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Abstract:
This work studies the dynamics of a one-dimensional elastic bar with random elastic modulus and prescribed
boundary conditions, fixed at one end, and attached to a lumped mass and two springs (one linear and another
nonlinear) on the other extreme, subjected to a Gaussian white noise external force. The system analysis
uses the maximum entropy principle to specify the elastic modulus (gamma) probability distribution and uses
Monte Carlo simulations to compute the propagation of uncertainty in this continuous–discrete system. After
describing the deterministic and the stochastic modeling of the system, some configurations of the model are
analyzed in order to characterize the effect of the lumped mass in the overall behavior of this dynamical system.

Keywords: nonlinear dynamics, stochastic modeling, maximum entropy principle, uncertainty
quantification, Monte Carlo method.

1 INTRODUCTION

The dynamics of a mechanical system depends on some parameters such as physical and geometrical proper-
ties, constraints, external and internal loading, initial and boundary conditions. Most of the theoretical models
used to describe the behavior of a mechanical system assume nominal values for these parameters, such that the
model gives one response for a given particular input. In this case the system is deterministic and its behavior
is described by a single set of differential equations. However, in real systems they do not have a fixed value
since they are subjected to uncertainties of measurement, imperfections in manufacturing processes, change
of properties, etc. This variability in the set of system parameters leads to a large number of possible system
responses for a given particular input. Now the system is stochastic and there is a family of differential equations
sets (one for each realization of the random parameters) associated to it.

In order to quantify variability of the responses of mechanical systems which are of interest in engineering
applications, several recent works have been applying techniques of stochastic modeling, to take into account
the inaccuracies due to model and data uncertainty, and uncertainty quantification, to compute the propagation
of incertitude of the random parameters through the system. In the context of drillstring dynamics, the works
of Ritto et al. (2009); Ritto and Sampaio (2012); Ritto et al. (2013) can be highlighted, as well as the work of
Zio and Rochinha (2012) in hydraulic fracturing. Other studies applying stochastic techniques, in the context
of dynamic of flexible structures, are Ritto et al. (2008, 2011) and Cunha Jr and Sampaio (2012). The analysis
of the stochastic dynamics of a highly nonlinear system, with three degrees of freedom, can be seen in Lima
and Sampaio (2012). To see the latest theoretical advances of stochastic modeling in structural dynamics, the
reader is encouraged to consult the work of Soize (2012).

This work aims to conduct a purely theoretical study of the propagation of uncertainty in the dynamics
of a nonlinear continuos random system with discrete elements attached to it. This theoretical study aims
to illustrate a consistent methodology to analyze the stochastic dynamics of nonlinear mechanical systems.
In this sense, this work considers a one-dimensional elastic bar, with random elastic modulus, fixed on the left
extreme and with a lumped mass and two springs (one linear and another nonlinear) on the right extreme
(fixed-mass-spring bar), subjected to an external force which is proportional to a Gaussian white noise.

This paper is organized as follows. In section 2 is presented the deterministic modeling of the problem,
the discretization procedure and the algorithm used to solve the equation of interest. The stochastic modeling
of the problem is shown in section 3, as well as the construction of a probability distribution for the elastic
modulus, using the maximum entropy principle, and a brief discussion on the Monte Carlo method. In section 4,
some configurations of the model are analyzed in order to characterize the effect of lumped mass in the system
dynamical behavior. Finally, in section 5, the main conclusions are emphasized and some directions for future
work outlined.
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Figure 1 – Sketch of a bar fixed at one and attached to two springs and a lumped mass on the other extreme.

2 DETERMINISTIC APPROACH

2.1 Strong Formulation

The continuous system of interest is the one-dimensional fixed-mass-spring bar shown in Figure 1. The
displacement of this system, u, evolves according to the following partial differential equation

ρA
∂2u

∂t2
(x, t) + c

∂u

∂t
(x, t) =

∂

∂x

(
EA

∂u

∂x
(x, t)

)
+ f(x, t), (1)

which is valid for 0 < x < L and 0 < t < T , being L the bar unstretched length and T a finite instant of time.
In this equation ρ is the mass density, E is the elastic modulus, A is the circular cross section area, c is the
damping coefficient, and f(x, t) is an external force depending on position x and instant t.

