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SYMMETRY BREAKING IN THE PERIODIC
THOMAS-FERMI-DIRAC-VON WEIZSACKER MODEL

JULIEN RICAUD

ABsTrRACT. We consider the Thomas—Fermi—Dirac—von Weizsicker model for
a system composed of infinitely many nuclei placed on a periodic lattice and
electrons with a periodic density. We prove that if the Dirac constant is small
enough, the electrons have the same periodicity as the nuclei. On the other
hand if the Dirac constant is large enough, the 2-periodic electronic minimizer
is not 1-periodic, hence symmetry breaking occurs. We analyze in detail the
behavior of the electrons when the Dirac constant tends to infinity and show
that the electrons all concentrate around exactly one of the 8 nuclei of the unit
cell of size 2, which is the explanation of the breaking of symmetry. Zooming
at this point, the electronic density solves an effective nonlinear Schrédinger
equation in the whole space with nonlinearity u”/3 — u%3. Our results rely
on the analysis of this nonlinear equation, in particular on the uniqueness and
non-degeneracy of positive solutions.
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1. INTRODUCTION

Symmetry breaking is a fundamental question in Physics which is largely dis-
cussed in the literature. In this paper, we consider the particular case of electrons

Date: March 16, 2017.

The author is grateful to M. Lewin for helpful discussions and advices. The author acknowl-
edges financial support from the European Research Council under the European Community’s
Seventh Framework Program (FP7/2007-2013 Grant Agreement MNIQS 258023).

1



2 J. RICAUD

in a periodic arrangement of nuclei. We assume that we have classical nuclei lo-
cated on a 3D periodic lattice and we ask whether the quantum electrons will
have the symmetry of this lattice. We study this question for the Thomas—Fermi—
Dirac—von Weizsécker (TFDW) model which is the most famous non-convex model
occurring in Orbital-free Density Functional Theory. In short, the energy of this
model takes the form

3 5 3 4 1
[ wval 4 fere | o =Ge| ot | Gepo- [ 6o )
K 5 K 4 K 2 K K

where K is the unit cell, p is the density of the electrons and G is the periodic
Coulomb potential. The non-convexity is (only) due to the term —%cSp%. We
refer to [18, [I3] 5, 4, [57] for a derivation of models of this type in various settings.

We study the question of symmetry breaking with respect to the parameter
¢ > 0. In this paper, we prove for ¢ > 0 that:

e if ¢ is small enough, then the density p of the electrons is unique and has
the same periodicity as the nuclei, that is, there is no symmetry breaking;

e if ¢ is large enough, then there exist 2-periodic arrangements of the electrons
which have an energy that is lower than any 1-periodic arrangement, that
is, there is symmetry breaking.

Our method for proving the above two results is perturbative and does not
provide any quantitative bound on the value of ¢ in the two regimes. For small ¢
we perturb around ¢ = 0 and use the uniqueness and non degeneracy of the TFW
minimizer, which comes from the strict convexity of the associated functional. This
is very similar in spirit to a result by Le Bris [27] in the whole space.

The main novelty of the paper, is the regime of large c¢. The p% term in
favours concentration and we will prove that the electronic density concentrates at
some points in the unit cell K in the limit ¢ — oo (it converges weakly to a sum
of Dirac deltas). Zooming around one point of concentration at the scale 1/c we
get a simple effective model posed on the whole space R? where all the Coulomb
terms have disappeared. The effective minimization problem is of NLS-type with
two subcritical power nonlinearities:

Jes(A) = inf J|W|2+§CTFJ |v|%—§f wEb (12
veH(R?) R3 5 R3 4 Jps

2 —
0112 2 gy =

The main argument is that it is favourable to put all the mass of the unit cell at
one concentration point, due to the strict binding inequality

Jra ()\) < Jps ()\/) + Jpa ()\ - )\/)

that we prove in Section[3.1] Hence for the 2-periodic problem, when c is very large
the 8 electrons of the double unit cell prefer to concentrate at only one point of
mass 8, instead of 8 points of mass 1. This is the origin of the symmetry breaking
for large c. Of course the exact same argument works for a union of n? unit cells.

Let us remark that the uniqueness of minimizers for the effective model Jgs(\)
in is an open problem that we discuss in Section We can however prove
that any non-negative solution of the corresponding nonlinear equation

*AQ;L + CTFQ[L% - Qu% = *,UQ;L

is unique and nondegenerate (up to translations). We conjecture (but are unable
to prove) that the mass SQ,LQ is an increasing function of pu. This would imply
uniqueness of minimizers and is strongly supported by numerical simulations. Un-
der this conjecture we can prove that there are exactly 8 minimizers for ¢ large
enough, which are obtained one from each other by applying 1-translations.
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The TFDW model studied in this paper is a very simple spinless empirical the-
ory which approximates the true many-particle Schréodinger problem. The term
—%c S p% is an approximation to the exchange-correlation energy and c is only deter-
mined on empirical grounds. The exchange part was computed by Dirac [9] in 1930
using an infinite non-interacting Fermi gas leading to the value cp := {/6g—1m—1,
where ¢ is the number of spin states. For the spinless model (i.e. ¢ = 1) that we are
studying, this gives ¢p &~ 1.24, which corresponds to the constant 0.93 generally
appearing in the literature, namely, %CD ~ 0.93. It is natural to use a constant
¢ > cp in order to account for correlation effects. On the other hand, the famous
Lieb-Oxford inequality [35, 42, 26, 43] suggests to take 2cp < 1.64. It has been
argued in [50, 62, 29] that for the classical interacting uniform electron gas one
should use the value %c ~ 1.44 which is the energy of Jellium in the body-centered
cubic (BCC) Wigner crystal and is implemented in the most famous Kohn-Sham
functionals [51]. However, this has recently been questioned in [3I] by Lewin and
Lieb. In any case, all physically reasonable choices lead to ¢ of the order of 1.

We have run some numerical simulations presented later in Section [2.3] using
nuclei of (pseudo) charge Z = 1 on a BCC lattice of side-length 4A. We found
that symmetry breaking occurs at about ¢ ~ 3.3. More precisely, the 2-periodic
ground state was found to be 1-periodic if ¢ < 3.30 but really 2-periodic for ¢ 2
3.31. The numerical value ¢ ~ 3.3 (which corresponds to %c ~ 2.48) obtained as
critical constant in our numerical simulations is above the usual values chosen in the
literature. However, it is of the same order of magnitude and this critical constant
could be closer to 1 for other periodic arrangements of nuclei.

There exist various works on the TFDW model for N electrons on the whole
space R®. For example, Le Bris proved in [27] that there exists ¢ > 0 such that
minimizers exist for N < Z + ¢, improving the result for N < Z by Lions [46]. Tt
is also proved in [27] that minimizers are unique for ¢ small enough if N < Z. Non
existence if N is large enough and Z small enough has been proved by Nam and
Van Den Bosch in [48].

On the other hand, symmetry breaking has been studied in many situations. For
discrete models on lattices, the instability of solutions having the same periodicity as
the lattice is proved in [14} [49] while [22], 37 23| [40], 89}, [41] T2}, [T5] prove for different
models (and different dimensions) that the solutions have a different periodicity
than the lattice. On finite domains and at zero temperature, symmetry breaking
is proved in [54] for a one dimensional gas on a circle of finite length and in [53]
on toruses and spheres in dimension d < 3. On the whole space R3, symmetry
breaking is proved in [2], namely, the minimizers are not radial for N large enough.
t The paper is organized as follows. We present our main results for the periodic
TFDW model and for the effective model, together with our numerical simulations,
in Section [2| In Section 3] we study the effective model Jgs(\) on the whole space.
Then, in Section[d, we prove our results for the regime of small ¢. Finally, we prove
the symmetry breaking in the regime of large ¢ in Section

2. MAIN RESULTS

For simplicity, we restrict ourselves to the case of a cubic lattice with one atom

of charge Z = 1 at the center of each unit cell. We denote by Zk our lattice which

is based on the natural basis and its unit cell is the cube K := [f%; %)3, which

contains one atom of charge Z = 1 at the position R = 0. The Thomas—Fermi-
Dirac—von Weizsécker model we are studying is then the functional energy

3 w3 s 1
Seelw) = | (VP + Zerr [ ful¥ = e [ Juld + 3Du(ul, o) - | Gelul?
K 5 K 4 K 2 K
2.



4 J. RICAUD

on the unit cell K. Here

Dx(f,9) = JK JK f(z)Gx(z —y)g(y) dy du,

where Gk is the K-periodic Coulomb potential which satisfies

— AGk = 4n ( D 6k — 1) (2.2)

ke %k
and is uniquely defined up to a constant that we fix by imposing miﬂrg Gx(z) = 0.
xe

We are interested in the behavior when ¢ varies of the minimization problem

E]K,)\(C) = lIllf é”K,C(w), (23)
weH,,, (K)
Il 2 ) =

where the subscript per stands for K-periodic boundary conditions. We want to
emphasize that even if the true K-periodic TFDW model requires that A\ = Z
(see [7]), we study it for any A in this paper.

Finally, for any N € N\{0}, we denote by N -K the union of N3 cubes K forming

the cube N - K = [—ﬂ' 5)3. The N3 charges are then located at the positions

272
N +1 N +1 N +1
{Rj}1<j<N3 = ny — 77712— B , N3 — B

n; e Nn [1;N]}.

2.1. Symmetry breaking. The main results presented in this second part of the
thesis are the two following theorems.

Theorem 1 (Uniqueness for small ¢). Let K be the unit cube and crp, A be two
positive constants. There exists 6 > 0 such that for any 0 < ¢ < §, the following
holds:

i. The minimizer w, of the periodic TFDW problem Ek x(c) in (2.3 is unique,
up to a phase factor. It is non constant, strictly positive, in ngT(K) and the
unique ground-state eigenfunction of the K-periodic self-adjoint operator

1 2
H.:= —A+crplwe|? — clw:|3 — Gg + (|wc|2 * Gk).

it. This K-periodic function w, is the unique minimizer of all of the (N -K)-periodic
TFDW problems En.x nsx(c), for any integer N > 1.

Theorem 2 (Symmetry breaking for large ¢). Let K be the unit cube, crp, A be
two positive constants, and N = 2 be an integer. For c large enough, symmetry
breaking occurs:

EN~]K,N3)\(C) < N3EK’,\(C).
Precisely, the periodic TFDW problem En.x n3x(c) on N - K admits (at least) N3
distinct non-negative minimizers which are obtained one from each other by applying
translations of the lattice L. Denoting w. any one of these minimizers, there exists
a subsequence c,, — o0 such that

Cn n—0o0

strongly in LY (R?) for 2 < p < 40, with R the position of one of the N charges

loc
in N - K. Here Q is a minimizer of the variational problem for the effective model

3 3
Jrs (N3A) = inf f \vu\2+chFf m%—ff w3 b, (2.5
ueH(R?) R3 ) R3 4 Jps

||“||2Lz(R3):N3>‘
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which must additionally minimize

SN 1nf{ JR'% fw |$| *|v = Ay = J]Rf‘ |vg|)|2 da:} ’ (26)

where the minimization is performed among all possible minimizers of (2.5). Fi-
nally, when ¢ — 0, En.x nsx(c) has the expansion

Enx nea(c) = Jps(N3X) + eS(N3A) + o(c). (2.7)

will be proved in Section [4] while Section [ will be dedicated to the
proof of A natural question that comes with is to know if
¢ needs to be really large for the symmetry breaking to happen. We present some
numerical answers to this question later in Section Notice that the inequality

Exx nea(c) < N*Eg\(c) in is an immediate consequence of the first

order expansion in ([2.7)

EN-K,N?’)\(C) = CQJRS <N3)\) + 0(C2>
which is proved in [Proposition 24] since one has Jgs(N3)\) < N3.Jgs()\) as it will
be proved in [Proposition 12| of Section [3]

Remark (Generalizations). For simplicity we have chosen to deal with a cubic
lattice with one nucleus of charge 1 per unit cell, but the exact same results hold in
a more general situation. We can take a charge Z larger than 1, several charges (of
different values) per unit cell and a more general lattice than Z3. More precisely,
the K-periodic Coulomb potential G appearing in , in both D and SG|w|2,

should then verify
—AGg = 4r ( D ok — |K|>

ke.ﬂK

and the term §. Gx|w|* should be replaced by SK i 2:Gx (- — Ry)|w|? where z; and
R; and the charges and locations of the Nq nuclei in the unit cell K.

Finally, in denoting by z; := maxi<i<n,{2i} > 0 the largest charge
inside K and by Ny > 1 the number of charges inside K that are equal to zy, the
location R would now be one of the NyK? positions of charges z, — which means
that the minimizer concentrate on one of the nuclei with largest charge — and S
would be replaced by

S0 1nf{ fRs JRJ |33|—|UZU| = Ay dr JRS |vg|)2 dx}

2.2. Study of the effective model in R®. We present in this section the effective
model in the whole space R3. We want to already emphasize that the uniqueness
of minimizers for this problem is an open difficult question as we will explain later
in this section.

