enough that any
any minimizer vc of JK,λpcq verifies

||∇v̆c||2L2pKcq “ c´2 ||∇vc||2L2pKq ď
15

64

λ

cTF
.

Applying, on K, Hölder’s inequality and Sobolev embeddings to vc, we obtain that
there exists C such that

@c ě c˚, ||∇v̆c||L2pKcq , ||v̆c||L10{3pKcq , ||v̆c||L8{3pKcq ď C.

By (5.5), for any K such that 0 ă K ă ´JR3,λ, there exists c‹ ą 0 such that

@c ě c‹, 0 ă
4

3
K ď ´

4

3
JKc,λp1q ď ||v̆c||

8{3

L8{3pKcq

and, consequently, such that

@c ě c‹, ||v̆c||
10{3

L10{3pKcq
ě

1

λ

´

||v̆c||
8{3

L8{3pKcq

¯2

ą
16

9

K2

λ
ą 0.

We then obtain the lower bound for the gradient by the Sobolev embeddings. This
concludes the proof of Corollary 24. �

5.1. Concentration-compactness. To prove the symmetry breaking stated in
Theorem 2, we prove the following result using the concentration-compactness
method as a key ingredient.

Proposition 25. Let K be the unit cube and λ be positive. Then

lim
cÑ8

c´2EK,λpcq “ JR3,λ “ lim
cÑ8

c´2JK,λpcq.

Moreover, for any sequence wc of minimizers to EK,λpcq, there exists a subsequence
cn Ñ 8 and a sequence translations txnu Ă R3 such that the sequence of dilated
functions w̆n :“ cn

´3{2wcnpcn
´1¨q verifies

i. 1Kcn w̆np¨ ` xnq converges to a minimizer u of JR3,λ strongly in LppR3q for
2 ď p ă 6, as n goes to infinity;

ii. 1Kcn∇w̆np¨ ` xnq Ñ ∇u strongly in L2pR3q.
The same holds for any sequence vc of minimizers of JK,λpcq.

Before proving Proposition 25, we give and prove several intermediate results,
the first of which is the following proposition which will allow us to deduce the
results for EK,λ from those for JK,λ.

Lemma 26. Let λ ą 0. Then
EK,λpcq

JK,λpcq
ÝÑ
cÑ8

1.

Proof of Lemma 26. Let wc and vc be minimizers of EK,λpcq and JK,λpcq respec-
tively which exist by Proposition 16 and the equivalent result for JK,λpcq. Thus

1

2
DKpwc

2, wc
2q ´

ż

K
GKwc

2 ď EK,λpcq ´ JK,λpcq ď
1

2
DKpvc

2, vc
2q ´

ż

K
GKvc

2.

By the Hardy inequality on K and (4.1), we have
ˇ

ˇ

ˇ

ˇ

ż

K
GKvc

2

ˇ

ˇ

ˇ

ˇ

ď λ ||GKvc||L2pKq ď Cλ ||vc||H1pKq

and similarly
ˇ

ˇ

ş

KGKwc
2
ˇ

ˇ À ||wc||H1pKq. Moreover, we claim that

DKpvc
2, vc

2q À ||vc||H1pKq . (5.9)

To prove (5.9) we define, for each spatial direction i P t1, 2, 3u of the lattice, the
intervals Ip´1q

i :“ r´1;´1{2q, Ip0qi :“ r´1{2; 1{2q and I
p`1q
i :“ r1{2; 1q, and the
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parallelepipeds Kpσ1,σ2,σ3q “ I
pσ1q

1 ˆ I
pσ2q

2 ˆ I
pσ3q

3 which let us rewrite K “ Kp0,0,0q

and K2 “ 2 ¨K :“ r´1; 1q
3 as the union of the 27 sets

K2 “
ď

σPt´1;0;`1u3

Kσ.

We thus have by (4.1) and the Hardy–Littlewood–Sobolev inequality that
ĳ

KˆK
x´yPKσ

vc
2pxqGKpx´ yqvc

2pyq dx dy À
ĳ

KˆK

v2
c pxqv

2
c pyq

|x´ y ´ σ|
dy dx À ||vc||

4

L
12
5 pKq

.

Consequently, by Hölder’s inequality and Sobolev embeddings, we have
ˇ

ˇDKpvc
2, vc

2q
ˇ

ˇ “

ˇ

ˇ

ˇ

ÿ

σPt´1;0;`1u3

ĳ

KˆK
x´yPKσ

vc
2pxqGKpx´ yqvc

2pyq dx dy
ˇ

ˇ

ˇ

À ||vc||
4

L
12
5 pKq

À ||vc||H1pKq ||vc||
3
L2pKq . (5.10)

This proves (5.9) which also holds for wc.
Then, on one hand, by (4.6) applied to c1 “ 0 ď c2 “ c, there exist positive

constants a ă 1 and C such that for any c ą 0 we have

a ||∇wc||2L2pKq ď
15

64

λ

cTF
c2 ` EK,λp0q ` λC.

On the other hand, the upper bound in (5.5) together with the (5.6) applied to vc,
give that there exists c˚ ą 0 such that

D K ą 0,@ c ě c˚, ||∇vc||2L2pKq ď

ˆ

15

64

λ

cTF
´K

˙

c2. (5.11)

Consequently, for c large enough, we have

|JK,λpcq ´ EK,λpcq| À c

hence, using (5.5), we finally obtain
ˇ

ˇ

ˇ

ˇ

EK,λpcq

JK,λpcq
´ 1

ˇ

ˇ

ˇ

ˇ

À c´1.

This concludes the proof of Lemma 26. �

We now prove that the periodic effective model converges,

lim
cÑ8

c´2JK,λpcq “ JR3,λ,

by proving the two associated inequalities. We first prove the upper bound then
use the concentration-compactness method to prove the converse inequality. The
strong convergence of minimizers stated in Proposition 25 will be a by-product of
the method.

Lemma 27 (Upper bound). Let K be the unit cube and λ be positive. Then there
exists β ą 0 such that

JK,λpcq ď c2JR3pλq ` ope´βcq.

Proof of Lemma 27. Using the scaling equality (5.8), this result is obtained by com-
puting JKc,1pQcq where

Qc “

?
λχcQ

||χcQ||L2pR3q

,

for Q P H1pR3q a minimizer of JR3,λ, with χc P C
8
c pR3q, 0 ď χc ď 1, χc ” 0

on R3zKc`1, χc ” 1 on Kc and ||∇χc||L8pR3q bounded. Indeed, by the well-known
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exponential decay of continuous positive solution to the Euler–Lagrange equations
with strictly negative Lagrange multiplier, one obtains the exponential decay when
r goes to infinity of the norm ||∇Q||L2pABp0,rqq and the norms ||Q||LppABp0,rqq for p ą 0,
and consequently the claimed upper bound. �

Lemma 28 (Lower bound). Let K be the unit cube and λ be positive. Then

lim inf
cÑ8

c´2JK,λpcq ě JR3,λ.

Sketch of proof of Lemma 28. See [56] for a detailed proof. This result relies on
Lions’ concentration-compactness method and on the following result. Since this
lemma is well-known, we omit its proof. Similar statements can be found for ex-
ample in [16, 1, 20, 25, 30, 56].

Lemma 29 (Splitting in localized bubbles). Let K be the unit cube, tϕcucě1 be a
sequence of functions such that ϕc P H1

perpKcq for all c, with ||ϕc||H1pKcq uniformly
bounded. Then there exists a sequence of functions tϕp1q, ϕp2q, ¨ ¨ ¨ u in H1pR3q such
that the following holds. For any ε ą 0 and any fixed sequence 0 ď Rk Ñ 8, there
exist: J ě 0, a subsequence tϕcku, sequences tξ

p1q
k u, ¨ ¨ ¨ , tξ

pJq
k u, tψku in H1

perpKckq
and sequences of space translations txp1qk u, ¨ ¨ ¨ , tx

pJq
k u in R3 such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ϕck ´

J
ÿ

j“1

ξ
pjq
k p¨ ´ x

pjq
k q ´ ψk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1pKck q
“ 0,

where
‚ tξ

p1q
k u, ¨ ¨ ¨ , tξ

pJq
k u, tψku have uniformly bounded H1pKckq-norms,

‚ 1Kck ξ
pjq
k á ϕpjq weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

‚ suppp1Kck ξ
pjq
k q Ă Bp0, Rkq for all j “ 1, ¨ ¨ ¨ , J and all k,

‚ suppp1Kckψkq Ă Kckz
J
Ť

j“1

Bpx
pjq
k , 2Rkq for all k,

‚ |x
piq
k ´ x

pjq
k | ě 5Rk for all i ‰ j and all k,

‚
ş

Kck
|ψk|

8
3 ď ε.