The functional to be considered is

3 10 3 8
wes Frol) = | VuP o+ Zore | ¥ =3 [ (2.
3 R3

and the minimization problem ([2.5)) is
Jr3 ()\) = inf Irs(u). (2.9)

ueH' (R?)

2 —
HUHLQ(RS)*)‘

The first important result for this effective model is about the existence of min-
imizers and the fact that they are radial decreasing. We state those results in the
following theorem, the proof of which is the subject of Section
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Theorem 3 (Existence of minimizers for the effective model in R3). Let crp >0
and A > 0 be fixed constants.

i. There exist minimizers for Jgs(N). Up to a phase factor and a space translation,
any minimizer Q is a positive radial strictly decreasing H?(R3)-solution of

4 2
—AQ + crr|Q3Q — [QFQ = —pQ. (2.10)
Here —p < 0 is simple and is the smallest eigenvalue of the self-adjoint operator

Hg = —A+crp|Ql3 — Q3.
1. We have the strictly binding inequality

Vo< XN <), Jrs(X) < Jrs(N) + Jrz (A — ). (2.11)

iii. For any minimizing sequence (Qn)n of Jrs(N\), there exists {x,} = R® such that
Qn(-— ) strongly converges in HY(R3) to a minimizer, up to the extraction of
a subsequence.

An important result about the effective model on R? is the following result
giving the uniqueness and the non-degeneracy of positive solutions @ to the Euler—
Lagrange equation for any admissible ¢ > 0. The proof of this theorem is
the subject of Section [3.2]

Theorem 4 (Uniqueness and non-degeneracy of positive solutions). Let cyp > 0.
If %CTF/.L > 1, then the Euler—Lagrange equation (2.10)) has no non-trivial solution
in HY(R3). For 0 < %CTF/L < 1, the Euler-Lagrange equation (2.10) has, up to
translations, a unique non-negative solution @, # 0 in H'(R3). This solution is

radial decreasing non-degenerate: the linearized operator

7 5
L= A+ gerrlQul® = 51Qu1F + (2.12)
with domain H?(R?®) and acting on L*(R3) has the kernel
Ker L = span {0z, Qu, 02, Qu, 02, Q) - (2.13)

Note that the condition %CTF/J, > 1 comes directly from Pohozaev’s identity,
see e.g. [3].

Remark. The linearized operator L, for the equation (2.10) at Q,, is

2 1 -
Lyh = =Ah+ (err|Qul? = 1Qul¥) h+ (3cTF|QM|é‘ - 3|QM|?) (h+ 1) + ph.

Note that it is not C-linear. Separating its real and imaginary parts, it is convenient

to rewrite it as N
L 0
— Iz
Ly ( 0 L) ’

14

where L} is as in (2.12)) while L}, is the operator
_ 4 2
L“ =7A+CTF|Q#|3 *|Q#|3 +,LL=HQH+[L. (2.14)
The result about the lowest eigenvalue of the operator Hg in exactly

gives that Ker L, = span {Q,,}. Hence, implies that

Ker L# = Span { <C§M> , (amelt) , (amonlt> , (613()@#) } .

The natural step one would like to perform now is to deduce the uniqueness of
minimizers from the uniqueness of Euler-Lagrange positive solutions as it has been
done for many equations [34] [60, 28] [10] 11, 55]. An argument of this type relies
on the fact that p— M(p) := ||QHH2LQ(R3) is a bijection, which is an easy result for
models with trivial scalings like the nonlinear Schrédinger equation with only one
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power nonlineartity. However, for the TFDW problem, we are unable to prove that
this mapping is a bijection.

In [24], the authors study extensively a similar problem with another non-
linearity including two powers, namely the cubic-quintic NLS on R® which is asso-
ciated with the energy

1 o 1 1y
— — — = . 2.15
J}W Q\Vu\ + 6|u| 4|u| ( )

They discussed at length the question of uniqueness of minimizers and could also not
prove it for their model. An important difference between and TFDW model
is that the map p — M (u) is not a bijection in their case. But it is conjectured to
be one if one only retains stable solutions [24, Conjecture 2.6].

If we cannot prove uniqueness of minimizers, we can nevertheless prove that for
any mass A > 0 there is a finite number of u’s in (0; ﬁ) for which the unique
positive solution to the associated Euler—Lagrange problem has a mass equal to
A and, consequently, that there is a finite number of minimizers of the TFDW

problem for any given mass constraint.

Proposition 5. Let A\ > 0 and crp > 0. There exist finitely many wu’s for which
the mass M(p) of Q,, is equal to A.

Proof of |Proposition 5. By [Proposition 3| we know that for any mass constraint
A € (0, +00), there exist at least one minimizer to the corresponding Jgs(\) mini-
mization problem. Therefore, for any A € (0, +o0), there exists at least one u such
that the unique positive solution @), to the associated Euler-Lagrange equation is
a minimizer of Jg3(\) and thus is of mass M(u) = A. We therefore obtain that

(0' L) 5 p— M(u) € (0;+0) is onto. Moreover, this map is real-analytic

) 6der R
since the non-degeneracy in and the analytic implicit function theorem
give that p +— @, is real analytic. The map M being onto and real-analytic, then

for any X € (0; +00) there exists a finite number of u’s, which are all in (0; 64105;F ),

such that the mass M (p) of the unique positive solution @, is equal to A. O

We have performed some numerical computations of the solution @, and the
results strongly support the uniqueness of minimizers since M was found to be
increasing, see Figure [I]

108k

10710F

1071 F

1 0—22 L L L L L L L L L L L L L L L L L L L L L
0.00 0.05 0.10 0.15 0.20

L
0.25

) 64CTF

FIGURE 1. Plot of > In (M (u)) on (O' 15 )
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Conjecture 6. The function
15
0; — (0; +0
<’64ch> (0; +20)
= M(p)

is strictly increasing and one-to-one. Consequently, for any 0 < p <

(2.16)

15
[ there

ezists a unique minimizer Q,, of Jgs(\), up to a phase and a space translation.

Remark. Following the method of [24], one can prove there exist C,C" > 0 such
3 3
that M(p) = Cp> + o(p?) o+ and M(p) = C'(pn — pa) ™ + 0 (1 — ps) )

15
where py = gro—-

H— g,

This conjecture on M is related to the stability condition on (L;})~" that appears
in works like [61], 19]. Indeed, differentiating the Euler-Lagrange equation (2.10)
with respect to p, we obtain that L;r( d(ﬁ“) = —(@, which thus leads to

& for-+(an 22) st )

Thus our conjecture is that (Q,, (Lf[)f1 Q> <0forall 0<pu< 5~ and this

64CT F
corresponds to the fact that all the solutions are local strict minimizers.

Theorem 7. If holds then, for c large enough, there are exactly N3

non-negative minimizers for the periodic TFDW problem En .k nsa(c).

The proof of is the subject of Section

2.3. Numerical simulations. The occurrence of symmetry breaking is an impor-
tant question in practical calculations. Concerning the general behavior of DFT on
this matter, we refer to the discussion in [59] and the references therein.

Our numerical simulations have been run using the software PROFESS v.3.0 [§]
which is based on pseudo-potentials (see below): we have used a (BCC)
Lithium cristal of side-length 4A (in order to be physically relevant as the two
first alkali metals Lithium and Sodium organize themselves on BCC lattices with
respective side length 3.51A and 4.29A) for which one electron is treated while the
two others are included in the pseudo-potential, simulating therefore a lattice of
pseudo-atoms with pseudo-charge Z = A = 1. The relative gain of energy of 2-
periodic minimizers compared to 1-periodic ones is plotted in Figure 2} Symmetry
breaking occurs at about ¢ ~ 3.30 which corresponds to %c ~ 2.48. More precisely,
minimizing the 2 - K problem and the 1 -K problem result in the same minimum
energy (up to a factor 8) if ¢ < 3.30 while, for ¢ 2 3.31, we have found (at least)
one 2-periodic function for which the energy is lower than the minimal energy for
the 1- K problem.

. ‘ ‘ ‘ T T] . T T T T T J T o
0%]e ~ o%e e o . 1
—2% . 1 —0.02%| . -
—ann | —0.04%] ° -
6%} N L N

—0.06 %[~ —
—8%[ | | | | el T I R SO RN S SO .

0 1 2 3 4 5 3.26 3.28 3.3 3.32 3.34
(a) 0<e<5h (b) Zoom: 3.25 < ¢ < 3.35

8Ek, A (c)—Fax,sx(c)

FIGURE 2. Relative gain of energy SE ()
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(a) ¢ =3.35¢cp ~ 3.30 (b) ¢ = 3.36¢cp ~ 3.31 (c) ¢ =3.50cp ~ 3.45

FIGURE 3. Electron density for Z = 1 and length side 4A. Same
"dark-blue to white to dark-red" density scale for (a), (b) and (c).
(a) The computed 2-periodic minimizer is still 1-periodic.
(b-c) The computed 2-periodic minimizer is not 1-periodic.

The plots of the computed minimizers presented in Figure [3] visually confirm
the symmetry breaking. They also suggest that the electronic density is very much
concentrated. However, since the computation uses pseudo-potentials, only one
outer shell electron is computed and the density is sharp on an annulus for these
values of c.

The numerical value of the critical constant %c ~ 2.48 obtained in our numerical
simulations is outside the usual values %c € [0.93;1.64] chosen in the literature.
However, it is of the same order of magnitude and one cannot exclude that symmetry
breaking would happen inside this range for different systems, meaning for different
values of Z and/or of the size of the lattice.

Remark 8 (Pseudo-potentials). The software PROFESS v.3.0 that we used in our
simulations is based on pseudo-potentials [21]. This means that only n outer shell
electrons among the N electrons of the unit cell are considered. The N —n other
ones are described through a pseudo-potential, together with the nucleus. Mathe-
matically, this means that we have A = n and that the nucleus-electron interaction
—N §, Gk|w|? is replaced by — . Gps|w|?* where the K-periodic function Gps(x) be-
haves like n/|x| when |x| — 0. All our results apply to this case as well. More
precisely, we only need that Gps(x) — n/|z| is bounded on K. We emphasize that
the electron-electron interaction Dg is not changed by this generalization, and still
inwvolves the periodic Coulomb potential G .

3. THE EFFECTIVE MODEL IN R3

This section is dedicated to the proof of [Theorem 3| and [Theorem 4 We first
give a lemma on the functional #gs, which has been defined in (2.8).

Lemma 9. For crp, A > 0 and u € HY(R3) such that ||u||§ = A\, we have

15 A

Srs(u) = ||VUH22(]R3) T Gdorp (3.1)

Proof of [Lemma g By Hoélder’s inequality

2u(6—1 — 26(pu—1
ull 32070 < X0 uf 52 Y V1<p<o<3,
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where, for shortness, we write |-[|,, instead of |||, gs), we conclude that
3 3. .5 3¢ s B \2 2502 15)

= 2z = = | (ullf - - 5| =~ '

4 3 5 3 8CTF 64CTF 64CTF

5 CTF [l

00

1
1

Wzl

O

We deduce from it some preliminary properties for the effective model in R3.

Lemma 10 (A priori properties of Jg3(\)). Let erp and A be positive constants.
We have

- —— < Jgrs(A) <0. (3.2)
The function, X\ — Jgs(\) is continuous on [0; +00).