Remark. The proof of Lemma 28 relies on the concentration-compactness method.
Extracting only one bubble (J “ 1) by a localization method would not allow us
to conclude since we have little information on the energy of the remainder ψk.
In similar proofs in the literature, it is often possible to conclude after extracting
few bubbles, using that J pψkq ě Jp

ş

|ψk|
2q. In our case, JKcp

ş

|ψk|
2q depends

on c hence the same inequality of course holds but does not allow us to conclude.
We therefore need to extract as many bubbles as necessary such as to sufficiently
decrease the energy of ψk.

We apply Lemma 29 to the sequence pv̆cqcě1 of minimizers to JKc,λp1q which
verifies the hypothesis by the upper bound proved in Corollary 24. The lower
bound in that corollary excludes the case J “ 0. Indeed, in that case we would
have lim

kÑ8
||ϕck ´ ψk||H1pKck q

“ 0 and
ş

Kck
|ψk|

8
3 ď ε hence

ş

Kck
|ϕk|

8
3 ď 2ε, for k

large enough, contradicting the mentioned lower bound. Consequently, there exists
J ě 1 such that

v̆ck “ ψk ` εk `
J
ÿ

j“1

v̆
pjq
k p¨ ´ x

pjq
k q

where ||εk||H1pKck q
Ñ 0 and, for a each k, the supports of the v̆pjqk p¨´x

pjq
k q’s and ψk

are pairwise disjoint. The support properties, the Minkowski inequality, Sobolev
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embeddings and the fact that suppp1Kck v̆
pjq
k q Ă Bp0, Rkq Ă Kck , give that

JKck pλq “JKck pv̆ckq “JKck pψkq `
J
ÿ

j“1

JR3p1Kck v̆
pjq
k q ` op1qckÑ8

ě ´
3

4
ε`

J
ÿ

j“1

JR3p1Kck v̆
pjq
k q ` op1qckÑ8.

Moreover, the strong convergence of 1Kck v̆
pjq
k in L2 and the continuity of λ ÞÑ JR3,λ,

proved in Lemma 11, imply, for all j “ 1, ¨ ¨ ¨ , J , that

JR3p1Kck v̆
pjq
k q ě JR3

´

||v̆
pjq
k ||

2
L2pKck q

¯

ÝÑ
kÑ8

JR3pλpjqq,

where, for any j, λpjq :“ ||v̆pjq||L2pR3q is the mass of the limit of 1Kck v̆
pjq
k . We

also have denoted JR3pλq :“ JR3,λ to simplify notations here. Those inequalities
together with the strict binding proved in Proposition 13 lead to

3

4
ε` lim inf

kÑ8
JKck pλq ě

J
ÿ

j“1

JR3pλpjqq ą JR3pλq ´ JR3

´

λ´
J
ÿ

j“1

λpjq
¯

ě JR3pλq.

The last inequality comes from the fact that 0 ď ||ψk||
2
L2pKck q

“ λ´
J
ř

j“1

λpjq ` op1q

thus λ ´
J
ř

j“1

λpjq ě 0 and this implies that JR3

´

λ ´
J
ř

j“1

λpjq
¯

ď 0. This concludes

the proof of Lemma 28. �

We can now compute the main term of EK,λpcq stated in Proposition 25.

Proof of Proposition 25. Propositions 27 and 28 give, for λ ą 0, the limit

lim
cÑ8

c´2JK,λpcq “ JR3,λ

and Lemma 26 gives then the same limit for EK,λpcq. Proposition 28 also gives that
pv̆cqcě1 has at least a first extracted bubble 0 ı v̆ P H1pR3q to which 1Kck v̆ckp¨`xkq

converges weakly in L2pR3q. This leads to

JKck ,λp1q “JKck ,1pv̆ckp¨ ` xkqq “JR3pv̆q`JKck ,1pv̆ckp¨ ` xkq´ v̆q` op1q (5.12)

by the following lemma.

Lemma 30. Let K be the unit cube and tϕcucě1 be a sequence of functions on R3

with ||ϕc||H1pKcq uniformly bounded such that 1Kcϕc á
cÑ8

ϕ weakly in L2pR3q. Then

ϕ P H1pR3q and, up to the extraction of a subsequence, we have
i. 1Kc∇ϕc á ∇ϕ weakly in L2pR3q,
ii. ||∇pϕc ´ ϕq||2L2pKcq “ ||∇ϕc||

2
L2pKcq ´ ||∇ϕ||

2
L2pR3q ` o

cÑ8
p1q,

iii. ||ϕc ´ ϕ||
p
LppKcq “ ||ϕc||

p
LppKcq ´ ||ϕ||

p
LppR3q

` o
cÑ8

p1q, for 2 ď p ď 6.

Proof of Lemma 30. By the mean of a regularization function (as in the proof of
Lemma 27) together with the uniform boundedness of ϕc inH1pKcq and the unique-
ness of the limit, one obtains that the limit ϕ is in H1pR3q. Since i. is a classical
result and ii. a direct consequence of it, we only prove here iii..

The weak convergence in L2pR3q of 1Kc∇ϕc gives the convergence a.e. of ϕc to ϕ,
up to a subsequence, by [38, Corollary 8.7]. Since |ϕc´ϕ| is uniformly bounded in
L2pR3q XL6pR3q, this implies iii. by the Missing term in Fatou’s lemma Theorem
(see [38, Theorem 1.9]). �
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To obtain for EK,λpcq an expansion similar to (5.12), we proceed the same way.
We first show that the sequence of minimizers w̆c is uniformly bounded in H1

perpKcq
using the upper bound in the following lemma, which is equivalent to Corollary 24
for v̆c.

Lemma 31 (Uniform norm bounds on minimizers of EK,λpcq). Let K be the unit
cube, λ, cTF and c be positive. Then there exist C ą 0 and c˚ ą 0 such that for any
c ě c˚, the dilation w̆cpxq :“ c´3{2wcpc

´1xq of a minimizer wc to EK,λpcq verifies
1

C
ď ||∇w̆c||L2pKcq , ||w̆c||L10{3pKcq , ||w̆c||L8{3pKcq ď C.

Proof of Lemma 31. As seen in the proof of Lemma 26, ||∇wc||L2pKq “ Opcq hence

||∇w̆c||2L2pKcq “ c´2 ||∇wc||2L2pKq “ Op1q

and, using Sobolev embeddings for the two other norms, we have

@c ě c˚, ||∇w̆c||L2pKcq , ||w̆c||L10{3pKcq , ||w̆c||L8{3pKcq ď C 1.

Let K be such that 0 ă K ă ´JR3,λ and ε ą 0, then by (5.5) and Lemma 26,
there exists C ą 0 such that

c2K ´ ε ď ´JK,λpcq ´ ε ď ´EK,λpcq ď c

ˆ

C `
3

4
||wc||

8
3

L
8
3 pKq

˙

for c’s large enough and, consequently that

K ´
C ` ε

c2
ď

3

4
||w̆c||

8{3

L8{3pKcq
.

We conclude this proof of Lemma 31 as we did in the proof of Corollary 24. �

We now come back to the proof of Proposition 25. We apply Lemma 29 to tw̆cu
and, as for v̆c, the lower bound in Lemma 31 implies that J ě 1, namely that there
exist at least a first extracted bubble 0 ı w̆ P H1pR3q such that 1Kck w̆ckp¨`ykq á w̆

weakly in L2pR3q. Lemma 30 then leads to

ck
´2EK,λpckq “JKck ,1pw̆ckp¨ ` ykqq `Opck

´1q

“ JR3pw̆q `JKck ,1pw̆ckp¨ ` ykq ´ w̆q ` op1q,

where the term Opc´1q comes from DKpwc
2, wc

2q “ Opcq and
ş

KGKwc
2 “ Opcq

obtained in the proof of Lemma 26.
Since in both cases J and E, the left hand side converges to JR3pλq, the end of

the argument will be the same and we will therefore only write it in the case of E.
Defining λ1 :“ ||w̆||

2
L2pR3q, which is positive since w̆ ı 0, we thus have

ck
´2EK,λpckq ě JR3pλ1q ` JKck

`

||w̆ckp¨ ` ykq ´ w̆||
2
L2pKck q

˘

` op1q.

Since ||w̆cp¨ ` ykq ´ w̆||2L2pKcq “ λ´ λ1 ` op1q, then for any ε ą 0, we have

ck
´2EK,λpckq ě JR3pλ1q ` JKck pλ´ λ1 ` εq ` op1q,

By the convergence of c´2EK,λpcq for any λ ą 0, this leads to

JR3pλq ě JR3pλ1q ` JR3pλ´ λ1 ` εq

and, sending ε to 0, the continuity of λ ÞÑ JR3pλq, proved in Lemma 11, gives

JR3pλq ě JR3pλ1q ` JR3pλ´ λ1q.

We recall that λ1 ą 0 hence, if λ1 ă λ then the above large inequality would
contradict the strict binding proved in Proposition 13, hence λ1 “ λ. This conver-
gence of the norms combined with the original weak convergence in L2pR3q gives the
strong convergence in L2pR3q of 1Kcw̆cp¨`ykq to w̆ hence in LppR3q for 2 ď p ă 6 by
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Hölder’s inequality, Sobolev embeddings and the facts that w̆c is uniformly bounded
in H1

perpKcq and that w̆ P H1pR3q. The strong convergence holds in particular in
L

8
3 pR3q thus we have proved that w̆ is the first and only bubble.
Finally, for any ε ą 0, we now have, for k large enough, that

ck
´2EK,λpckq “JR3pw̆q `JKck ,1pw̆ckp¨ ` ykq ´ w̆q ` op1q

ě JR3pw̆q ` JKck pεq ` op1q.

This leads to JR3pλq ěJR3pw̆q`JR3pεq, then to JR3pλq ěJR3pw̆q by the continuity
of JR3pλq proved in Lemma 11. Since ||w̆||2L2pR3q “ λ, this concludes the proof
of Proposition 25 up to the convergence of 1Kcn∇w̆np¨ ` xnq and 1Kcn∇v̆np¨ ` xnq
that we deduce now from the above results. Indeed, by the convergence in LppR3q of
w̆np¨`xnq and since

ˇ

ˇ

ş

KGKwn
2
ˇ

ˇ`
ˇ

ˇDKpwn
2, wn

2q
ˇ

ˇ “ Opcnq, we know, except for the
gradient term, that all terms of cn´2EK,λpcnq (resp. cn´2JK,λpcnq) converge thus
the gradient term too. Then we apply Lemma 30 to obtain the strong convergence
in L2pR3q from this convergence in norm just obtained. �

Let us emphasize that all the results stated in this section still hold true in
the case of several charges per cell (for example for the union N ¨ K) with same
proofs. The modifications only come from the factor

ş

KGKwc
2 being replaced by

ş

K
řNq
i“1GKp¨ ´Riq|wc|

2 — see (5.13) — therefore only the proofs of Proposition 25,
Lemma 26 and Lemma 31 are slightly changed by a factor Nq in the bounds of the
modified term, but their statement is unchanged. Consequently, as mentioned in
Section 2.1, the results

lim
cÑ8

c´2EN ¨K,N3λpcq “ JR3,N3λ and lim
cÑ8

c´2EK,λpcq “ JR3,λ

from Proposition 25 and the result

JR3pN3λq ă N3JR3pλq

from Proposition 13 imply together the symmetry breaking

EN ¨K,N3λpcq ă N3EK,λpcq.

We now give two corollaries of Proposition 25. We state and prove them in the
case of one charge per unit cell but they hold, with similar proof, for several charges.

Corollary 32 (Convergence of Euler–Lagrange multiplier). Let twcu be a sequence
of minimizers to EK,λpcq and tµcu the sequence of associated Euler–Lagrange mul-
tipliers, as in Proposition 16. Then there exists a subsequence cn Ñ8 such that

cn
´2µcn ÝÑ

nÑ8
µR3,twcnu

with µR3,twcnu
the Euler–Lagrange multiplier associated with the minimizer to JR3pλq

to which the subsequence of dilated functions 1Kcn w̆cnp¨ ` xnq converges strongly.
The same holds for sequences tvcu of Euler–Lagrange multipliers associated with

minimizers to JK,λpcq.

Proof of Corollary 32. Let u be the minimizer of JR3pλq to which 1Kcn w̆cnp¨ ` xnq

converges strongly in LppR3q for 2 ď p ă 6, by Proposition 25 which also gives
that 1Kcn∇w̆cnp¨ ` xnq Ñ ∇u strongly in L2pR3q, and µR3,u the Euler–Lagrange
multiplier associated with this u by Theorem 4.

By Lemma 31 and the formula (4.4) giving an expression of µc, we then obtain

´cn
´2µcnλÑ ||∇u||2L2pR3q ` cTF ||u||

10{3

L10{3pR3q
´ ||u||

8{3

L8{3pR3q
.
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Therefore, by (3.5) which gives an expression of the Euler–Lagrange parameter
µR3,u associated with this u, we have

cn
´2µcn ÝÑ

cÑ8
µR3,u.

Since u depends on twcnu, we can of course rename µR3,twcnu
:“ µR3,u. The result

for JK,λpcq is proved the same way. �

Lemma 33 (L8-convergence). Let twcuc be a sequence of minimizers to EK,λpcq
and u be the minimizer to JR3pλq to which the subsequence of rescaled functions
1Kcn w̆cnp¨ ` xnq converges. Then

||w̆cnp¨ ` xnq ´ u||H2pKcn q
ÝÑ
nÑ`8

0 and
ˇ

ˇ

ˇ

ˇ1Kcn w̆cnp¨ ` xnq ´ u
ˇ

ˇ

ˇ

ˇ

L8pKcn q
ÝÑ
nÑ`8

0.

The same result holds for a sequence tvcuc of minimizers to JK,λpcq.

Proof of Lemma 33. For shortness, we omit the spatial translations txnu in this
proof. We define uc “ ζcu where ζc is a smooth function such that 0 ď ζc ď 1,
ζc ” 0 on R3zKc and ζc ” 1 on Kc´1. Since u P H2pR3q by Theorem 4 and
||ζc||8 ` ||∇ζc||8 ` ||∆ζc||8 ă 8, we have to prove ||w̆cn ´ ucn ||H2pKcn q

ÝÑ
nÑ`8

0.

Moreover, by the Rellich-Kato theorem, the operator ´∆per ´ c
´2GKpc

´1¨q is self-
adjoint of domain H2

perpKcq and bounded below. Therefore, there exists 0 ă C ă 1
such that, for any β large enough and any c ě 1, we have

||w̆c ´ uc||H2
perpKcq

ď C
ˇ

ˇ

ˇ

ˇ

`

´∆per ´ c
´2GKpc

´1¨q ` β
˘

pw̆c ´ ucq
ˇ

ˇ

ˇ

ˇ

L2
perpKcq

.

Thus, denoting C´c :“ KczKc´1 and µR3 the Euler–Lagrange parameter associated
with u, we have by the Euler–Lagrange equations (2.10) and (4.3) that

||w̆c ´ uc||H2
perpKcq

ď CcTF

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

3
7u´ w̆c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

4
7 |u|

4
3 ` |w̆c|

4
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcq
` ||u||L2pC´c q

||∆ζc||L8pKcq

` C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

3
5u´ w̆c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

2
5 |u|

2
3 ` |w̆c|

2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcq
` 2 ||∇ζc||L8pKcq ||∇u||L2pC´c q

` C|µR3 ´ c´2µc| ||w̆c||L2pKcq ` CpµR3 ` βq ||ζcu´ w̆c||L2pKcq

` Cc´2
ˇ

ˇ

ˇ

ˇGKpc
´1¨q

ˇ

ˇ

ˇ

ˇ

L5{2pKcq
||uc||L10pKcq ` Cc

´2
ˇ

ˇ

ˇ

ˇ|uc|
2 ‹GK

ˇ

ˇ

ˇ

ˇ

L8pKq ||w̆c||L2pKcq ,

for any c ą 0. Therefore, combining that the L8pKcq norms of ζc and of it deriva-
tives are finite, that ||∇u||L2pC´c q

` ||u||L2pC´c q
Ñ 0, that c´2

ˇ

ˇ

ˇ

ˇGKpc
´1¨q

ˇ

ˇ

ˇ

ˇ

L5{2pKcq
“

c´
4
5 ||GK||L5{2pKq Ñ 0 and that, for any α ą 0 and 2 ď p ď 6, we have

||ζcn
αu´ w̆cn ||LppKcn q “

||p1´ ζcn
α
qu||LppKcn q ` ||u´ w̆cn

||LppKcn q
Ñ 0,

all together with Corollary 32, we conclude that

||w̆cn ´ ucn ||H2
perpKcn q

ÝÑ
nÑ`8

0.

The proof for vc is similar but easier and shorter, we thus omit it.
We then conclude the proof of Lemma 33 using that for any c˚ ą 0, there exists

C such that for any c P rc˚;8q and f P H2pKcq, we have ||f ||L8pKcq ď C ||f ||H2pKcq
which can be proved by means of Fourier series. �
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5.2. Location of the concentration points. In this section we consider the
union of N3 cubes K, each containing one charge q “ 1 — that we can assume to
be at the center of the cube K — forming together the cube KN :“ N ¨ K. The
energy of the unit cell KN is then

EKN ,cpwq “JKN ,cpwq `
1

2
DKN p|w|

2, |w|2q ´

ż

KN

N3
ÿ

i“1

GKN p¨ ´Riq|w|
2, (5.13)

where tRiu1ďiďN3 denote the positions of the N3 charges.
In this section, we prove a localization type result (Proposition 34) — that any

minimizer concentrates around the position of a charge of the lattice — and a lower
bound on the number of distinct minimizers (Proposition 36).