Proof of[Lemma 10, The negativity of Jgs()) is obtained by taking v large enough
in the computation of /Rs(l/’%u(V*L)). Lemma 9| gives the lower bound in (3.2)),
which one implies the continuity at A = 0. Moreover, after scaling, we have

Jes(N) = A inf {A7F |V J 5, 3 ) f
re(A) = ) IVellzegs) + gerr HUHL%(R% 4 HUHL%(W)
el 2 gy =1

= F(A=2/3)
where F' is concave on [0;+o0) hence continuous on (0;+00). This shows that
A — Jgs(A) is continuous as well. O

3.1. Proof of We divide the proof into several steps for clarity.

Step 1: Large binding inequality.
Lemma 11. Let cprp = 0 be a constant. Then
Jrs(A) < Jps(\) + Jrs (A — N, VoSN <A (3.3)
Consequently, \ — Jgs(\) is strictly decreasing on [0; 4+00).
Proof of [Lemma 11 The inequality is obtained by computing Zgs(¢ + X)

where ¢ and x are two bubbles of disjoint compact supports and of respective
masses X' and A — ). The strict monotonicity follows by O

Remark. The strict inequality in (3.3), which is important for applying Lions’
concentration-compactness method, actually holds and is proved in[Proposition 13

Step 2: For any )\ > 0, Jgs(\) has a minimizer. This is a classical result
to which we will only give a sketch of proof (for a detailed proof, see [56]). First,
by rearrangement inequalities, we have Zgs(v) > Zgs(v¥) for every v € H!(R?).
Therefore, one can restrict the minimization to non-negative radial decreasing func-
tions. By the compact embedding H}, ,(R?) — LP(R?), for 2 < p < 6, we find

JR3 ()\/) < /R3 (Q) S hmlnf /Rs (Qn) = JRS(A) (34)

for a minimizing sequence @, — @ and where X := ||Q||22(R3) < M. Then,

by X' = X and the limit is strong in L?(R3), hence in H'(R®) by
classical arguments. This proves that the limit @ is a minimizer. The fact that the
convergence is strong in H'(R?) is then a classical result.
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Step 3: Any minimizer is in H*(R3) and solves the E-L equation (2.10).
The proof that any minimizer solves the Euler-Lagrange equation is classical and
implies, together with u € H(R?), that u € H?(R3) by elliptic regularity. Moreover,
we have

IVQIZas) + err QUL gs) = 1Q175s s,
= 3 . (3.5)
Step 4: Strict binding inequality.
Proposition 12. Let crp > 0 and A > 0.
VO< XN <\ Jrs(A) < Jrs(\) + Jgs(A = X). 2.11)
In particular, for any integer N = 2
Jrs (N3X) < N3Jgs(N) < 0. (3.6)
Proof of [Proposition 12 By the same scaling as in we have
Jeo) =3t {0 IVl + Serr o, - 2y 6

||u||22 3 =1"
LE®) ::%(u)

Let A > )\ > 0. By the minimization problem

. 2 3 / /
it {1Vl + ZereX - IVl

ueH' (R?)

llull =1

L2(®r3) ™

has a minimizer Qy which, by is in H?(R3) thus continuous. In partic-
ular, HVQXHLQ(Rs) > 0 thus Zy(Qx) > Fa(Qx), where ) is defined in (3.7).
Therefore

N _ N
Jrs(N') = NZx(Qn) > N ZA(Qn) = X/ﬂ@ (@v(ATY3)) = 3 ~Jrs (),
and we finally obtain
, , A=N N
J]RS ()\ - A ) + J]Ri’» ()\ ) > b\ JRS ()\) + XJRB ()\) = JRS ()\),
as we wanted. O

Step 5: —p < 0. Let us choose v in the minimization domain of Jgs(1). Then,
defining the positive number

ol A2

10/3
IVoll3 + Zerr ol A%

e
I
ool w

we can obtain for any A > 0 an upper bound on Jgs(A). Namely

16/3
9 ||U||8/3
Jas(N) < _Frs (Vaag®?v(ag)) = —— /3 (3.8)
s )= V0l + Zerr [0l x25

Moreover, for all € and for @ a minimizer to Jgs .(\), we have
Irs((1—6)Q) = Frs(Q) + 2ehp + O(€?),
which leads, together with and the fact that @ is a minimizer of Jgs (), to
2eMp + O(2) = Jga((1 — €)?N\) — Jps(N\) = —Jgs(e(2 — )N),
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for any e € (0;2). Using this last inequality together with the upper bound (3.8)),
we get for any € € (0;1) that

16/3

o 0(e)

+
2 10/3
H CUHZ + %CTF ||’UH10§3 52/3(2 — 5)2/3)\2/3

v]]

> 352/3(2 EREEPCE
64
which leads to p > 0 by taking ¢ small enough.

Step 6: Positivity of non-negative minimizers. Let () > 0 be a minimizer.
By 0# Qe H2(R3) « CO(R?) and W := crp|Q|3 —|Q|F + 1 is in € L*(R?).
Therefore, the Euler—Lagrange equation gives @ > 0 thanks to |38, Theorem 9.10].

Step 7: Non-negative minimizers are radial strictly decreasing up to
translation. This step is a consequence of and is the subject of the following
proposition.

Proposition 13. Let A > 0. Any positive minimizer to Jgs(\) is radial strictly
decreasing, up to a translation.

Proof of [Proposition 13, Let 0 < Q € H'(R3;R) be a minimizer of Jgs(\). We de-
note by Q* its Schwarz rearrangement which is, as mentioned in first part of [Step 2
also a minimizer and, consequently, {5, [VQ*|? = {; [VQ|?. Moreover, by
and Q > 0 and Q* > 0 are in H*(R*R) and solutions of the Euler—
Lagrange equation (2.10). They are therefore real-analytic (see e.g. [47]) which
implies that [{z|Q(z) = t}| = [{z|Q*(x) = t}| = 0 for any ¢t. In particular, the ra-
dial non-increasing function @Q* is in fact radial strictly decreasing. We then use [6],
Theorem 1.1] to obtain @* = @ a.e., up to a translation. Finally, @ and Q* being
continuous, the equality holds in fact everywhere. O

Step 8: —p is the lowest eigenvalue of Hq, is simple, and Q = z|Q|. It
is classical that the first eigenvalue of a Schrédinger operator —A + V is non-
degenerate and that any non-negative eigenfunction must be the first, see e.g. [38,
Chapter 11].

Step 9: Minimizing sequences are precompact up to a translations. Since
the strict binding inequality (2.11)) holds, this follows from a result of Lions in [45],
Theorem 1.2].

This concludes the proof of O

3.2. Proof of The uniqueness of radial solutions has been proved by
Serrin and Tang in [58]. However, we need the non-degeneracy of the solution. Both
uniqueness and non-degeneracy can be proved following line by line the method
in [32] Thm. 2] (the argument is detailed in [56]). One slight difference is the
application of the moving plane method to prove that positive solutions are radial.
Contrarily to [32] we cannot use [I7, Thm. 2] because our function

Fuly) = —crry® +y3 —py (3.9)

is not C2. However, given that non-negative solutions are positive, it is possible to
show that they are C* and, therefore, we can apply [33, Thm. 1.1]. O
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4. REGIME OF SMALL ¢: UNIQUENESS OF THE MINIMIZER TO EK7A(c)

We first give some useful properties of Gk in the following lemma.

Lemma 14 (The periodic Coulomb potential Gx). The function Gg — | - |71 is
bounded on K. Thus, there exits C such that for any x € K\{0}, we have
C

In particular, Gx € LP(K) for 1 < p < 3. The Fourier transform of Gk is

Gxc(€) = 4x }]‘ﬁ?+wa&amwm (42)

ke L\ {0}

where 2 is the reciprocal lattice of Zx. Hence, for any f # 0 for which Dx(f, f)
is defined, we have Dx(f, f) > 0.

Proof of[Lemma 1] The first part follows from the fact that
lim G (z) — lz|7! = M e R,

see [44, VI.2]|. The expression of the Fourier transform is a direct computation. O

4.1. Existence of minimizers to Ex »(c). In order to prove|Theorem 1| we need
the existence of minimizers to Ex x(c), for any ¢ > 0, which is done in this section.

Proposition 15 (Existence of minimizers to Ex x(c)). Let K be the unit cube and,
crr >0, A >0 and ¢ = 0 be real constants.

i. There exists a non-negative minimizer to Ex x(c) and any minimizing sequence
(wp)n strongly converges in H:, (K) to a minimizer, up to extraction of a sub-

per
sequence.

it. Any minimizer w, s in HEM(K), 1s non-constant and solves the Euler—Lagrange
equation

(—A + cTF|wc|% - c\wc\% — Gg + (|we* * GK)) We = —fhay, We, (4.3)

with

2 10/3 8/3
IVwell3 + err lwellyo)s — ¢ lwellgss + Dec(fwel?, [wel?) = (G, [wel? 2 e

Hw, = — B\

(4.4)
1i. Up to a phase factor, a minimizer w,. is positive and the unique ground-state

eigenfunction of the self-adjoint operator, with domain ngT(K),

4 2
Hy,, == —A+ crplwe|3 — cwe|? — Gk + (\wc|2 * Gg).

Since the problem is posed on a bounded domain, this is a classical result to
which we only give a sketch of proof. For a detailed proof, see the Appendix in [56].
Note that for shortness, we have denoted ||, = || 1» )

Sketch of proof of [Proposition 15 In order to prove i., we need the following result
that will be useful all along the paper, and is somewhat similar to

Lemma 16. For any c > 0, crp, A > 0, there exist positive constants a < 1 and C
such that, for any u € H}_ (K) such that ||u||§ =\, we have

per
15 A

2
———c" = \C. 4.
1 CTFC AC (4.5)

Eke(u) = a|[Vul| T g —
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Proof of[Lemma 16, The same use of Holder’s inequality as in (but on
K) gives us that

8 15 A
cllull®s P
L3 (K)

0 3
5 4 64 CTF

L
3. B
5 1F L3 (K 4

Moreover, for any € > 0, we have
|| Gl < < fulfage + AC
K

Indeed Gx = 1{.<;}Gk + Li\(|<r}Gx € L2 (K) + L*(K), by (&I), and 7 can be
chosen such that ||IL{‘.|<T}GKHL% ) < ¢ to obtain the claimed inequality. The above

results, together with Sobolev embeddings and Dy (u?,u?) = 0, gives

10 1
301 § + fDK(u2,u2) - J Gru?
) 2 K

3
2
Ei,c(u) = [Vullpz) + zorr HUHLTO(]K) 1

5
15 A
64 CTF

8
3
cluly

> [Vl faw) — & =& |[ul o) — AC-

2 15 A
for any € > 0 and where S is the constant from the Sobolev embedding. Choosing

¢ such that €S < 1 concludes the proof. O

The above result together with the fact that H!(K) is compactly embedded in
L?(K) for 1 < p < 6 (since the cube K is bounded) and with Fatou’s Lemma implies
the existence of a minimizer and the strong convergence in H!(K) of any minimizing
sequence. Moreover, the convexity inequality for gradients (see [38, Theorem 7.8|)
implies the existence of a non-negative minimizer and concludes the proof of i.

To prove that any minimizer w, is in H2, (K), we write

per
4 2
—Aw, = —crp|we| 3w, + cjwe|3we + Grwe — (Jwel* * Gr)w, — pewe.
and prove that the right hand side is in L*(K), which will give w. € HZ. (K) by

elliptic regularity for the periodic Laplacian. We note that |wc|%wC and |wc|%wc
are in L*(K), by Sobolev embeddings, since w, € H],(K) which also gives, together

with Gk € L*(K) by that |w.|? * Gx € L*(K). It remains to prove that
Grw. € L*(K): equation (4.1 and the periodic Hardy inequality on K give

-1
||GKwC||L2(]K) <C ||| : | wcHLz(K) <’ ”wc“ngr(K) :

Finally, since Gk is not constant, the constant functions are not solutions of the
Euler-Lagrange equation hence are not minimizers. This concludes the proof of ii.
Let w. be a non-negative minimizer, then 0 # w, > 0 is in H*(K) < L*(K) and

is a solution of (—A + C)u = (f + Gk + C) u, with Gk bounded below and

4 2
f = —crplwe|® + clwe|® = (lwel* * Gx) — pw, € L (K).

thus (—A + C)w, = 0 for C » 1. Hence, w. > 0 on K since the periodic Laplacian
is positive improving [38, Theorem 9.10]. Consequently, w, > 0 verifies H,, w. =
— . W and this implies that for any u € H!,  (K) it holds

per

_142
Cuy (Hu, + pw, )U) 2Ry = (w2, |V(uwC 1)| yr2k) = 0.
This vanishes only if there exists @ € C such that u = aw,. ae. It proves w, is the

unique ground state of H,,_ and concludes the proof of O

From this existence result, we deduce the following corollary.

Corollary 17. On [0, +®), ¢ — Ex x(c) is continuous and strictly decreasing.
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Proof of [Corollary 17 Let 0 < ¢; < ¢ and, let wy and ws be corresponding mini-
mizers, which exist by On one hand, we have

3 8
Bga(c2) S Skea(w1) = Biga(er) = pe2 — ) “leE%(K)

3
B < Ex _F 2(ey —
< Ega(c1) < &k e, (w2) = Ega(c2) + 4(02 c1) |lw 2||L S )

This gives that Ex »(c) is strictly decreasing on [0, +00) but also the left-continuity
for any ¢z > 0. Moreover, ¢z — [[wa|| 1 (k) is uniformly bounded on any bounded
interval since

15 A

ExA(0) = Bra(c2) = ker (w2) = a|Vwa|72 i) — Slorn

by Hence, by the Sobolev embedding, we have

e = \C (4.6)

3
Ega(c2) < Exa(e1) < Exa(c2) + Z(Cz — 1) C1 A0 w2l g1 iy
which gives the right-continuity and concludes the proof of O

4.2. Limit case ¢ = 0: the TFW model. In order to prove we need
some results on the TFW model which corresponds to the TEDW model for ¢ = 0.
For clarity, we denote

EFFW (w) 1= ol f|Vw|2 core j wl¥ + 5 De((ul [wf) j Galul

(4.7)
and similarly ETFW = Ex »(0).
By Proposmon 15 there exist minimizers to Eﬂgﬁw, and we now prove the
uniqueness of minimizer for the TFW model.
Proposition 18. The minimization problem Eﬁziw admits, up to phase, a unique
minimizer wg which is non constant and strictly positive. Moreover, wqy is the
unique ground-state eigenfunction of the self-adjoint operator

H := —A + cpplwo|3 — Gi + (Jwol? * Gx)

with domain HZ,, (K), acting on L2, (K), and with ground-state eigenvalue
10/3
IVwoll3 + err lwollyo)a + De(wd, wd) — (G, ey

— Ho = (4.8)

A
Proof of |Proposition 18 By [Proposition 15| we only have to prove the uniqueness.
It follows from the convexity of the p — |V, /p|* (see [36, Proposition 7.1]) and the
strict convexity of p — Dxk(p, p). O

4.3. Proof of uniqueness in the regime of small c. We first

prove one convergence result and a uniqueness result under a condition on mKin p-

Lemma 19. Let {¢,}, < Ry be such that ¢, — ¢. If {we, }n i a sequence of re-
spective positive minimizers to Ex x(cn) and {jiw,, }n the associated Euler-Lagrange
multipliers, then there exists a subsequence cy,, such that the convergence

(wC”k  Hwe,,, ) kjo)o (wa Mw)

holds strongly in HZ,,(K) x R, where w is a positive minimizer to Ex A(¢) and pp
is the associated multiplier.