Proposition 34 (Minimizers’ concentration point). Let tRju1ďjďN3 be the respec-
tive positions of the N3 charges inside KN . Then the sequence txnu Ă cn ¨ KN of
translations associated with the subsequence twcnu of minimizers to EKN ,N3λpcnq
such that the rescaled sequence 1Kcn w̆cnp¨ ` xnq converges to Q, a minimizer to
JR3,N3λ, verifies

xn “ cnRi ` op1q

as nÑ8, for one i. Consequently, for 2 ď p ă `8,

||w̆cnp¨ ` cnRiq ´Q||LppKcn q ÝÑ
nÑ`8

0.

Proof of Proposition 34. Since the wcn ’s are minimizers, we have for any Rj that

EKN ,cnpwcnq ď EKN ,cn

´

wcn

´

¨ `
xn
cn
´Rj

¯¯

which leads to

´

N3
ÿ

i“1

ż

KNcn
GKN

´ x

cn
`
xn
cn
´Ri

¯

|w̆cn px` xnq|
2 dx

ď ´

N3
ÿ

i“1

ż

KNcn
GKN

´ x

cn
`Rj ´Ri

¯

|w̆cn px` xnq|
2 dx

since the first four terms of EKN ,c are invariant under spatial translations. Lemma 35
below then gives, on one hand, that the right hand side of this inequality is equal to
´cn

ş

R3

Q2
pxq
|x| dx`opcnq because cn|Rj´Ri| Ñ 8 for i ‰ j and, on the other hand,

that |xn ´ cnRi| must be bounded for one i, that we denote i0, because otherwise
the left hand side would be equal to opcnq. Therefore, still by Lemma 35, the term
for i0 in the left hand side is equal to ´cn

ş

R3

Q2
pxq

|x´η| dx ` opcnq for a given η P R3

(and up to a subsequence) and the other terms of the sum to opcnq. However,
ż

R3

Q2pxq

|x|
dx ą

ż

R3

Q2pxq

|x´ η|
dx

if η ‰ 0, implying that the wcn are not minimizers for n large enough. Hence η “ 0,
which means by Lemma 35 that xn “ cnRi0 ` op1q as nÑ8.

The last result of Proposition 34 is a direct consequence of the convergence of
the LppKcnq-norms proved in Proposition 25 and Lemma 33 together with the fact
that xn ´ cnRi0 “ op1q.

Lemma 35. Let tynun Ă K, tfcuc Ă L2
perpKcq and tgcuc Ă L2

perpKcq be two se-
quences such that ||fc||H1

perpKcq
` ||gc||H1

perpKcq
is uniformly bounded. We assume that

there exist f and g in H1pR3q and a subsequence cn such that ||fcn ´ f ||L2pKcn q
Ñ
nÑ8

0 and 1Kcn gcn á
nÑ8

g weakly in L2pR3q. Then,
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i. if cn|yn| Ñ `8, then cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfcngcn ÝÑ
nÑ8

0,

ii. if cn|yn| Ñ 0, then cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfcngcn ÝÑ
nÑ8

ş

R3

fpxqgpxq
|x| dx,

iii. otherwise, there exist η P R3zt0u and a subsequence nk such that

cnk
´1

ż

Kcnk

GKpcnk
´1 ¨ ´ynkqfcnk gcnk ÝÑkÑ8

ż

R3

fpxqgpxq

|x´ η|
dx.

Moreover, replacing ||fcn ´ f ||L2pKcn q
Ñ
nÑ8

0 by ||fcn ´ f ||H1pKcn q
Ñ
nÑ8

0, the uni-

form bound on ||gc||H1
perpKcq

by an uniform bound on ||gc||L2
perpKcq

and g P H1pR3q by
g P L2pR3q, then i. still holds true and, in the special case yn “ 0, ii. too.

Remark. We state the lemma in a more general setting than needed for Proposi-
tion 34 in order for it to be also useful for the proof of Lemma 43.

Proof of Lemma 35. Using the same notation Kσ as in the proof of Lemma 26, we
notice that K´ τ :“ tx P R3|x´ τ P Ku Ă K2 “ KY

Ť

p0,0,0q‰σPt0;˘1u3 Kσ, for any
τ P K. Therefore, by Lemma 15, there exists C ą 0 such that for any ϕc P L2pKcq,
ψc P H

1pKcq, y P K and c ą 0,

c´1

ˇ

ˇ

ˇ

ˇ

ż

Kc
GKpc

´1 ¨ ´yqϕcψc

ˇ

ˇ

ˇ

ˇ

ď C
ÿ

σPt´1;0;`1u3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕcψc
| ¨ ´cpy ` σq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1pKcq
.

Then, by the Hardy inequality on Kc, which is uniform on rc˚,8q for any c˚ ą 0,
there exists C 1 such that for any y P K and any c ě 1, we obtain

c´1

ˇ

ˇ

ˇ

ˇ

ż

Kc
GKpc

´1 ¨ ´yqϕcψc

ˇ

ˇ

ˇ

ˇ

ď 27C 1 ||ϕc||L2pKcq ||ψc||H1pKcq .

Therefore, the weak convergence of gcn and the Hardy inequality to f on R3 give

cn
´1

ˇ

ˇ

ˇ

ˇ

ż

Kcn
GKpcn

´1 ¨ ´ynqpfcngcn ´ fgq

ˇ

ˇ

ˇ

ˇ

ď 27
´

C 1 ||fcn ´ f ||L2pKcn q
||gcn ||H1pKcn q

` 2C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fpgcn ´ gq

| ¨ ´cpy ` σq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1pKcq

¯

Ñ
nÑ8

0.

Replacing ||fcn ´ f ||L2pKcn q
||gcn ||H1pKcn q

by ||fcn ´ f ||H1pKcn q
||gcn ||L2pKcn q

gives this
same convergence to 0 under the second set of conditions.

We are therefore left with the study of cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfg as n Ñ 8

and we start with the case cn|yn| Ñ `8. For c ą 0, y P K and σ P t´1; 0;`1u3,
we have

c´1

ż

Kc
1Kσ pc´1 ¨ ´yqGKpc

´1 ¨ ´yq|fg|

À

ż

R3

1Bp0, c2 |y`σ|q

| ¨ ´cpy ` σq|
|fg| `

ż

R3

1Bpcpy`σq,Rq

| ¨ ´cpy ` σq|
|fg| `

ż

ABp0, c2 |y`σ|q

1ABpcpy`σq,Rq

| ¨ ´cpy ` σq|
|fg|

À
2

c|y ` σ|
||fg||L1pR3q ` ||f ||H1pR3q ||g||L2pBpcpy`σq,Rq `

1

R
||fg||L1pABp0, c2 |y`σ|qq

,

for any R ą 0. Since f is in H1pR3q and g at least in L2pR3q, the last two terms
tends to 0 and ||fg||L1pR3q is bounded hence, on one hand we obtain, for σ “ p0, 0, 0q,
the convergence to 0 (for the subsequence cn) from cn|yn| Ñ `8 and, on the other
hand, there exists R1 ą 0 such that |y`σ| ą R1 for any t´1; 0;`1u3 Q σ ‰ p0, 0, 0q
and any y P K, ending the proof that the above tends to 0. We finally obtain that

1

cn

ż

Kcn
GKpcn

´1 ¨ ´ynq|fg| “
ÿ

σPt0;˘1u3

1

cn

ż

Kcn
r1KσGKs pcn

´1 ¨ ´ynq|fg| ÝÑ
nÑ8

0,
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concluding the proof of i. under the two sets of hypothesis.
We now suppose that cn|yn| does not diverge hence it is bounded up to a subse-

quence nk and, consequently, ynk Ñ 0. However, by Lemma 15, there existsM 1 ą 0
such that

ˇ

ˇ| ¨ |´1 ´GK
ˇ

ˇ ďM 1 on K, thus there exists M ą 0 such that
ˇ

ˇ

ˇ

ˇ

GK ´
1

| ¨ |

ˇ

ˇ

ˇ

ˇ

1K´τ ď

ˆ

M 11K `
1AK
| ¨ |

` C
ÿ

p0,0,0q‰σPt0;˘1u3

1Kσ

| ¨ `τ´ σ| ´ |τ|

˙

1K´τ

ď
`

M 1 `R´1 ` 52CR´1
˘

1K´τ ďM1K´τ.

for τ P Bp0, R{2q and where R :“ minxPBK |x| ą 0 therefore Bp0, Rq Ă K. Hence
ˇ

ˇ

ˇ

ˇ

ż

Kcnk

ˆ

1

cnk
GKp

¨

cnk
´ ynkq ´ | ¨ ´cnkycnk |

´1

˙

fg

ˇ

ˇ

ˇ

ˇ

ď
M

cnk
||fg||L1pR3q “ Op

1

cnk
q.

Moreover,
ˇ

ˇ

ˇ

ˇ

ż

R3

p1´ 1Kcnk
pxqq

fpxqgpxq

|x´ cnkycnk |
dx

ˇ

ˇ

ˇ

ˇ

À ||f ||L2pAKcnk q
||g||H1pR3q Ñ 0

and we are left with the study of
ˇ

ˇ

ˇ

ˇ

ż

R3

fpxqgpxq

|x´ cnkycnk |
´
fpxqgpxq

|x´ η|
dx

ˇ

ˇ

ˇ

ˇ

ď 4|η ´ cnkycnk | ||f ||H1pR3q ||g||H1pR3q

which tends to 0 if we choose η as the limit (up to another subsequence) of the
bounded sequence cnkynk . Finally, if we have in fact cnyn Ñ 0 then η “ 0, other-
wise, we can find a subsequence such that cnkynk Ñ η ‰ 0.

Under the second set of conditions and if yn “ 0, we have
ˇ

ˇ

ˇ

ˇ

ż

Kcn
pcn

´1GKpcn
´1xq ´ |x|´1qfpxqgpxq dx

ˇ

ˇ

ˇ

ˇ

ď
M 1

cn
||fg||L1pR3q “ Opcn

´1q.

This concludes the proof of Lemma 35. �

This concludes the proof of Proposition 34. �

We now prove that EKN ,N3λpcq admits at least N3 distinct minimizers.

Proposition 36. For cn large enough, there exist at least N3 nonnegative mini-
mizers to the minimization problem EKN ,N3λpcnq which are translations one of each
other by vectors Rj ´ Rk, 1 ď j ‰ k ď N3, where tRiu1ďiďN3 are the respective
positions of the N3 charges inside KN .

Proof of Proposition 36. First, in Proposition 34, we have seen that any sequence
twcucÑ`8 of minimizers of EKN ,N3λpcq must concentrate, up to a subsequence,
at the position of one nucleus of the unit cell, denoted Rj0 . Then, given that
the four first terms of EKN ,c are invariant under any translations and

ş

GK|wc|
2 is

invariant under Rj ´Rk translations, we have that each wcp¨ `Ri ´Rj0q, for 1 ď
i ď N3, is also a minimizer of EKN ,N3λpcq. Since, the N3 sequences of minimizers
twcnp¨ `Ri ´Rj0qui have distinct limits as n Ñ 8, there are at least N3 distinct
minimizers for n large enough. �

5.3. Second order expansion of EK,λpcq. The goal of this subsection is to prove
the expansion (2.7). To do so, we improve the convergence rate of the first order
expansion of JK,λpcq proved in Proposition 25. Namely, we prove that there exists
β ą 0 such that

JK,λpcq “ c2JR3pλq ` ope´βcq. (5.14)
We recall that we have proved in Lemma 27 that there exists β ą 0 such that

JK,λpcq ď c2JR3pλq ` ope´βcq
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and we now turn to the proof of the converse inequality.

Lemma 37. There exists β ą 0 such that

JK,λpcq ě c2JR3,λ ` ope
´βcq.

Proof of Lemma 37. As the problems JK,λpcq are invariant by spatial translations,
we can suppose that xn “ 0 in the convergences of the subsequence of rescaled
functions 1Kcn v̆cnp¨ ` xnq. Our proof relies on the exponential decay with c of the
minimizers to JKc,λp1q close to the border of the cube Kc.

Lemma 38 (Exponential decrease of minimizers to JKc,λp1q). Let tvcuc be a se-
quence of nonnegative minimizers to JK,λpcq such that a subsequence of rescaled
functions 1Kcn v̆cn converges weakly to a minimizer of JR3pλq. Then there exist
C, γ ą 0 such that for c large enough, we have 0 ď v̆cnpxq ă Ce´γc for x P KczKc´1.

Proof of Lemma 38. We denote by u the minimizer of JR3pλq to which 1Kcn v̆cn
converges strongly and by µR3 the Euler–Lagrange parameter (2.10) associated
with this specific u. The Euler–Lagrange equation associated with JKcn ,λp1q —
solved by v̆cn — gives

´

´∆`
µR3

4

¯

v̆cn ď
´

|v̆cn |
2
3 `

µR3

4
´ cn

´2µcn

¯

v̆cn .

We now define Ωcn “ p1` εqKcnzBp0, αq where α is such that |u|
2
3 ď mint 1

2 ,
µR3
4 u

on R3zBp0, αq. Such α exists by the exponential decay of u at infinity. There-
fore, by Lemma 33, for any cn large enough, we have |v̆cn |2{3 ď min

 

1,
µR3
2

(

on
KcnzBp0, αq but also on Ωcn by periodicity of v̆cn and for any cn large enough
(depending on ε) in order to have

p1` εqKcn X
ď

kPLKzt0u

Bpcnk, αq “ H.

Together with Corollary 32, it gives on Ωcn , for cn large enough, that
´

´∆`
µR3

4

¯

v̆cn ď 0 and |v̆cn | ď 1.

We now define on R3zBp0, νq, for any ν ą 0, the positive function

fνpxq “ ν|x|´1e

?
µR3
2 pν´|x|q

which solves
´∆fν `

µR3

4
fν “ 0

on R3zBp0, νq and verifies fν “ 1 on the boundary BBp0, νq. On each p1 ` εqKcn ,
we define the positive function

f0pxq “
3
ÿ

j“1

cosh
´?

µR3
2 xj

¯

cosh
´?

µR3
4 p1` εqcn

¯

which solves
´∆f0 `

µR3

4
f0 “ 0

on p1` εqKcn and verifies 1 ď f0 ď 3 on the boundary B pp1` εqKcq. Denoting by
g the function g :“ f0 ` fα, we have for cn large enough that

´

´∆`
µR3

4

¯

pv̆cn ´ gq ď 0, on Ωcn and v̆cn ´ g ď 0, on BΩcn ,

hence the maximum principle implies that v̆cn ď g on Ωcn .
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On one hand, since the function f0 is even along each spatial direction of the cube
and increasing on r0; p1 ` εq cn2 q in those directions, we have that for any x P Kcn ,
so in particular on KcnzKcn´1, that

0 ă f0pxq ď f0

´cn
2
p1, 1, 1q

¯

ď 2
3
ÿ

j“1

e´ε
?
µR3
4 cn .

On the other hand, |x| ě pcn´1qm ą 0 for x P KcnzKcn´1, with m :“ min
BK
|x|, thus

0 ă fαpxq ď αe

?
µR3
2 pα`mqm´1pcn ´ 1q´1e´

?
µR3
2 mcn

on KcnzKcn´1. Hence there exist C ą 0 and γ :“
?
µR3
2 mint ε2 ;mu ą 0 such that

for cn large enough and any x P KcnzKcn´1, we conclude that

0 ď v̆cnpxq ď gpxq ă Ce´γc. �

We now conclude the proof of Lemma 37. We define χc P C8c pR3q, 0 ď χc ď 1,
χc ” 0 on R3zKc and χc ” 1 on Kc´1. Since |KczKc´1| ď |Kc| “ c3|K| for any
c ą 1 and by Lemma 38, we have that there exist 0 ă α ă γ such that

0 ď ||v̆cn ||
p
LppKcn q

´ ||χcn v̆cn ||
p
LppR3q

“

ż

Kcn zKcn´1

p1´ χcn
pq|v̆cn |

p

ď Cpe´pγcn |KcnzKcn´1| “ o
`

e´pαcn
˘

,

for any p P r2; 6s. Moreover, for any c ą 1, we have
ˇ

ˇ

ˇ

ˇ

ż

R3

χcv̆c∇χc ¨∇v̆c
ˇ

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ

ˇ

ż

R3

|v̆c|
2∇pχc∇χcq

ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

KczKc´1

|v̆c|
2
`

χc|∆χc| ` |∇χc|2
˘

hence

||∇pχcn v̆cnq||
2
L2pR3q “ ||χcn∇v̆cn ||

2
L2pKcn q

` ope´2αcnq ď ||∇v̆cn ||
2
L2pKcn q

` ope´2αcnq.

Consequently, there exists β ą 0 such that

JR3pλq ďJR3

ˆ

?
λχcnu

||χcnu||L2pR3q

˙

ď JKcn pv̆cnq ` ope
´βcnq “ JKcn pλq ` ope

´βcnq.

This concludes the proof of Lemma 37. �

We can now turn to the proof of the second-order expansion of the energy.

Proposition 39 (Second order expansion of the energy). We have the expansion

EKN ,N3λpcq “ c2JR3,N3λ

` c inf
u

"

1

2

ż

R3

ż

R3

|upxq|2|upyq|2

|x´ y|
dy dx´

ż

R3

|upxq|2

|x|
dx

*

` opcq, (5.15)

where the infimum is taken over all the minimizers of JR3,N3λ.

Proof of Proposition 39. In order to deal with the term DK, we first prove a con-
vergence result similar to what we did in Lemma 35 for term

ş

G|w|2.