Additionally, if Ex x(C) has a unique positive minimizer w then the result holds
for the whole sequence ¢, — C:

(wCMMU’Cn) — (wwu'é)'

n—0o0
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We will only use the case ¢ = 0, for which we have proved the uniqueness of the
positive minimizer, but we state this lemma for any ¢ > 0.

Proof of [Lemma 19 We first prove the convergence in H}_ (K) x R. By the con-
tinuity of ¢ — Ek x(c) proved in {we, }noow is a positive minimizing
sequence of Ex (¢). Thus, by up to a subsequence (denoted the
same for shortness), w,, converges strongly in H!, (K) to a minimizer w of Ex ().

per
Moreover, for any ¢, (we, fty, ) is a solution of the Euler-Lagrange equation

4 2
<—A + crpwe3 — cw.3 — Gk + (wc2 * G’K)) We = — oy, We-

Thus, as ¢, goes to ¢, f,,, converges to u € R satisfying

— AW + cppwi — ew3 — Ggw + (p* Gg)w = —pb.

In particular, 1 = p. We have proved at this point the convergence in H!, (K) x R:

per

(’wcnaﬂwcn) 7:’ (ﬁ), ,U/u_)) .

o0

If, additionally, the positive minimizer w of Ek x(¢) is unique, then any posi-
tive minimizing sequence must converge in ngr(K) to w, so the whole sequence

{we, }n—oo In fact converges to the unique positive minimizer w.

We turn to the proof of the convergence in H2, (K). For any ¢, > 0, by
sition 15} we, is in H2. (K) thus we have
(A= G+ B) (we, — @) = = erp(we, § —©8) + (e = e, § +¢ (we, § —w)
— ((we,* — 0*) * Gk) we,, — (0* * Gx) (we, — )
— (Hw,,, = Ha)We, + (B — pa) (We, — @) =t €n.

The right side ,, converges to 0 in Lf)er(K). Moreover, by the Rellich-Kato theorem,

the operator —A — Gk is self-adjoint on HZ (K) and bounded below, hence we
conclude that

e, = @l = | (—2 = G+ 8) e

H2(K)
-1
< ”’(_A ~Gr+p) H L2(K)— H2,, (K) lenllze =3, 0
This concludes the proof of [Lemma 19| O

Proposition 20 (Conditional uniqueness). Let K be the unit cube, N = 1 be
an integer, crp > 0, ¢ = 0 and p € R be constants. Let w > 0 be such that
we HY (N -K) and w is a N - K—periodic solution of

(—A + cTFw% —cw’ + (w? * Gg) — GK> w= —pw. (4.9)

3
. e \2 , , L
If min w > (—CTF) , then w is the unique minimizer of EN'KaSN.K w2 (€)-

Proof of [Proposition 20, First, the hypothesis give w € H2 (N - K), by the same
proof as in Moreover, we have the following lemma.

Lemma 21. Let p > 0 and p = 0 such that \/p € H2,(K) and \/p’ € H}, (K).

per per
Then
| o
K

2 2 A\/ﬁ ’
—JK\V\/M +fK\/ﬁ(P —p) =0
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Proof of[Lemma 21 Using the fact that

VpAVE = YV [V3V(in p)] = SpA(Inp) + 1 V(np)

and defining h = p’ — p, one obtains

2 AL/p 1
f ‘V\/p+ h‘ ff v+ [ 2V - ZJ
N-K N-K N-K \/ﬁ N-K

hVp \ I

p\/p—i—hi Vp+h

O

Let w’ be in H},, (N - K) such that {, . w? = §, . |w'|* and |w'| # w. Defining

per

p =w? and p’ = |w'|?, this means that §, . h = 0 where h:= p’ — p # 0. We have
Enx,e(Jw']) = Enk.c(w)

= <(—A + cTFw% —cw? +w?« Gyk -GNk + ,u) w, hw_1>
L2(NK)

A 1
+J IVA/p+ h[? —f IV/pl? +J Jm —Dnx(h,h)
N-K N-K N-K \/ﬁ 2

+ gCTF (fN.K (p+h)s —p3 — §p§h> - Zc (JN'K (p+h)
> | PG F@) = P )

Wl

4
p3

ol

W W~

P

)

with F(X) = 2cppX5 — 3cX 3. The above inequality comes from (£.9) together

with and with Dk (h,h) > 0 for h # 0. Defining now
Fx(Y) = F(Y) - F(X) - F'(X)(Y - X),

one can check, as soon as X > 2

< that Fy < 0 on (0,X) and Fs > 0 on

(X, +o0). Moreover, Fy(0) < 0 if X > §/=. Thus Fx has a global strict
. )3/2

CTF

then &k .(w') = &k.(|w']) > &k.(w) for any w’ € Hl_ (N - K) such that |w'| # w

and § o |w'|* = { x w?. This ends the proof of [Proposition 20 O

We have now all the tools to prove the uniqueness of minimizers for ¢ small.

Proof of [Theorem 1, We have already proved all the results of i. of [Theorem 1] in
Proposition 15| except for the uniqueness that we prove now. Let (we)q_o+ be a

sequence of respective positive minimizers to Ex x(c). By m [Proposition 18 Ex x(
has a unique minimizer thus, by m wc converges strongly in H 2(K)
hence in L*(K) to the unique positive minimizer wy to Ex x(0). Therefore, for ¢
small enough we have

minimum on R, at X and this minimum is zero. Consequently, if minw > ( ,
NK

. I ( c ) g
minw, = —mnwg > | —
K 2 K CTF
and we can apply (with N = 1) to the minimizer w. > 0 to conclude
that it is the unique minimizer of Ex x(c).

We now prove . of We fix ¢ small enough such that Ex »(c) has
an unique minimizer w.. Then w. being K-periodic, it is N - K—periodic for any
integer N > 1 and verifies all the hypothesis of hence it is also the
unique minimizer of Ex g § ju,[2(¢) = En.g,n2a(c). O
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5. REGIME OF LARGE c¢: SYMMETRY BREAKING

This section is dedicated to the proof of the main result of the paper, namely [The-]
We introduce for clarity some notations for the rest of the paper. We will
denote the minimization problem for the effective model on the unit cell K by

JK,)\(C): inf )fK’C(U), (51)

veH! (K

o112 2 =

where
3

3 10 8
Ik.c(v) = J |Vol? + chFJ lv]3 — fcf [v|3. (5.2)
K 3 K 4 Jx
The first but important result is that we have for Jk » the existence result equiv-

alent to the existence result of for Fx x.
The minima of the effective model and of the TFDW model also verify the

following a priori estimates which will be useful all along this section.

Lemma 22 (A priori estimates on minimal energy). Let K be the unit cube and
crr and ¢ be two positive constant. We have

A0 — —=——cc" < E ) 5.3
T kA (C) (5.3)
for some constant C > 0, and
15 A 3 A3 3 A%
A Iy S— et err_—5. 5.4
61orr’ S TEAO) <=3 KET 5T RE (5.4)

Moreover, for all K such that 0 < K < —Jgs 5, there exists ¢y > 0 such that for

all ¢ = ¢y we have

15 A, ,
- ——c < < —c*K < 0. .
o1 CTFC Jr.a(c) K <0 (5.5)

Proof of [Lemma 23, The inequality (5.3) has been proved in the proof

of which also leads to the inequality

2 15 A
Ik,c(v) = HVUHLZ(K) - 62@0 ) (5.6)
hence the lower bound in (5.4). The upper bound in ([5.4) is a simple computation

of #x (v) for the constant function v = \/% , defined on K, which belongs to the
minimizing domain.

To prove (5.), let K be such that 0 < K < —Jgs x. Fix f € CX(R?) such
that K = — Zgs(f) > 0. Such a f exists since Jgs y < 0 and CL(R?) is dense
in H*(R3). Thus, there exists ¢, > 0 such that for any ¢ > c4, the support of

fo:= 2 f(c) is strictly included in K. This implies, for any ¢ > ¢y, that

3 10 3 8
Tea(©) < Juclf) = | V8P + Zere [ 10% = Fe [ 150 = (),

and this concludes the proof of O

We introduce the notation K. which will be the dilation of K by a factor ¢ > 0.
Namely, if K is the unit cube, then
c c\3
K, :=c K:= [—5,5) . (5.7)
Moreover, we use the notation ¥ to denote the dilation of v: for any v defined on
K, ¥ is defined on K, by 9(z) := ¢~ ?v(c 'z).
A direct computation gives fg (v) = ¢* fk, 1(0), for any v e H}  (K). Con-
sequently, Jx x(c) = ¢®Jk, (1) and v is a minimizer of Jx (c) if and only if ¥ is
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a minimizer of Jx, x(1). Finally, when v is a minimizer of Jk x(c), we have some
a priori bounds on several norms of ¥ which are given in the following corollary

of [Lemma 22

Corollary 23 (Uniform norm bounds on minimizers of Jg, z(1)). Let K be the
unit cube and \ be positive. Then there exist C > 0 and cy > 0 such that for any
¢ = Cx, a minimizer U, of Jx_ (1) verifies

1

oS IVell 12 .y  [1ell ross i, » 1Tell poss i,y < C-

Proof of [Corollary 23 By (5.4) and (5.6), we obtain for ¢ large enough that any
any minimizer v, of Jg x(c) verifies

15 A

Vo, 2 = ¢ 2||Vo, 2 < ——.
19l = 2 10l < o e

Applying, on K, Hélder’s inequality and Sobolev embeddings to v., we obtain that
there exists C' such that

Vezew, VOl 2y 10ellpros i,y > 10ell pors .y < C-
By (5.5), for any K such that 0 < K < —Jgs y, there exists ¢, > 0 such that

8/3

4 o
Ve=e,, 0< gK < —§JKC7A(1) < ”UC”LS/?’(]KC)

and, consequently, such that

10/3 L/ 83 2 16 K?
L1/0/3(Kc) = X (||UC||L/8/3(]KC)) > ?T > 0.

We then obtain the lower bound for the gradient by the Sobolev embeddings. This
concludes the proof of O

5.1. Concentration-compactness. To prove the symmetry breaking stated in
we prove the following result using the concentration-compactness
method as a key ingredient.

Ve e o]

Proposition 24. Let K be the unit cube and A be positive. Then

lim ¢ ?Eg x(c) = Jgs x = lim ¢ 2Jg x(c).

c—0 c—0
Moreover, for any sequence w. of minimizers to Ex x(c), there exists a subsequence
¢, — o and a sequence translations {x,} = R® such that the sequence of dilated
functions w,, := cn73/2wcn(cn71') verifies
i. g, Wn(- + zn) converges to a minimizer u of Jgs \ strongly in LP(R®) for

2 < p <6, as n goes to infinity;

ii. g, V(- + xn) — Vu strongly in L?(R3).

The same holds for any sequence v, of minimizers of Jx x(c).

Before proving we give and prove several intermediate results,
the first of which is the following proposition which will allow us to deduce the
results for Ex » from those for Jx x.