Lemma 40. Let vc be such that the rescaled function v̆c “ c´3{2vcpc
´1xq verifies

1Kc v̆c ÝÑ
cÑ8

v

strongly in L2pR3q X L
12
5 pR3q, then

c´1DKpvc
2, vc

2q Ñ

ż

R3

ż

R3

v2pxqv2pyq

|x´ y|
dy dx “: DR3pv2, v2q.
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Proof of Lemma 40. We have

DR3pv2, v2q ´ c´1DKpv
2
c , v

2
c q

“ DR3pv2, v2 ´ 1Kc v̆
2
c q `DR3pv2 ´ 1Kc v̆

2
c ,1Kc v̆

2
c q

` c´1

ż

K

ż

K
v2
c pxq

`

|x´ y|´1 ´GKpx´ yq
˘

v2
c pyq dy dx.

By the Hardy–Littlewood–Sobolev inequality and the strong convergence of 1Kc v̆c
in L12{5pR3q, the two first terms of the right hand side vanish.

To prove that the last term vanishes too, we split the double integral over KˆK
into several parts depending on the location of x´ y.

We start by proving the convergence for x´ y P K. By Lemma 15,

c´1

ĳ

KˆK
x´yPK

v2
c pxq

ˇ

ˇ|x´ y|´1 ´GKpx´ yq
ˇ

ˇ v2
c pyqdy dx

ď
M

c

ĳ

KˆK
x´yPK

v2
c pxqv

2
c pyq dx dy ď

M

c
||vc||

4
L2pKq “

M

c
||v̆c||

4
L2pKcq ÝÑcÑ8

0.

When x´ y R K, we treat first the term due to | ¨ |´1. We have

c´1

ĳ

KˆK
x´yP2KzK

v2
c pxqv

2
c pyq

|x´ y|
dy dx ď 2c´1 ||vc||

4
L2pKq ÝÑcÑ8

0.

To deal with the remaining terms due to GK when x ´ y R K, we will use the
same notation Kσ as in the proof of Lemma 26. By (4.1), we therefore have to
prove, for σ P t´1, 0,`1u3zp0, 0, 0q, the vanishing of

ˇ

ˇ

ˇ
c´1

ĳ

KˆK
x´yPKσ

v2
c pxqGKpx´ yqv

2
c pyq dy dx

ˇ

ˇ

ˇ
À

ĳ

KcˆKc
x´yPc¨Kσ

v̆2
c pxqv̆

2
c pyq

|x´ y ´ cσ|
dy dx.

Let 0 ă ν ă 1
4 . Given that σ ‰ p0, 0, 0q, we have

tpx, yq P Kc ˆKc | x´ y P c ¨Kσ u XBp0, cνq ˆBp0, cνq “ H.

Hence, using the Hardy–Littlewood–Sobolev inequality, we obtain
ˇ

ˇ

ˇ

1

c

ĳ

KˆK
x´yPKσ

v2
c pxqGKpx´ yqv

2
c pyqdy dx

ˇ

ˇ

ˇ
À 2 ||v̆c||

2
L12{5pKczBp0,cνqq ||v̆c||

2
L12{5pKcq

and the right hand side vanishes when c Ñ 0 since ||v̆c||
2
L12{5pKczBp0,cνqq vanishes

and ||v̆c||
2
L12{5pKcq is bounded, both by the L12{5pR3q-convergence of 1Kc v̆c. This

concludes the proof of Lemma 40. �

Let wc be a sequence of minimizers to EKN ,N3λpcq. By Propositions 25 and 34,
the convergence rate (5.14), and Lemmas 37 and 40, we obtain

EKN ,N3λpcq “ c2JR3,N3λ ` c

ˆ

1

2
DR3p|Q|2, |Q|2q ´

ż

R3

|Qpxq|2

|x|
dx

˙

` opcq,

where Q is the minimizer of JR3,N3λ to which 1cn¨KN w̆cnp¨`xnq converges strongly.
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Let us now prove that Q must also minimize the term of order c. We suppose
that there exists a minimizer u of JR3,N3λ such that S puq ă S pQq, where

S pfq :“
1

2

ż

R3

ż

R3

|fpxq|2|fpyq|2

|x´ y|
dy dx´

ż

R3

|fpxq|2

|x|
dx.

By arguing as in Propositions 27 and 37, and defining, for a fixed small η P p0; 1q,
the smooth function χ P C80 pKN q verifying 0 ď χ ď 1, χ|p1´ηq¨KN ” 1, χ|R3zKN ” 0,
we can prove that there exists ν ą 0 such that

JKN ,c

˜

?
N3λ

upc¨qχ

||upc¨qχ||L2pKN q

¸

“ c2JR3,N3λ ` ope
´νcqcÑ8.

On the other hand, since
?
N3λχpc´1

¨q

||c3{2upc¨qχ||
L2pKN q

1c¨KNuÑ u strongly in L2pR3qXL4pR3q,

we apply Lemmas 35 and 40 to it and finally obtain

EKN ,c

˜

?
N3λ

rupc¨qχsp¨ ´Rj0q

||upc¨qχ||L2pKN q

¸

“ c2JR3,N3λ ` cS puq ` opcq

ă c2JR3,N3λ ` cS pQq ` opcq “ EKN ,N3λpcq,

leading to a contradiction which finally proves that Q minimizes S and thus con-
cludes the proof of Proposition 39. �

Theorem 2 is therefore proved combining the results of Proposition 25, Proposi-
tion 34, Proposition 36 and Proposition 39.

5.4. Proof of Theorem 8 on the number of minimizers. The arguments
developed in this section do not rely on what we have done in Section 5.3.

We can expand the functional EK,c around a minimizer wc as

EK,cpwc ` fq “ EK,λpcq ` xL̊
`
c f1, f1yL2pKq ` xL̊

´
c f2, f2yL2pKq ´ 2µc xwc, f1yL2pKq

´ µc ||f ||
2
L2pKq ` 2DKp<pwcf̄q,<pwcf̄qq ` op||f ||2H1pKqq, (5.16)

for f P H1
perpK,Cq, with f1 :“ <pfq, f2 :“ =pfq and where

L̊´c :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ` µc ´ G ` |wc|

2 ‹GK (5.17)

and
L̊`c “ ´∆`

7

3
cTF |wc|

4
3 ´

5

3
c|wc|

2
3 ` µc ´ G ` |wc|

2 ‹GK, (5.18)

where G is defined by

G :“
N3
ÿ

i“1

GKN p¨ ´Riq.

We have used here that
ż

|w ` h|p ´

ż

|w|p ´ p

ż

|w|p´2<pwh̄q

´
ppp´ 2q

2

ż

wp¨q‰0

|w|p´4|<pwh̄q|2 ´ p

2

ż

|w|p´2|h|2 “ o
´

||h||
2
H1

¯

. (5.19)

for any complex-valued w, h P H1 and 2 ď p ă 4 (see [56] for details).
Let us suppose that Conjecture 7 holds and that there exist two sequences wc

and νc of nonnegative minimizers to EKN ,N3λpcq concentrating around the same
nucleus at position R P K. Then, by Proposition 34, we have for 2 ď p ă `8 that

||w̆cnp¨ ` cnRq ´Q||LppKcn q ` ||ν̆cnp¨ ` cnRq ´Q||LppKcn q ÝÑ
nÑ`8

0
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for a subsequence cn. We define the real-valued fn :“ wcn´νcn , which verifies that
||f̆n||H2

perpKcn q uniformly bounded and, for cn ą 0, the orthogonality properties

xwcn ` νcn , fnyL2
perpKq “ xw̆cn ` ν̆cn , f̆nyL2

perpKcn q “ 0 (5.20)

and
xG pcn

´1¨q,∇ppw̆cn ` ν̆cnqf̆nqyL2
perpKcn q “ 0 (5.21)

Indeed, the fact that νc and wc are real-valued gives the orthogonality (5.20).
Moreover, the orthogonality property stated in the following lemma leads to (5.21).

Lemma 41. If wc is a real-valued minimizer to EK,λpcq, then wc is orthogonal to
G∇wc.

Proof of Lemma 41. As mentioned in Proposition 36, the four first terms of EK,c
are invariant under any space translations thus we have

EK,cpwcp¨ ` τqq “ EK,λpcq ´ 2τ ¨

ż

K
G<pwc∇w̄cq `Op|τ|2q.

Hence xG ,< pwc∇w̄cqyL2pKq “ 0 for any minimizer wc. Since G is real-valued, then
xwc,G∇wcyL2pKq “ 0 if wc is a real-valued minimizer. �

By property (5.21) together with DKph, hq ě 0 (Lemma 15) and

2xw̆n, f̆nyL2pKcn q ` ||f̆n||
2
L2pKcn q “ xw̆n ` ν̆n, f̆nyL2pKcn q “ 0,

we obtain from (5.16) that

EK,λpcnq “ EK,cnpνcnq ě EK,λpcnq ` cn
2xL`n f̆n, f̆nyKcn ` op||fn||

2
H1pKqq

where the operator L`n is defined on L2pKcnq by

L`n “ ´∆`
7

3
cTF |w̆c|

4
3 ´

5

3
|w̆c|

2
3 `

µcn
cn2

` cn
´2r´G ` |wcn |

2 ‹GKspcn
´1¨q. (5.22)

Therefore, by the ellipticity result xL`n f̆n, f̆nyL2pKcn q ě C||f̆n||
2
H1pKcn q

ě 0 of the
next proposition, which rely on Conjecture 7, we obtain (for cn large enough) that

0 ě Ccn
2||f̆n||

2
H1pKcn q ` op||fn||

2
H1pKqq “ Ccn

2||f̆n||
2
H1pKcn q ` opcn

2||f̆n||
2
H1pKcn qq

hence that fn ” 0 for c large enough, i.e. wcn ” νcn . This means that if Conjec-
ture 7 holds then there cannot be more than N3 nonnegative minimizers for c large
enough and, together with Proposition 36, this concludes the proof of Theorem 8.
We are thus left with the proof of the following non-degeneracy result.

Proposition 42. Let pwcqc be a sequence of minimizer to EK,λpcq and L`n the
associated operator as in (5.22). Then there exists C, c˚ ą 0 such that for any
c ą c˚ and any fn P H1pKc,Cq verifying the two orthogonality properties (5.20)
and (5.21), we have

@

L`n fn, fn
D

L2pKcn q
ě C ||fn||

2
H1pKcn q

. (5.23)

Proof of Proposition 42. Following ideas in [61], we define

αn :“ inf
fPH1

pKcq
xw̆n`ν̆n,fyL2pKcn q

“0

xG pcn
´1
¨q,∇ppw̆cn`ν̆cn qfqyL2pKcn q

“0

xL`n f, fyL2pKcn q

||f ||
2
H1pKcn q

and we will show that αn ą 0 for c large enough.



SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL 35

Lemma 43. Let pwcqc be a sequence of minimizer to EK,λpcq and Q the positive
minimizer of JR3,λ associated with the converging subsequence 1Kcn w̆cnp¨ ` cnRq.
Define as in (2.12) the operator L`µ associated with Q and, as in (5.22), L`n asso-
ciated with wcn . Let pfnqn be a uniformly bounded sequence of H1

perpKcnq then

xL`µ f, fyL2pR3q ď lim inf
nÑ8

xL`n fn, fnyL2pKcn q,

with f such that 1Kcn fnp¨ ` cnRq á f weakly converges in L2pR3q.

Proof of Lemma 43. Up to the extraction of a subsequence (that we will omit in
the notation), there exists f such that 1Kcn fnp¨ ` cnRq á f weakly in L2pR3q

because fnp¨ ` cnRq is uniformly bounded in H1pKcnq. Thus, by Lemma 30,

lim inf
cÑ8

||∇fn||L2pKcn q
“ lim inf

cÑ8
||∇fnp¨ ` cnRq||L2pKcn q

ě ||∇f ||L2pR3q .

Moreover, ||fn||H1pKcn q
is uniformly bounded by hypothesis thus

cn
´2xG pcn

´1¨qfn, fny ď cn
´ 1

2 ||G ||L2pKq ||fn||
2
L4pKcn q

ÝÑ
cÑ`8

0

and, by the same argument as the one to obtain (5.10), we have

cn
´2x|wcn |

2 ‹GKpcn
´1¨qfn, fny À cn

´1 ||w̆cn ||
2

L
12
5 pKcn q

||fn||
2

L
12
5 pKcn q

ÝÑ
cÑ`8

0.

Moreover, by Proposition 25, 1Kcn w̆np¨ ` cnRq strongly converges in LqpR3q for
2 ď q ă 6 hence for p “ 2

3 and p “ 4
3 we have

x|w̆cn |
p, |fn|

2yL2pKcn q “ x|w̆cnp¨` cnRq|
p, |fnp¨` cnRq|

2yL2pKcn q Ñ x|Q|p, |f |2yL2pR3q.

Finally, by Corollary 32 and weak convergence in L2pR3q of 1Kcn fnp¨ ` cnRq,

lim inf
nÑ8

µcn
cn2

||fn||
2
L2pKcn q

“ lim inf
nÑ8

µcn
cn2

||fnp¨ ` cnRq||
2
L2pKcn q

ě µ ||f ||
2
L2pR3q .

This concludes the proof of Lemma 43. �

We now prove that αn cannot tend to zero. Let suppose it does, then there exists
a sequence of fn P H1pKcnq such that ||fn||H1pKcn q

“ 1, xw̆cn ` ν̆cn , fnyL2
perpKcn q “ 0

and xG pcn´1¨q,∇ppw̆cn ` ν̆cnqf̆nqyL2
perpKcn q “ 0, with xL`n fn, fnyL2pKcn q

Ñ 0.
Thus, by the uniform boundedness of ||fn||H1pKcn q

, 1Kcn fn converges weakly in
L2pR3q X L6pR3q to a f which verifies xL`µ f, fyL2pR3q ď 0, by Lemma 43, and
||f ||H1pKcn q

ď 1. We claim that f also solves the orthogonality properties

xf,QyL2pR3q “ 0 and xf,Q∇| ¨ |´1yL2pR3q “ 0.

Indeed, on one hand we deduce from the uniqueness of Q ě 0 (given by the conjec-
ture), that 1Kcn pw̆cnp¨ ` cnRq ` ν̆cnp¨ ` cnRqq Ñ 2Q in L2pR3q X L6´pR3q. This,
together with (5.20) and the weak convergence of the fn’s leads to xf,QyL2pR3q “ 0.
On another hand, the uniqueness of Q gives also the L2pR3q strong convergence

1Kcn∇pw̆cnp¨ ` cnRq ` ν̆cnp¨ ` cnRqq Ñ 2∇Q P H1pR3q.

Thus, applying Lemma 35 on one hand to it and 1Kcn fnp¨ ` cnRq á f P H1pR3q

with the first set of conditions in Lemma 35 and, on the other hand, to 1Kcn pw̆cnp¨`

cnRq` ν̆cnp¨` cnRqq Ñ 2Q and 1Kcn∇fnp¨` cnRq á ∇f P L2pR3q — which comes
from Lemma 30 — with the second set of conditions, we obtain

xG pcn
´1¨`Rq,∇rpw̆cnp¨`cnRq`ν̆cnp¨`cnRqqf̆np¨`cnRqsyL2

perpKcn q Ñ 2

ż

R3

∇pfQq
| ¨ |

.

Finally, (5.21) implies that xf,Q∇| ¨ |´1yL2pR3q “ ´x∇pfQq, | ¨ |´1yL2pR3q “ 0 and
our claim is proved.
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As we will prove in Proposition 44, if Conjecture 7 holds then these two orthog-
onality properties imply that there exists α ą 0 such that

xL`µ f, fyL2pR3q ě α ||f ||
2
H1pR3q

hence f ” 0 due to xL`µ f, fyL2pR3q ď 0 obtained previously. Since the terms
involving a power of |wcn | converge and f ” 0, we have

op1q “
@

L`n fn, fn
D

L2pKcn q
“ ||∇fn||2L2pKcn q

` µ ||fn||
2
L2pKcn q

` op1q

hence both norms vanish, since µ ą 0, which means that ||fn||H1pKcn q
Ñ 0. This

contradicts ||fn||H1pKcn q
“ 1 and concludes the proof that αn cannot vanish, hence

that of Proposition 42. �

We are left with the proof of Proposition 44.

Proposition 44. If Conjecture 7 holds then there exists α ą 0 such that

xL`µ f, fyL2pR3q ě α ||f ||
2
H1pR3q , (5.24)

for all f P H1pR3q such that xf,QyL2pR3q “ 0 and xf,Q∇| ¨ |´1yL2pR3q “ 0.

The proof of this proposition uses the celebrated method of Weinstein [61] and
Grillakis–Shatah–Strauss [19]. The idea is the following. Using a Perron-Frobenius
argument in each spherical harmonics sector as in [61, 28, 32], one obtains that
the linearized operator L`µ has only one negative eigenvalue with (unknown) eigen-
function ϕ0 in the sector of angular momentum ` “ 0, and has 0 as eigenvalue
of multiplicity three with corresponding eigenfunctions BxiQ. On the orthogonal
of these four functions, L`µ is positive definite. In our setting, we have to study
L`µ on the orthogonal of Q and the three functions xi|x|´3Qpxq which are different
from the mentioned eigenfunctions. Arguing as in [61], we show below that the
restriction of L`µ to the angular momentum sector ` “ 1 is positive definite on
the orthogonal of the functions xi|x|´3Qpxq. The argument is general and actually
works for functions of the form Bxipηp|x|qqQpxq “ xi|x|

´1η1p|x|qQpxq where η is
any non constant monotonic function on R. On the other hand, the argument is
more subtle for Q in the angular momentum sector ` “ 0 and this is where we
need Conjecture 7.