Lemma 25. Let A > 0. Then
EK)\(C) N
J]K’)\(C) c—m

Proof of [Lemma 25, Let w. and v. be minimizers of Ex x(c) and Jk x(c) respec-
tively which exist by [Proposition 15| and the equivalent result for Jg »(c). Thus
1

1
iDK(w027wc2) —f Grw.> < Fx x(c) — Jga(e) < §Du<(v027v02) —f G’
K K
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By the Hardy inequality on K and (4.1]), we have

‘J G]K’Uc2
K

and similarly |§, Grw.?| < |[well g1 (i) - Moreover, we claim that

DK(U027UC2) < ”Uc”Hl(K)- (5.8)
To prove we define, for each spatial direction ¢ € {1,2,3} of the lattice, the
intervals I\ " := [—1;—1/2), IV := [~1/2;1/2) and I(“) [1/2;1), and the
parallelepipeds K(71:72.03) — (71 5 1(72) » 1(73) which let us rewrite K = K(.0.0)
and Ky = 2- K := [~1;1)" as the union of the 27 sets

< MIGrvell g2y < CXvell g )

Ky = U &=
oe{—1;0;+1}3

We thus have by @ ) and and the Hardy—Littlewood—Sobolev inequality that

|| vi@oxe-puiw dxdy<ﬂ PR ayda < ol g

KxK
r—yeK”

Consequently, by Holder’s inequality and Sobolev embeddings, we have

ﬂ 02 (1) G (@ — y)v2(y) da dy
oe{— 10+1}3 Exk
r—yeK”

-D]K vc27vc2 =
( )

3
< el 3 gy % Wl el By - (5.9)

This proves (|5.8) which also holds for w..
Then, on one hand, by (4.6) applied to ¢; = 0 < ¢g = ¢, there exist positive
constants a < 1 and C' such that for any ¢ > 0 we have

15 A
— E AC.
64 orp c + JKA( )+ C

On the other hand, the upper bound in ([5.5) together with the (5.6|) applied to v.,
give that there exists ¢, > 0 such that

2
a ||Vwc||L2(1K)

15 A
IK>0Ve=c,  [Voeliag < ( - K) &, (5.10)

Consequently, for ¢ large enough, we have
| Jea(c) — Exa(c)| S ¢
hence, using , we finally obtain
‘EK’ NG
Jxa(c)
This concludes the proof of O

— 1‘ < c L

We now prove that the periodic effective model converges,

lim ¢~ JK,)\(C) = Jrs x,

c—0

by proving the two associated inequalities. We first prove the upper bound then
use the concentration-compactness method to prove the converse inequality. The

strong convergence of minimizers stated in will be a by-product of
the method.
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Lemma 26 (Upper bound). Let K be the unit cube and \ be positive. Then there
exists > 0 such that

Jra(c) < AJrs(\) + o(e77°).
Proof of [Lemma 26, This result is obtained by computing of #k_ 1(Q.) where

VaxQ
Qe= 77—
||XCQHL2(R3)

for Q@ € H'(R?) a minimizer of Jgs , with x. € CP(R?*), 0 < x. < 1, x. =0
on R\K.;1, xc = 1 on K, and IVXell o (gs) Pounded. Indeed, by the well-known
exponential decay of continuous positive solution to the Euler-Lagrange equations
with strictly negative Lagrange multiplier, one obtains the exponential decay when
r goes to infinity of the norm [|[VQ| 12 (c5(g ) and the norms [|Q|| ., cp o, for p > 0,
and consequently the claimed upper bound. O

Lemma 27 (Lower bound). Let K be the unit cube and X\ be positive. Then

liminf e 2Jg 2 (c) = Jgs a-
c—0
See [56] for a detailed proof.

Sketch of proof of[Lemima 27 This result relies on Lion’s concentration-compacity
method and on the following result. Since this lemma is well-known, we omit its
proof. Similar statements can be found for example in [16] 11 20, 25, [30, 56].

Lemma 28 (Splitting in localized bubbles). Let K be the unit cube, {pc}e=1 be a

sequence of functions such that p. € H) (K.) for all ¢, with el 1 g,y uniformly

bounded. Then there exists a sequence of functions {1, () ... in H'(R3) such
that the following holds. For any e > 0 and any fixed sequence 0 < Ry — o0, there
exist: J = 0, a subsequence {p.,}, sequences {f,il)}, e ,{5,(9‘])}, {¢r} in H;er(Kc;c)

and sequences of space translations {x,(;)}, e 7{;zcg])} in R? such that

lim ‘
k—o0

J
_ @y Gy _
Pex ;fk (=) wkHHl(KCk) =0

where

{fl(cl)}, cee {5;@‘”}, {1} have uniformly bounded H' (K., )-norms,

Ix,, §,(€j) — ) weakly in H'(R?) and strongly in LP(R®) for 2 < p < 6,
supp(lk., 5,(:)) < B(0,Ry) forallj=1,---,J and all k,

J ,
supp(]lKCk i) < K\ U B(x,(j), 2Ry.) for all k,
=1

12\ — 29| = 5Ry, for alli # j and all k,
. SK% [kl <e.

We apply |[Lemma 28| to the sequence (9.),-, of minimizers to Ji, (1) which

verifies the hypothesis by the upper bound proved in The lower
bound in that corollary excludes the case J = 0. Indeed, in that case we would

have }{}erolo e, — djk”Hl(K%) = 0 and Sch lhk|? < e hence SK% loel? < 2, for k

large enough, contradicting the mentioned lower bound. Consequently, there exists
J =1 such that

J
Vo, = U+ + 30— 2))
j=1
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where H6k||H1(K y — 0 and, for a each k, the supports of the v(j)( x,(cj))’s and
°k

are pairwise disjoint. The support properties, the Minkowski inequality, Sobolev

embeddings and the fact that supp(1k, 1“),2])) c B(0, Ry) c K., , give that

T, (\) = Fr,, (Ue,) = Fx, (Vi) + Z Fza (T, 0) + 0(1) ey msco

j=1

—75 + Z Hrs (1., v )+o(1)ck_,oo.
Moreover, the strong convergence of Ik, él(cj ) in L2 and the continuity of A — Jgs »,
proved in [Lemma 10} imply, for all j = 1,---,J, that
Srs(lg, 89 > Joa <||17I(€J>||222(K%)) — Jes(AD),

< (7)

where, for any j, A\ [#D]| 12 (Rsy is the mass of the limit of Ly, Loy We

also have denoted Jgs (A ) Jrs » to simplify notations here. Those 1nequalities
together with the strict binding proved in lead to

Zs—i—h]}crriiongK ZJRs ) > Jas (N) = Jas (A ZA) Jas ().

J .
The last inequality comes from the fact that 0 < ”wkHQL?(K%) =A— A0 4+ 0(1)

j=1
Joo Joo
thus A — >} AU) > 0 and this implies that Jgs ()\ - )\(J)) < 0. This concludes
i1 =
the proof of [Lemma 27] O

We can now compute the main term of Ex »(c) stated in [Proposition 24
Proof of [Proposition. 2} Propositions [26] and [27] give, for A > 0, the limit

lim 672JK7)\(C) = JRs,)\
c— 0

and gives then the same limit for Fx »(c). [Proposition 27|also gives that
(D) .>; has at least a first extracted bubble 0 # ¥ € H*(R”) to which 1k, e, (- + )

converges weakly in L?(R?). This leads, by the following lemma, to
T A1) = Ik 1 (Ue, (- + 1)) = Frs(0) + Ik, 1 (U, (- +ar) —0) +0(1). (5.11)

Lemma 29. Let K be the unit cube and {©.}.>1 be a sequence of functions on R3
with [|¢cll g1 k) uniformly bounded such that Ik, — ¢ weakly in L?(R3). Then
© - c—0

© € HY(R3) and, up to the extraction of a subsequence, we have
(1) 1g, V. — Vo weakly in L*(R3),
(2) IV (e~ D2,y = IVeel o, = Vel L@ + o (1),
(3) lpe = lLok,) = leelio,) = Ielto@s + 0 (1 ), forpe {5 %

Proof of[Lemma 29 By the mean of a regularization function (as in the proof of
Lemma 26 together with the uniform boundedness of . in H*(KK.) and the unique-
ness of the limit, one obtains that the limit ¢ is in H!(R?). Since (1) is a classical
result and (2) a direct consequence of it, we only prove here (3).

By means of a regularization function, the Rellich-Kondrachov theorem together
with the weak convergence in L?(R?) of 1k, . and of 1g_ V., one obtains that
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|oe — | — 0 weakly in LP(R?) for 2 < p < 6. Using now, for all p > 2, the bound

lp)
lloe(@) — @(@)P = |pe(@)P + lp@)P| < D] CRlo(@) P |pc(z) — p(@)[,
k=1

which comes from direct computations, one obtains (3) from the weak convergence
of | — | — 0 in L?(R3). O

To obtain for Ek »(c) an expansion similar to (5.11f), we proceed the same way.

We first show that the sequence of minimizers . is uniformly bounded in H}, (K.)

using the upper bound in the following lemma, which is equivalent to
for v,.

Lemma 30 (Uniform norm bounds on minimizers of Ex x(c)). Let K be the unit
cube, A\, crp and c be positive. Then there exist C' > 0 and cx > 0 such that for any
¢ = cy, the dilation w.(z) := ¢ 3?w.(c"'x) of a minimizer w, to Ex x(c) verifies
1 o N o
o IVWell 2k, » 1ell prosa i,y - el s i,y < C-

Proof of[Lemma 30 As seen in the proof of [IVwel| g2y = O(c) hence
o2 - 2
IV@elt2,) = ¢ 2 IVwel 2@ = O1)
and, using Sobolev embeddings for the two other norms, we have
Ve=ce, Vel ok, el pros k. > 1ell pors i,y < C'-
Let K be such that 0 < K < —Jgs » and € > 0, then by (5.5) and
there exists C' > 0 such that

3 8
2 — — . — — 3
‘K —e< —Jga(c) —e < —Ega(c)<c (C +7 ||wcL§(K)>
for ¢’s large enough and, consequently that

C+e

3. . 83
K - 2 < Z ||wCHL3/3(1KC) .
We conclude this proof of as we did in the proof of O

We now come back to the proof of [Proposition 24 We apply to {w.}
and, as for 9., the lower bound in [Lemma 30|implies that J > 1, namely that there

exist at least a first extracted bubble 0 # @ € H'(R?) such that 1g, e, (-+yx) — 0
weakly in L?(R3). [Lemma 29| then leads to

e 2 EBx (k) = Sk, 1 (W, (- + yx)) + O(er™)
= /RS (,uv)) + /chJ(ka(' + k) — ’LT)) +0o(1),

where the term O(c™') comes from Dg(w.*,w.*) = O(c) and §, Gxkw.*> = O(c)
obtained in the proof of

Since in both cases J and F, the left hand side converges to Jgs(\), the end of
the argument will be the same and we will therefore only write it in the case of F.
Defining A; := ||u“)||iQ(]R3)7 which is strictly positive since w # 0, we thus have

Ck72E]K,A(Ck) = JRS ()\1) + Jch (”ﬂl)ck( -+ yk) — 17)||2L2(K0k)) + 0(1)
Since ||we(- + yi) — 1D||%2(Kc) = X — A1 + o(1), then for any ¢ > 0, we have
Ck_zEK,A(Ck) > Jrs (A1) + J]ch (A=A +¢e)+0o(1),

By the convergence of ¢=2Ej (c) for any A > 0, this leads to
Jgs ()\) > Jgs ()\1) + JRS()\ — A1+ E)
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and, sending ¢ to 0, the continuity of A — Jgs(X), proved in [Lemma 10} gives
JR3()\) = Jgs ()\1) + Jrs ()\ - )\1)

We recall that A\; > 0 hence, if \; < A then the above large inequality would
contradict the strict binding proved in hence A; = A. This conver-
gence of the norms combined with the original weak convergence in L?(R?) gives the
strong convergence in L?(R?) of 1k _w.(-+yx) to w hence in LP(R3) for 2 < p < 6 by
Holder’s inequality, Sobolev embeddings and the facts that w0, is uniformly bounded

in H).,(K.) and that @& € H'(R?). The strong convergence holds in particular in
Lg(Rg') thus we have proved that w is the first and only bubble.

Finally, for any € > 0, we now have, for k large enough, that

Ck_QE]K,A(Ck) = JIps(W) + chk,l(ka(. +yx) —w) + o(1)
= j]Rs (w) + JK% (e) + o(1).

This leads to Jgs (\) = Zgs(w)+Jrs(e), then to Jgs(A) = _Zgs(w) by the continuity
of Jga(\) proved in [Lemma 10l Since ||7I)||iz(R3) = ), this concludes the proof
of [Proposition 24| up to the convergence of 1g, Vi, (- + x,) and 1g, V0,(- + 2n)
that we deduce now from the above results. Indeed, by the convergence in LP(R?) of
Wy (- +2,,) and since |SK G]Kwn2| + |D]K(wn2, wn2)| = O(cy), we know, except for the
gradient term, that all terms of ¢, 2Fk (cn) (resp. ¢, 2Jx a(cn)) converge thus
the gradient term too. Then we apply to obtain the strong convergence
in L?(R3) from this convergence in norm just obtained. O

Let us emphasize that all the results stated in this section still hold true in
the case of several charges per cell (for example for the union N - K) with same
proofs. The modifications only come from the factor SK Grw.? being replaced by
§ic SN Gy (- — Ri)|we|? — see — therefore only the proofs of
[Cemma 25| and [Lemma 30| are slightly changed by a factor N, in the bounds of the
modified term, but their statement is unchanged. Consequently, as mentioned in
Section the results

lim c_2EN,K’N3>\(c) = Jgs N3 and lim ¢ 2Eg (c) = Jgs A
c—0 ¢

from and the result
Jrs (N3X) < N3Jgs(N)
from imply together the symmetry breaking
Enx noa(c) < N*Ex A (c).

We now give two corollaries of We state and prove them in the
case of one charge per unit cell but they hold, with similar proof, for several charges.

Corollary 31 (Convergence of Euler-Lagrange multiplier). Let {w.} be a sequence
of minimizers to Ex x(c) and {{.} the sequence of associated Euler—Lagrange mul-

tipliers, as in[Proposition 15, Then there exists a subsequence ¢, — 00 such that

-2
Cn  He, o HR3 {w, }

with pgs (., } the Euler—Lagrange multiplier associated with the minimizer to Jgs ()
to which the subsequence of dilated functions 1g, W, (- + T,) converges strongly.

The same holds for sequences {v.} of Euler—Lagrange multipliers associated with
minimizers to Jg (c).
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Proof of [Corollary 31, Let u be the minimizer of Jgs()\) to which 1g_ e, (- + 2n)
converges strongly in LP(R?) for 2 < p < 6, by roposmon [Proposition 24} Wthh also gives
that g, Vi, (- + x,) — Vu strongly in LQ(R?’), and pgs, the Euler-Lagrange
multiplier associated with this u by

By and the formula (4.4]) giving an expression of ., we then obtain

_ 2 10/3
—Cn 2/1‘671,)‘ - ”VUHLZ(]Rf‘) t+orr ||uHL1{)/3(R3) ||u||L8/3 (R3)

Therefore, by (3.5) which gives an expression of the Euler-Lagrange parameter
g3 o, associated with this u, we have

—2
Cn  He, > RS -
c—0

Since u depends on {w,, }, we can of course rename figs (., } ‘= Hrs - The result
for Jx a(c) is proved the same way. O

Lemma 32 (L®-convergence). Let {w.}. be a sequence of minimizers to Ex x(c)
and u be the minimizer to Jgs(\) to which the subsequence of rescaled functions
1, e, (- + xp) converges. Then

cn

We, (+ + Xn)

Cn

e, (- + 20) = wllpae,,) =7, 0 ond [Tk

‘n/ n—+400 N UHLOO(KCn) njoo 0

The same result holds for a sequence {v.}. of minimizers to Jx x(c).

Proof of[Lemma 33, For shortness, we omit the spatial translations {z,} in this
proof. We define u, = (.u where (. is a smooth function such that 0 < (., < 1,
¢. = 0on R\K, and ¢, = 1 on K._;. Since u € H*(R?) by and

[Celly + IVCelloe + 1AC], < o0, we have to prove [, = te, |l g2,y 7, O-

Moreover, by the Rellich-Kato theorem, the operator —Ape, — ¢ 2Gx(c7!+) is self-
adjoint of domain H2,,(K.) and bounded below. Therefore, there exists 0 < C' < 1
such that, for any ( large enough and any ¢ > 1, we have

e = vellz, ) < C [ (=Aper = *Gie(c™") + B) (e — ez s,y

Thus, denoting €. := K.\K._1 and ugs the Euler-Lagrange parameter associated
with u, we have by the Euler-Lagrange equations (2.10) and (4.3) that

[dbe — UCHngr(]KC)

G ful® + Jae] 3

3
Ce™u — We

< Ccrp LAK.) F llull 2y 1ACel oo .,

L4 (Ke)

+C G Jul + Jae|®

3
chu - Uv}c

+ 2[VCell oo i, IVUll 2 )

LA (Ke) LA (Ke)

+ Clugs — ¢ 2 puc| ||1Dc||L2(KC) + Cprs + B) [[Ceu — IZ’CHB(KC)
+ 00_2 HGK(C_l')HLs/z(KC) HUC”LW(KC) + 06_2 |||UC|2 * GKHLoo(K) ”wCHH(KC) )

for any ¢ > 0. Therefore, combining that the L*°(K,) norms of ¢, and of it deriva-

tives are finite, that ||Vu||L2 y + lull g2y — 0, that 2 || Gk ( C_l')”LE’)/z(K ) =

s |Gkl 5/2(x) — 0 and that, for any « > 0 and 2 < p < 6, we have

e, v = e, [l o, y = (1= Ce, Vull Lok, ) + = We, I ok, ) = 0,
all together with | we conclude that

|, — Uc"”ngr(]K ) oo 0.

The proof for v, is similar but easier and shorter, we thus omit it.

We then conclude the proof of using that for any c¢* > 0, there exists
C such that for any c € [¢*;00) and f € H%(K.), we have 1l e iy < C N ez,
which can be proved by means of Fourier series. O
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5.2. Location of the concentration points. In this section we prove that a
minimizer must concentrate at the position of one of the nucleus in the unit cell.
We consider the union of N3 cubes K, each containing one charge ¢ = 1 — that
we can assume to be at the center of the cube K — forming together the cube
Ky := N - K. The energy of the unit cell Ky is then

1 2 2 s 2 5.12
G o) = Fi o) + 3Dy (0l [0P) = | 3 Gy = R, (512

N =1
where {R;}1<;<ns denote the positions of the N3 charges.

In this section, we prove a localization type result (Proposition 33|) — that any

minimizer concentrates around the position of a charge of the lattice — and a lower

bound on the number of distinct minimizers (Proposition 35|).

Proposition 33 (Minimizers’ concentration point). Let {R;}1<j<ns be the respec-
tive positions of the N3 charges inside Ky. Then the sequence {x,} < ¢, - Ky of
translations associated with the subsequence {w., } of minimizers to Ex, nsx(cn)
such that the rescaled sequence lx, e, (- +xy) converges to Q, a the minimizer to
Jr3 N8, verifies
Ty = cpR; + o(1)
as n — o0, for one i. Consequently, for 2 < p < 40,
— 0.

e, (- + cnR;i) — Q”LP(KCH) o

Proof of |Proposition 35 Since the w,,’s are minimizers, we have for any R; that

ne X i X 2
| GKN(N_Ri)ijn(Hn)\ da
i=19KnNe, Cn Cn Cn

T
= Sk e (We,) < R cn (wcn ( ) "’Cl - Rj))

N3 " " 9
== Gry | — + Rj — R; ) |0, (v + =2 )| da.
N J n
i=1YKne, Cn Cn

below then gives, on one hand, that the right hand side of this inequality
2
is equal to —c, §ps Q|£(|m) dz + o(cp,) because ¢,|R; — R;| — oo for i # j and, on the

other hand, that |x,, — ¢, R;| must be bounded for one i, that we denote iy, because
otherwise the left hand side would be equal to o(cy). Therefore, by

the term for 4o in the left hand side is equal to —c;, {ps (l‘ff(:;f dz + o(c,) for a given

n € R3 (and up to a subsequence) and the other terms of the sum to o(c, ). However,

2 2
Cely, . [ Ly,
rs |7 R3 [z — 7
if n # 0, implying that the w,., are not minimizers for n large enough. Hence n = 0,
which means by [Lemma 34| that =, = ¢, R;, + o(1) as n — 0.

The last result of [Proposition 33]is a direct consequence of the convergence of
the LP(K., )-norms proved in [Proposition 24 and [Lemma 32| together with the fact

n

that x,, — ¢, R;, = o(1).
Lemma 34. Let {y,}n © K, {f.}. = L2, (K.) and {g.}. = L2, (K.) be two se-

per per
quences such that || fe|| ;1 ®) T el £ (k. s uniformly bounded. We assume that
per\rc per\Be

there exist f and g in H'(R3) and a subsequence c,, such that | f., — e,y —
‘n/ n—o0
0 and 1k, g., — g weakly in L*(R3). Then,
" n—00

i. if enlyn| — 400, then ¢, SKC" Gr(en™ - —yn) fe, 9e, et 0,
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ii. if colyn| — 0, then ¢, ! SK% Gr(cn ™ —yn) fe, ge,, - SRB z|)xg| 2) dr,

ii. otherwise, there exist n € R3\{0} and a subsequence ny, such that

anilj GK(anil : 7ynk)fc,,k f( ) ( )dx
K

. . gs [T — 7]
Mk

Moreover, replacing | fe, — fllr2x., ) =0 by I fe. = fllinxk., ) 2.0 the uni-
form bound on |gc|l 1 (k) by an uniform bound on ||gc| ;2 . ) and g€ HY(R3) by
per\ ¢ per\c

g€ L*(R3), then still holds true and, in the special case y, = 0, too.

Remark. We state the lemma in a more general settings than needed for[Proposi]
in order for it to be also useful for the proof of [Lemma ]2

Proof of[Lemma 3J. Using the same notation K7 as in the proof of we
notice that K—t:={r e R}z —1te K} c Ky = K U U 0,0,0)oef0;+1ys K7, for any

T € K. Therefore, by there exists C' > 0 such that for any ¢, € L*(K,),
o€ HY(K.), ye K and ¢ > 0,

f Gr(c™" —y)pctbe
Ke

O

-1
¢ _ ¥e¥e
|- —cly + o)

<Cc >

oe{—1;0;+1}3

L (Ke) .

Then, by the Hardy inequality on K., which is uniform on [c4, 00) for any ¢y > 0,
there exists C’ such that for any y € K and any ¢ > 1, we obtain

f Gr(c™ - —y)pctbe
Kc

—1

¢ < 270" @l Lok, el o .

Therefore, the weak convergence of g., and the Hardy inequality to f on R? give

c,f1

J;K GK(Cnil : *yn)(fcngcn - fg)’

cn

f(gcn - g)
|- —c(y + o)

<27(C' e, Py loelin, + 2|

) - 0.

Replacing | fc, — fHLz(KCn) chn”Hl(KCn) by || fe, — f”Hl K., ) ||gCn||L2 ) gives this
same convergence to 0 under the second set of condltlons
We are therefore left with the study of ¢, ' §,  Gr(c,™' - —yn)fg as n — ©

L'(K.)

and we start with the case ¢, |y,| — +00. Forany ¢ > 0, y € Kand o € {—1;0; +1}3,

¢t J-K Igo (¢t —y)Gr(c™ - —y)|fgl

< J ) ol + f Lp(c(y+o),R) ol + J Lep(cy+o),R) ol

s |- —c(y + o) gs |- —c(y + o) B(0,5y+o)) | —C(y + o)

2
cly + o|
for any R > 0. Since f is in H'(R?) and g at least in L?(R3), the last two terms
tends to 0 and || fg|| ;1 (gs) is bounded hence, on one hand we obtain, for o = (0,0,0),
the convergence to 0 (for the subsequence ¢,,) from ¢, |y,| — 400 and, on the other
hand, there exists R’ > 0 such that |y + o| > R’ for any {—1;0; +1}3 3 o # (0,0,0)
and any y € K, ending the proof that the above tends to 0. We finally obtain that

1 _ _
L Grlea™ - —ua)lfel = j (ke G (e —y)l gl — O,

C
n JKe, oe{0; +1}3 Cn

1
||fg||L1(R3) + ||f||H1(R3) ||g||L2(B(c(y+o-) RTH ||fg||L1(EB(O72‘y+o-D) )

~

concluding the proof of [z.| under the two sets of hypothesis.
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We now suppose that ¢, |y, | does not diverge hence it is bounded up to a subse-
quence ny, and, consequently, y,, — 0. However, by there exists M’ > 0

such that || -|~! — Gg| < M’ on K, thus there exists M > 0 such that
1 1 ko
e N G e S N - )
(0,00)foe(0:£1)3 7

< (M'+ R+ 52CR ) 1g_r < Mlg_+.
for T € B(0, R/2) and where R := min,esk || > 0 therefore B(0, R) — K. Hence

1 . 1
JK (%GK(CW —Yny,) — |- —CnrYecn,

_ M
) fo] < 21 folisceny = O
eny, k i

Nk
Moreover,

f(@)g(x)
JRS (1-1Ix.,, (x))m da| S fllc2cex., ) 190 @sy =0

and we are left with the study of

j f(x)g(x)  flx)g(x)

3 ‘x_cnkycnk| lz —n|

dx\ < 4l nten, || lls oy 6l s o

which tends to 0 if we choose 7 as the limit (up to another subsequence) of the
bounded sequence ¢y, Yn, . Finally, if we have in fact ¢,y, — 0 then n = 0, other-
wise, we can find a subsequence such that ¢, y,, — n # 0.

Under the second set of conditions and if y,, = 0, we have

f (en ' Cielen2) — 2| V) f(@)g(x) da
K

cn

/

M _
S /9l L2 sy = Olen b.

This concludes the proof of O
This concludes the proof of O

We now prove that E, n3i(c) admits at least N* distinct minimizers.

Proposition 35. For c, large enough, there exist at least N> non-negative mini-
mizers to the minimization problem Ex , nsx(cn) which are translations one of each
other by vectors Rj — Ry, 1 < j # k < N®, where {R;}1<i<ns are the respective
positions of the N> charges inside Ky .

Proof of [Proposition 35 First, in [Proposition 33| we have seen that for any se-

quence {we}c— 4o Oof minimizers of Ek, nsx(c) must concentrate, up to a subse-
quence, at the position of one nucleus of the unit cell, denoted R;,. Then, given
that the four first terms of &k, . are invariant under any translations and { Gx|w.|?
is invariant under R; — R}, translations, we have that each w.(- + R; — R;,), for
1 < i < N3, is also a minimizer of FEx, nsa(c). Since, the N3 sequences of min-
imizers {w, (- + R; — Rj,)}; have distinct limits as n — oo, there are at least N?
distinct minimizers for n large enough. (]

5.3. Second order expansion of Ex x(c) and number of minimizers. The
goal of this subsection is to prove the expansion (2.7)). To do so, we improve the

convergence rate of the first order expansion of Jg x(c¢) proved in [Proposition 24

Namely, we prove that there exists 5 > 0 such that
Jra(c) = A Jrs(\) + o(e77°). (5.13)
We recall that we have proved in that there exists 8 > 0 such that
Jra(e) < AJrs(\) + o(e™P°)

and we now turn to the proof of the converse inequality.
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Lemma 36. There exists 3 > 0 such that
Jiale) = A Jrs x + o(e 7).