Proof of Proposition 44. First we note that it is obviously enough to prove it for f
real valued but also that it is enough to prove

xL`µ f, fyL2pR3q ě α ||f ||
2
L2pR3q (5.25)

with α ą 0. Indeed, if f verifies (5.25) then, for any ε ą 0, we have

xL`µ f, fyL2 ě

ˆ

p1´ εqα` ε

ˆ

µ´
7

3
cTF ||Q||

4
3

L8 ´
5

3
||Q||

2
3

L8

˙˙

||f ||
2
L2 ` ε ||∇f ||2L2 ,

hence f verifies (5.24) too (for a smaller α ą 0).
Since Q is a radial function, the operator L`µ commutes with rotations in R3 and

we will therefore decompose L2pR3q using spherical harmonics: for any f P L2pR3q,

fpxq “
8
ÿ

`“0

ÿ̀

m“´`

fm` prqY
m
` pΩq,

where x “ rΩ with r “ |x| and Ω P S2. This yields the direct decomposition

L2pR3q “

8
à

`“0

Hp`q
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and L`µ maps into itself each

Hp`q :“ L2pR`, r2 drq b spantY m` u
`
m“´`.

Using the well-known expression of ´∆ on Hp`q, we obtain that

L`µ “
8
à

`“0

L`µ,`

where the L`µ,`’s are operators acting on L2pR`, r2 drq given by

L`µ,` “ ´
d2

dr2
´

2

r

d
dr
`
`p`` 1q

r2
`

7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3 ` µ.

We thus prove inequality (5.25) by showing that there exists α ą 0 such that
for each ` the inequality holds for any f P Hp`q XH1pR3q verifying xf,Qy “ 0 and
xf,Q∇| ¨ |´1yL2pR3q “ 0.

Arguing as in [28], we have first the following result.

Lemma 45 (Perron–Frobenius property of the L`µ,`). Each L`µ,` has the Perron–
Frobenius property: its lowest eigenvalue eµ,` is simple and the corresponding eigen-
function ϕ`prq is positive.

Proof for the sector ` “ 1. We start with the case ` “ 1 and prove that

α1 :“ inf
fPHp1qXH1

pR3
q

xf,Q∇|¨|´1
yL2pR3q“0

xL`µ f, fyL2pR3q

||f ||
2
L2pR3q

ą 0. (5.26)

Since Q is radial, we have for i “ 1, 2, 3, that

BxiQpxq “ Q1prq
xi
r
P Hp1q.

Moreover, by the non-degeneracy result of Theorem 5, we know that BxiQ is an
eigenfunction of L`µ associated with the eigenvalue 0 hence Q1prq is an eigenfunction
of L`µ,1 associated with the eigenvalue eµ,1 “ 0. Therefore, the fact that Q1prq ă 0

(as proved in Theorem 4) implies, using the Perron-Frobenius property verified by
L`µ,1, that eµ,1 “ 0 is the lowest eigenvalue of L`µ,1 and is simple with ´Q1 ą 0 the
associated eigenfunction. Consequently, we have for any f P Hp1q that

xL`µ f, fyL2pR3q “

1
ÿ

m“´1

xL`µ,1f
mprq, fmprqyL2pR`,r2 drq ě 0

and in particular that α1 ě 0.
We thus suppose that α1 “ 0 and prove it is impossible. Let fn be a minimizing

sequence to (5.26) with ||fn||L2pR3q “ 1. One has

||∇fn||2L2pR3q ď xL
`
µ fn, fnyL2pR3q `

5

3
||Q||

2
3

L8pR3q

and consequently the sequence fn is bounded in H1pR3q. We denote by f its weak
limit in H1pR3q, up to a extraction of a subsequence, which is in Hp1q. We have

0 ď xL`µ f, fyL2pR3q ď lim infxL`µ fn, fnyL2pR3q “ α1 “ 0,

where the second inequality is due to

lim inf ||∇fn||2L2pR3q ě ||∇f ||
2
L2pR3q , lim inf ||fn||

2
L2pR3q ě ||f ||

2
L2pR3q ,

µ ą 0 and to x|Q|pfn, fnyL2pR3q Ñ x|Q|pf, fyL2pR3q, for p “ 2
3 and p “ 4

3 , obtained
by a similar argument to the one in proof of Lemma 43. It implies that

xL`µ f, fyL2pR3q “ 0
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hence, f “
ř3
i“1 ciBxiQ by the Perron-Frobenius property and since tx1

r ,
x2

r ,
x3

r u is
an orthogonal basis of spantY ´1

1 , Y 0
1 , Y

1
1 u. However, since xfn, Q∇| ¨ |´1yL2pR3q “ 0,

we have for any i “ 1, 2, 3 after passing to the weak limit that
ż

R3

xi
|x|3

fpxqQpxq dx “ 0.

We then remark that, since Q is radial, we have
ż

R3

xi
|x|3

QpxqBxjQpxq dx “
ż

R3

xjxi
|x|4

QpxqQ1pxq dx “ 0, @i ‰ j.

This gives, for i “ 1, 2, 3, that

0 “

ż

R3

xi
|x|3

fpxqQpxq dx “ ci

ż

R3

xi
2

|x|4
QpxqQ1pxq dx

but Q ą 0 and Q1 ă 0, hence ci “ 0 thus f ” 0. We thus have obtained, if α1 “ 0,
that any minimizing sequence fn to (5.26) converges weakly to 0 in H1pR3q. This
gives x|Q|pfn, fnyL2pR3q Ñ 0 and

||∇fn||2L2pR3q ` µ ||fn||
2
L2pR3q “ xL

`
µ fn, fnyL2pR3q ` op1q Ñ α1 “ 0

therefore fn Ñ 0 strongly in H1pR3q, because µ ą 0, which contradicts the fact
that ||fn||L2pR3q “ 1. We have thus proved that α1 ą 0.

Proof for the sector ` ě 2. We now deal with the cases ` ě 2 and prove that
there exists α ą 0, independent of `, such that

xL`µ,`ϕ,ϕyL2pR`,r2 drq ě α ||ϕ||
2
L2pR`,r2 drq (5.27)

for any ϕ P L2pR`, r2 drq. Since for such ϕ we have

xL`µ,`ϕ,ϕyL2pR`,r2 drq “ xL
`
µ,`´1ϕ,ϕyL2pR`,r2 drq ` 2` ||ϕ{r||

2
L2pR`,r2 drq , (5.28)

it is then sufficient to prove (5.27) in the case ` “ 2 in order to prove it for all ` ě 2.
For ` “ 2, we can assume that inf σpL`µ,2q is attained because, otherwise,

V :“
7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3

being bounded and vanishing as r Ñ8, it is well-known that σpL`µ,2q “ σesspL
`
µ,2q “

rµ;`8q and (5.27) follows. We thus have, by (5.28) and L`µ,1 ě 0, that the eigen-
value eµ,2 “ inf σpL`µ,2q and its associated eigenfunction ϕ2 ı 0 verify that

eµ,2 “ inf σpL`µ,2q ě 2
||ϕ2{r||

2
L2pR`,r2 drq

||ϕ2||
2
L2pR`,r2 drq

ą 0

and (5.27) is therefore proved. It concludes the case ` ě 2.

Proof for the sector ` “ 0. We conclude with the case ` “ 0 and prove that for
any f P Hp0q, we have

α0 :“ inf
fPHp0qXH1

pR3
q

xf,QyL2pR3q“0

xL`µ f, fyL2pR3q

||f ||
2
L2pR3q

ą 0. (5.29)

We already know that α0 ě 0 becauseQ is a minimizer. Indeed, for f P H1pR3q such
that xf,QyL2pR3q “ 0, through a computation similar to (5.16) and using (2.10),
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(3.5), (5.19) and that Q is a minimizer of JR3pλq, we obtain

JR3pQq ďJR3

ˆ

Q` εf

||Q` εf ||2
||Q||2

˙

“ JR3pQq ` ε2pxL`µ<f,<fyL2pR3q ` xL
´
µ=f,=fyL2pR3qq ` opε

2q

which implies in particular that xL`µ f, fyL2pR3q ě 0 for as soon as xf,QyL2pR3q “ 0.
We thus suppose α0 “ 0 and prove it is impossible. Let fn be a minimizing

sequence to (5.29) with ||fn||L2pR3q “ 1. As in the proof of case ` “ 1 above, fn is in
fact bounded in H1pR3q and denoting by f P Hp0q its weak limit in H1pR3q, up to
a subsequence, we have xL`µ f, fyL2pR3q “ 0. This leads, to L`µ f “ βQ thus, using
that L`µ is inversible, to f “ βpL`µ q

´1Q. Consequently,

0 “ xf,QyL2pR3q “ βxQ, pL`µ q
´1QyL2pR3q

hence β “ 0 since xQ, pL`µ q´1QyL2pR3q ă 0 by Conjecture 7. We have obtained
f ” 0 which is absurd as before. �

This concludes the proof of Theorem 8. �
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