Our proof relies on the exponential decay with ¢ of the minimizers to Jg, x(1)

close to the border of the cube K, proved in

Proof of [Lemma 36, As the problems Jx »(c) are invariant by spatial translations,
we can suppose that x,, = 0 in the convergences of the subsequence of rescaled
functions 1k, ¥, (- + 2n).

Lemma 37 (Exponential decrease of minimizers to Jx, A(1)). Let {v.}. be a se-
quence of non-negative minimizers to Jg x(c) such that a subsequence of rescaled
functions 1g_ V., converges weakly to a minimizer of Jrs()\). Then there exist
C,~ > 0 such that for c large enough, we have 0 < V., (x) < Ce™7° forx € K \K._1.

Proof of [Lemma 37 We denote by u the minimizer of Jgs()) to which 1x, ¥,
converges strongly and by pgrs the Euler-Lagrange parameter associated
with this specific u. The Euler-Lagrange equation associated with Jg_ (1) —
solved by ¥, — gives

(~a+ 22 b, < (e, 1? + 22— e, ) e,

4 4

We now define Q., = (1 + &)K., \B(0, ) where a is such that |u|3 < min{3, 422
on R*\B(0,a). Such « exists by the exponential decay of u at infinity. There-
fore, by for any ¢, large enough, we have |0, |*3 < min {1, 22} on
K., \B(0,a) but also on Q. by periodicity of 9., and for any ¢, large enough
(depending on €) in order to have

(1+eKe, n | Bleak,a) = 2.
ke % \{0}

Together with it gives on Q. , for ¢, large enough, that

(-a+ “ff) %, <0  and |5, |<1.

We now define on R*\B(0,v), for any v > 0, the positive function

fulw) = vfa| 1T 0l

which solves

7A.fu + Mffgfy =0

on R3\B(0,v) and verifies f, = 1 on the boundary dB(0,v). On each (1 + ¢)K,,,
we define the positive function

3 cosh (7MR3%)

2
folw) = j; cosh (@(1 + 6)cn)

which solves
3
~Afo+ B fy =0

on (1+ ¢)K,., and verifies 1 < fy < 3 on the boundary ¢ ((1 + €)K.). Denoting by
g the function g := fy + f,, we have for ¢,, large enough that

(—A + l‘lll@) (0c, —g) <0, on Q, and Ve, —g <0, on 02,

hence the maximum principle implies that 4., < g on Q..
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On one hand, since the function fj is even along each spatial direction of the cube
and increasing on [0; (1 4+ ¢)%) in those directions, we have that for any » € K,
so in particular on K., \K., _1, that

H]RS

0 < fole) < fo (SH(1,1,1) <2 i

On the other hand, |z| = (¢, —1)m > 0 for z € K, \K,, _1, with m := nal]%n ||, thus

0 < falr) < OceTR(OH‘m)m—l(cn . 1)_16_ B3
on K. \K.,_1. Hence there exist C' > 0 and v := \/lz? min{$;m} > 0 such that
for ¢, large enough and any z € K., \K., 1, we conclude that
0 < ’D(Jn (IE) g g(x) < C’ef’yc. D

We now conclude the proof of We define x. € C(R?), 0 < x. < 1,
Xe = 0 on R®\K, and . = 1 on K._;. Since |[K\K. 1] < |K.| = ¢*|K| for any
¢ > 1 and by we have that there exist 0 < o < v such that

0 < e oy = ety = [ (1= xe?)le, P
en \Ke,p —1

< Cpe*pvcn |KCW\KC”_1‘ =0 (efpacTL) ,

for any p € [2;6]. Moreover, for any ¢ > 1, we have

1 o
= ) ’JRS |vc|2v(Xchc)

’J Xc{/chc : v{}c
R3

1 y
<3 I el + D)
K 1

c c—

hence
o2 o2 - o2 _
”v(chUcn)”[ﬁ(RS) = ||chvvcn||L2(Kcn) +o(e?%n) < vacn”LQ(KCn) + o(e72*m).

Consequently, there exists § > 0 such that

A C ~ —pBc —Bc
o) < oo (XY < gy (50 olem ) = i () +ofe )
||chu||L2(R3)

This concludes the proof of O

We can now turn to the proof of the second-order expansion of the energy.

Proposition 38 (Second order expansion of the energy). We have the expansion

E]KN,N?’)\(C) = CZJRs JN3X

+ cmf{ fRS JRS |x|_|“y| WLy g0 L@ |“|(;)|2 dx} +o(c), (5.14)

where the infimum is taken over all the minimizers of Jgs nsx.

Proof of [Proposition 38 In order to deal with the term Dy, we first prove a con-
vergence result similar to what we did in for term § G|w|?.

3/2

Lemma 39. Let v. be such that the rescaled function v, = ¢=3/?v.(c1x) verifies

]lKCTU)C —> v
B c—0
strongly in L2(R3) n LS (R?), then

2 2
c 1Dy (v, v.2) — J J M dy dx =: Dgs(v?,v?).
rs Jrs |z —yl
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Proof of [Lemma 39, We have

DRS(vzva) 1DK( Ves 2)
:D]RB( U—HKU)+DR3(U —]I]K’U 1KU)

vt [ ] @) (2ol = Gela = ) 2l dy e

By the Hardy-Littlewood-Sobolev inequality and the strong convergence of 1k, ¥,
in L'?/5(R3), the two first terms of the right hand side vanish.

To prove that the last term vanishes too, we split the double integral over K x K
into several parts depending on the location of x — y.

We start by proving the convergence for x — y € K. By

ﬂ W2(@) ||z —y1 ™ — Gl — )| 02 (y) dydx

KxK
z—yek
M 4 M 4
ff y)dzdy < - lvell 2 k) = - el .y =2 O-
KxK
z—yekK

When z — y ¢ K, we treat first the term due to | - |~!. We have

ve (2)ve (y) _
H ‘x_ dyde < 26 el ey — 0.

KxK
z—ye2K\K

To deal with the remaining terms due to Gg when z — y ¢ K, we will use the

same notation K7 as in the proof of By (4.1), we therefore have to
prove, for o € {—1,0,+1}3\(0,0,0), the vanishing of

2 &2
vo\xT)v
z)Gg(z —y) 3(y)dydx‘$ Mdydx.
|z —y — co|
KxK K. xK.
z—yeK r—yec K7

Let 0 < v < 7. Given that o # (0,0,0), we have
{(x,y) eK.xKe|lz—yec- K7} nB(0,cv) x B(0,cv) = &.
Hence, using the Hardy-Littlewood-Sobolev inequality, we obtain

o o2 o112
J j )Gl — )02(y) dy d| < 2 152 s2ss e (0,00 el 1200 s

KxK
r—yeK”

and the right hand side vanishes when ¢ — 0 since ||17¢||ilz/5(Kc\B(Oﬁcy)) vanishes
and ||17cHilz/s(Kc) is bounded, both by the L'%%(R?)-convergence of 1k #.. This
concludes the proof of O

Let w, be a sequence of minimizers to Ex, nsx(c). By Propositions [24] ﬂ and |33 .
the convergence rate , and Lemmas @ and |3 E we obtain

EKN,NSA@=c2JRs,N3A+c(;DR3<|Q|2,|Q|2>— [ 00 4 oo

where @ is the minimizer of Jgs ysy to which 1., .k We, (- +2,) converges strongly.
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Let us now prove that ¢ must also minimize the term of order ¢. We suppose
that there exists a minimizer u of Jgs sy such that .7 (u) < .7(Q), where

S L TP
RrR3 JR3 ‘117 - R3 |{E|

By arguing as in Propositions [26| and (3 and defining, for a fixed small 5 € (0;1),
the smooth function x € C°(Ky) verifying 0 < x < 1, xj1—n)ky = L, Xjrs\gy =0,
we can prove that there exists v > 0 such that

/KN,C (\/ N3)\U(C)X> = CQJRB’NS)\ + 0(6_1)0)0*,00.

Tl e ey

On the other hand, since TePutx] 2 WHC.KNU — u strongly in L?(R?) n L*(R3),

|CS/2“(C')XHL2(KN)

we apply Lemmas [34] and [39] to it and finally obtain
Ep.c NSAM = ?Jgs sy + 7 (u) + o(c)
(e )Xl 2 )
< CQJR3’N3)\ + Cy(Q) + O(C) = E]KN,N3)\(C)3
leading to a contradiction which finally proves that () minimizes .¥ and thus con-

cludes the proof of O

is therefore proved combining the results of [Proposition 24} [Proposi|
[t1on 33} [Proposition 35| and [Proposition 38|

5.4. Proof of on the number of minimizers. The arguments
developed in this section do not rely on what we have done in Section
We can expand the functional &k . around a minimizer w. as

& c(we + ) = B a(c) +(LE f1, fiorem) + (L7 fo, f2rr2) = 2pte (We, f1)p2 i)
— e [ £172x) + 2Dx(R(we f), R(we f)) + o[ fl5 i), (5.15)

for f e H. . (K,C), with f1 := R(f), f2 := $(f) and where
LT = —A+ epplwe|? — clwe|? + e — G + |we]? * Gk (5.16)
and
[+ 7 45 H 2
LT =-A+ gcTF\wc|3 — §c|wc|3 + pe — 9 + |we|” * Gk, (5.17)

where ¢ is defined by

& = Z GKN(' — Rl)

We have used here that

[ = [wr = p [ lop-2nwh)

p(p—2 - 7 p -
- (z)fwo;eo ol 4| R(wh) > - 5['“"17 *Ibf? = o (IAl) - (5:18)

for any complex-valued w,h e H' and 2 < p < 4.

Let us suppose that [Conjecture ] m holds and that there exist two sequences w,
and w, of non-negative minimizers to Fx, ns(c) concentrating around the same
nucleus at position R € K. Then, by we have for 2 < p < +00 that

[, (- + cnR) — Q”LP(KCn) + [lee,, (- + enR?) — Q”LP(]KC — 0

n) n—+ao0
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for a subsequence ¢,,. We define the real-valued f, := w,, —w,, , which verifies that

I fll H2,,(k.,) uniformly bounded and, for ¢, > 0, the orthogonality properties
(We,, + Weyr Fyr2,, (&) = Wey + Genr Fdrz,, (.,) = 0 (5.19)
and
(G (en™ ), V((We, +@e,) fu)drz, ., =0 (5.20)

Indeed, the fact that w. and w,. are real-valued gives the orthogonality (5.19)).
Moreover, the orthogonality property stated in the following lemma leads to ([5.20)).

Lemma 40. If w, is a real-valued minimizer to Ex x(c), then w, is orthogonal to
GV w,.

Proof of[Lemma 40 As mentioned in [Proposition 35| the four first terms of &k .

are invariant under any space translations thus we have
Si.olwel- + 7)) = Frale) — 21 f GR(wVwe) + O(T?).
K

Hence (¢, R (w.Vc)) 2 ) = 0 for any minimizer w.. Since ¢ is real-valued, then
(e, GV we) r2@) =0 if w, is a real-valued minimizer. O

By property together with Dy (h,h) =0 and
2(tbn, fryrex.,) + ”fn”%Z(KCn) = (tn + &, f)12(x.,,) = 0,
we obtain from that
Bxa(en) = ke, (We,) = B (en) + en* (LY for fadie,, + ol fnll i i)
where the operator L} on is defined on L?(K,, ) by

He,,
cn?

7 5
Ly = A+ —cppli.|5 — §|1T)C|% + 2 4 2 A we, P x Gr](en ). (5.21)

" 3
Therefore, by the ellipticity result <Lj{fn,fn>L2(Kun) > C”f"”%l(Kc y =0 of the
next proposition, which rely on [Conjecture 6, we obtain (for ¢, large enough) that

o 5 o o
0= Ccn2||fn||§11(u<cn) + ol ) = Ccn2||an%11(Kcn) + 0(0n2||fn||§11(11<%))

hence that f,, = 0 for c large enough, i.e. w., = w,,. This mean that if
holds then there cannot be more than N non-negative minimizers for ¢ large enough

and, together with this concludes the proof of We are

thus left with the proof of the following non-degeneracy result.

Proposition 41. Let (w.). be a sequence of minimizer to Ex x(c) and L} the
associated operator as in (5.21)). Then there exists C,cy > 0 such that for any
c > ¢y and any f, € HY(K,,C) verifying the two orthogonality properties (5.19)

and (5.20), we have
2
<L7rfn7 f”>L2(Kcn) =C ||fn||H1(Kcn) : (5.22)

Proof of [Proposttion 71} Following ideas in [61], we definc
: <L7tf’f>L2(Kcn)
Qp = . 11115K : W
feH (K L
(n+@n,fr2,, )= H'(Ke,)

<€?(C,L_1-),V((7I)Cn +L:)Cn)f)>L2(Kcn)=0

and we will show that «,, > 0 for ¢ large enough.
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Lemma 42. Let (w.). be a sequence of minimizer to Ex x(c) and Q the positive
minimizer of Jrs x associated with the converging subsequence 1k, e, (- + ¢, R).

Define as in (2.12)) the operator L:[ associated with @ and, as in (5.21), L} asso-

ciated with we, . Let f, is a uniformly bounded sequence H;eT(KCn) then

(L, frems) < 1i7fgigolf<LZ fns fadr2x.,)
with f such that g, fn(- + ¢nR) — f weakly converges in L*(R?).
Proof of [Lemma Z3. Up to the extraction of a subsequence (that we will omit in

the notation), there exists f such that 1k, fn(- + cnR) — f weakly in L?(R?)
because f,,(- + ¢, R) is uniformly bounded in H!(K,, ). Thus, by

tim inf [V ful e, ) = Binf [V o+ caBll e, ) = 1V 2,

Moreover, || f,]| (K, ) IS uniformly bounded by hypothesis thus
_ _ 1 2
n HG (en™ ) frs fr) < 00”2 ||£¢||L2(K) ”anL‘k(Kcn) et 0

and, by the same argument as the one to obtain (5.9)), we have

- - —1s 12 2
e H|we, |? * Grlen ™) o, fu) S en”! ”wc"”L%(KC ) ”f"HLI%(KC - 0.
-T n

Moreover, by [Proposition 24} 1k, wy(- + ¢, R) strongly converges in L(R?) for

2<q<6henceforp=§andp=%

(e, [P, |l 2., = e, (- +enR)P, | fu -+ enR)P 2.,y — QP IfP)r2(re).-
Finally, by and weak convergence in L?(R?) of 1k, fn(- + cnR),

Hey, Hey 2 2
CCQ CCQ faC+ B2, ) = w172 @s) -
n n

This concludes the proof of O

We now prove that «,, cannot tend to zero. Let suppose it does, then there exists
a sequence of f,, € H'(K,, ) such that Il g, y =1, (e, +@e,s fr)rz, (k.,) =0

and (4 (c, 1), V(e +&e,) fa))r2,, (%0 = 0o With (L fo, fu) 2,y = O-

Thus, by the uniform boundedness of ||f, | (K, )0 LK., fn converges weakly in

L?(R3) n L%(R3) to a f which verifies LEf, Premsy <0, by and

71 Hix,,) S 1. We claim that f also solves the orthogonality properties

f, Q2@ =0 and  {f,QV|- |72 = 0.
Indeed, on one hand we deduce from the uniqueness of @ = 0 (given by the conjec-
ture), that 1, (W, (- + ¢uR) + &, (- + ¢uR)) — 2Q in L*(R3) n L (R?). This,
together with (5.19)) and the weak convergence of the f,, leads to {(f, Q)r2(rs) = 0.
On another hand, the uniqueness of @ gives also the L?(R3) strong convergence

L., V(ibe, (- + cal) + e, (- + cuR)) — 2VQ € H'(B?).

Thus, applying [Lemma 34| on one hand to it and g, fu(- + ¢nR) — f € H'(R?)
with the first set of conditions in|Lemma 34|{and, on the other hand, to 1k, (e, (-+
enR) 4 e, (- +¢uR)) = 2Q and 1k, V fu(-+cnR) — Vf € L*(R?) — which comes
from — with the second set of conditions, we obtain

we have

. . 2 . .
lim inf =5 1ol ) = lim inf

o[ YU

re |-

E
Finally, (5.20) implies that (f,QV|-|~")r2ms) = —(V(fQ),| - ["")r2ms) = 0 and

our claim is proved.

<g(cn_1'+R)7 v[(uv}cn ('+cnR)+(:)cn ('+cnR))fn('+cnR)]>Lger(]K

Cn



SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL 35

As we will prove in [Proposition 43| if [Conjecture 6| holds then these two orthog-
onality properties imply that there exists a > 0 such that

2
(L f Premsy = ol fllan s

hence f = 0 due to (L} f, f)r2@s) < 0 obtained previously. Since the terms
involving a power of |w,, | converge and f = 0, we have

o1) = (L fur Fud o,y = IV Falagen,y + il FallZae. ) + 01)

hence both norms vanish, since g > 0, which means that || f.| g, ) — 0. This

contradicts || full 1, ) =1 and concludes the proof that a;, cannot vanish, hence

that of [Proposition 41} O
We are left with the proof of
Proposition 43. If[Conjecture g holds then there exists o > 0 such that
LLf, Prees) = « ”f”?{l(]I@) : (5.23)
for all f € H'(R3) such that {f,Q)r2rz) = 0 and {f,QV|-|"*)r2(rs) = 0.

The proof of this proposition uses the celebrated method of Weinstein [61] and
Grillakis—Shatah—Strauss [I9]. The idea is the following. Using a Perron-Frobenius
argument in each spherical harmonics sector as in [61, 28] [32], one obtains that
the linearized operator L;’ has only one negative eigenvalue with (unknown) eigen-
function ¢g in the sector of angular momentum ¢ = 0, and has 0 as eigenvalue
of multiplicity three with corresponding eigenfunctions 0d,,@. On the orthogonal
of these four functions, Llf is positive definite. In our setting, we have to study
L} on the orthogonal of  and the three functions z;|2z|~®Q(z) which are different
from the mentioned eigenfunctions. Arguing as in [61], we show below that the
restriction of L; to the angular momentum sector £ = 1 is positive definite on
the orthogonal of the functions z;|z|~2Q(z). The argument is general and actually
works for functions of the form 0, (n(|z]))Q(z) = ;|z|~''(|z|)Q(z) where 7 is
any non constant monotonic function on R. On the other hand, the argument is
more subtle for ) in the angular momentum sector ¢ = 0 and this is where we

need
Proof of [Proposition 43 First we note that it is obviously enough to prove it for f

real valued but also that it is enough to prove
<L:f7 f>L2(]R3) = Hf||2L2(R3) (524)
with a > 0. Indeed, if f verifies (5.24) then, for any € > 0, we have

7 4 5 2
@it Dz ((=2ave (w- ferelQle - J1Q1E ) I + 19712,

hence f verifies (5.23) too (for a smaller o > 0).
Since @ is a radial function, the operator L: commutes with rotations in R3 and
we will therefore decompose L?(R?) using spherical harmonics: for any f € L?(R3),

0 Y4
Fl)y=>0 > )y,

{=0m=—¢

where x = rQ) with r = |z| and 2 € S2. This yields the direct decomposition

0
L2 (RS) = (—B H(g)
=0
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and L} maps into itself each
Hp = L*(Ry,r? dr) @ span{Y;"}!

Using the well-known expression of —A on H ), we obtain that
0
_ +
- @ Lu,l
£=0
where the L;K’s are operators acting on L?(R,,72dr) given by

a2 2d 1z(£+1) 7 5, 2
Lt —_— = - - 5 — - 5 .
T 7“d7“Jr r2 Jr3 TF|Q“| 3|Q“‘3+’u
We thus prove inequality (5.24) by showing that there exists v > 0 such that
for each ¢ the inequality holds for any f € My n H'(R?) verifying (f,Q) = 0 and
QY| "D remsy = 0.

Arguing as in [28], we have first the following result.

m=—£"

Lemma 44 (Perron—Frobenius property of the L+ 0)- Fach L+ has the Perron—
Frobenius property: its lowest eigenvalue e, ¢ s szmple and the correspondmg etgen-
function (1) is strictly positive.

Proof for the sector ¢ = 1. We start with the case £ = 1 and prove that

L;f,
e - M ~o (5.25)
feHaynH (R?) ||f||L2(1R3)
QY™ 123y =0

Since @ is radial, we have for i = 1,2, 3, that
Tq
aziQ(x) = Q/(T)7 € H(l)

Moreover, by the non-degeneracy result of we know that d,,Q is an
eigenfunction of L;’ associated with the eigenvalue 0 hence Q’(r) is an eigenfunction

of Lzrl) associated with the eigenvalue e, 1 = 0. Therefore, the fact that Q'(r) < 0

(as proved in [Theorem 3)) implies, using the Perron-Frobenius property verified by
Lzrl), that e, 1 = 0 is the lowest eigenvalue of Lzrl) and is simple with —Q’ > 0 the

associated eigenfunction. Consequently, we have for any f € H ;) that

1
(LS, Prems) = Z <Lzr1)fm(r)afm(r)>L2(]R+,r2dr) =0

m=—1

and in particular that oy = 0.
We thus suppose that a; = 0 and prove it is impossible. Let f,, be a minimizing

sequence to (5.25) with || fn 7 2(gs) = 1. One has

||an||L2(R3) (L fos Froreee) + 3 ||Q||L°C (R3)

and consequently the sequence f, is bounded in H 1(R3). We denote by f its weak
limit in H*(R?), up to a extraction of a subsequence, which is in H(1)- We have

0< <L;f, f>L2(R3) < lim inf<Lan, fn>L2(R3) =ap =0,
where the second inequality is due to
lim inf ||an||L2(]R3) va||L2 (R3) lim inf an”L?(RS) ||fHL2 ]RS) )

p >0 and to {|QP fr, fn)r2msy — {|QIPf, f)r2(ms), for p = § and p = %, obtained
by a similar argument to the one in proof of [Lemma 42| It implies that

L, foremsy =0



SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL 37

3 . . :
hence, f = >}, ¢i0;,Q by the Perron-Frobenius property and since {%*, %2, %2
is an orthogonal basis of span{Y; !, Y?, Y;'}. However, for any i = 1,2, 3, we have
after passing to the weak limit that

We then remark that, since @ is radial, we have

[ Zhewa,ewa- |

s |z

This gives, for ¢ = 1,2, 3, that

0= [ Ziwewar=a [ L@@

s [2f? ra |2]*

but Q > 0 and Q" < 0, hence ¢; = 0 thus f = 0. We thus have obtained, if a; = 0,
that any minimizing sequence f,, to (5.25) converges weakly to 0 in H*(R3). This
gives {|QP fn, fn)r2(m3sy — 0 and

”vfn”iZ(ﬂ@) + ”fn”%?(ﬂ@) = <L;rfmfn>L2(R3) +o(l) > =0

therefore f,, — 0 strongly in H!(R3), because u > 0, which contradicts the fact
that ||fn||L2(R3) = 1. We have thus proved that o; > 0.

Proof for the sector ¢ > 2. We now deal with the cases £ > 2 and prove that
there exists a > 0 such that

2
<L:,z</77 Prr2®y 2 ar) = alleli2@, 2 an (5.26)
for any ¢ € L?(Ry,r?dr). Since for such ¢ we have
2
<L:,13<P7 OYL2(Ry 2 dr) = <L&_1)</J7 err2®y r2ar) T200=1) [o/rl 12, r2ar » (5:27)
it is then sufficient to prove ([5.26)) in the case £ = 2 in order to prove it for all £ > 2.

For ¢ = 2, we can assume that inf U(La)) is attained because, otherwise,

7 2 D 2
V= §CTF|QM|3 - §|Qu‘3

being bounded and vanishing as r — o0, it is well-known that aeSS(L(g)) = [p; +0)
and ((5.26)) fOl}_OWS- We thus have, by (5.27) and Lzrl) > 0, that the eigenvalue

eu,2 = inf (T(L(Q)) and its associated eigenfunction ys £ 0 verify that

2
||<P2/7”||L2(]R<+ r2dr) 0

eu,2 = inf O'(Lz;)) > 5
||902||L2(]R+,r2 dr)

and (5.26]) is therefore proved. It concludes the case ¢ = 2.

Proof for the sector ¢ = 0. We conclude with the case £ = 0 and prove that for
any f € H o), we have
Lk Prees

feH oy nH (R?) ||f||i2(R3)
<f’Q>L2(R3) =0

Qg =

(5.28)

We already know that ag > 0 because @ is a minimizer. Indeed, for f € H*(R?) such
that {f,@Q)r2@s) = 0, through a computation similar to (5.15) and using (2.10),
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(3.5), (5.18) and that @ is a minimizer of Jgs(\), we obtain

Q+cf
i@ < s (54, 1)

= Irs(Q) + 52(<L:mfa %f>L2(R3) + <L;Sfa 3f>L2(1R3)) + 0(52)

which implies in particular that (L} f, f)r2®s) = 0 for as soon as (f, Q)r2r3) = 0.

We thus suppose ag = 0 and prove it is impossible. Let f, be a minimizing
sequence to with ||fn||L2(]R3) = 1. As in the proof of case £ = 1 above, f,, is in
fact bounded in H*(R?®) and denoting by f € Hq) its weak limit in H'(R?), up to
a subsequence, we have (L} f, f)r2(ms) = 0. This leads, to L} f = 3Q thus, using
that L} is inversible, to f = j (L:j)_lQ. Consequently,

0={f,Q r2rs) = BQ, (L:)71Q>L2(R3)

hence § = 0 since (Q, (L})7'Q)r2@s) < 0 by [Conjecture 6, We have obtained
f =0 which is absurd as before. O

This concludes the proof of O
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