The left side of the bar is fixed at a rigid wall while the right side is attached to a lumped mass m and two
springs fixed to a rigid wall. The first spring (of stiffness k) is linear and exerts a restoring force proportional to
the stretching on the bar. The second spring (of stiffness kNL) is nonlinear and its restoring force is proportional
to the cube of the stretching. The force which the lumped mass exerts on the bar is proportional to acceleration.
These boundary conditions read as

u(0, t) = 0 and EA
∂u

∂x
(L, t) = −ku(L, t)− kNL

(
u(L, t)

)3 −m ∂2u

∂t2
(L, t). (2)

Initially, any point x of the bar presents displacement and a velocity respectively equal to

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x), (3)

for 0 ≤ x ≤ L. In these equations u0 and u̇0 are given functions of position x.

Moreover, it is noteworthy that u is assumed to be as regular as needed for the initial–boundary value
problem of Eqs.(1), (2), and (3) to be well posed.

2.2 Variational Formulation

Let Ut be the class of (time dependent) basis functions andW be the class of weight functions. These sets are
chosen as the space of functions with square integrable spatial derivative, which satisfy the essential boundary
condition defined by Eq.(2).

The variational formulation of the problem under study says that one wants to find u ∈ Ut that satisfy, for
all w ∈ W, the weak equation of motion given by

M(ü, w) + C(u̇, w) +K(u,w) = F(w) + FNL(u,w), (4)

where M is the mass operator, C is the damping operator, K is the stiffness operator, F is the distributed
external force operator, and FNL is the nonlinear force operator. These operators are, respectively, defined as
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M(ü, w) =

∫ L

0

(
ρAü(x, t)w(x)

)
dx+mü(L, t)w(L), (5)

C(u̇, w) =

∫ L

0

cu̇(x, t)w(x)dx, (6)

K(u,w) =

∫ L

0

(
EAu′(x, t)w′(x)

)
dx+ ku(L, t)w(L), (7)

F(w) =

∫ L

0

f(x, t)w(x)dx, (8)

FNL(u,w) = −kNL

(
u(L, t)

)3
w(L), (9)

where ˙ is an abbreviation for temporal derivative and ′ is an abbreviation for spatial derivative.

The variational formulations for the initial conditions of Eq.(3), which are valid for all w ∈ W, are respectively
given by

M̃(u(·, 0), w) = M̃(u0, w), (10)

and

M̃(u̇(·, 0), w) = M̃(u̇0, w), (11)

where M̃ is the associated mass operator, defined as

M̃(u,w) =

∫ L

0

ρAu(x, t)w(x)dx. (12)

2.3 An Eigenvalue Problem

Now consider the following generalized eigenvalue problem associated to Eq.(4),

−ν2M(φ,w) +K(φ,w) = 0, (13)

where ν is a natural frequency and φ is an associated mode.

In order to solve Eq.(13), the technique of separation of variables is employed, which leads to a Sturm-
Liouville problem (Al Gwaiz, 2007), with denumerable number of solutions. Therefore, this generalized eigen-
value problem has a denumerable number of solutions, all of then such as the following eigenpair (ν2n, φn), where
νn is the n-th bar natural frequency and φn is the n-th bar mode.

It is important to observe that, the eigenfunctions {φn}∞n=1 span the space of functions which contains the
solution of the Eq.(13) (Brezis, 2010). As can be seen in Hagedorn and DasGupta (2007), these eigenfunctions
satisfy, for all m 6= n, the orthogonality relations given by

M(φn, φm) = 0, (14)

and

K(φn, φm) = 0, (15)

which made then good choices for the basis function when a weighted residual procedure (Finlayson and Scriven,
1966) is used to approximate the solution of a nonlinear variational problem, such as Eqs.(4), (10) and (11).
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2.4 Modes and Natural Frequencies

According to Blevins (1993), a fixed-mass-spring bar has its natural frequencies and the corresponding
orthogonal modes given by

νn = λn
c̄

L
, and φn(x) = sin

(
λn
x

L

)
, (16)

where c̄ =
√
E/ρ is the wave speed, and the λn are the solutions of

cot (λn) +

(
kL

AE

)
1

λn
−
(

m

ρAL

)
λn = 0. (17)

2.5 Galerkin Formulation

In order of approximate the solution of Eqs.(4), (10) and (11) the Galerkin method (Hughes, 2000) is
employed. Therefore, the displacement field u is approximated by a linear combination of the form

u(x, t) ≈
N∑

n=1

un(t)φn(x), (18)

where the basis functions φn are the orthogonal modes of the fixed-mass-spring bar, exemplified in the end of
section 2.4, and the coefficients un are time-dependent functions. For a reason that will be clear soon, define
u(t) of RN as the vector in which the n-th component is un(t).

In general, the linear combination of Eq.(18) is not a solution for the variational problem of Eqs.(4), (10) and (11),
so that a residual function is obtained. This residual function is orthogonally projected into the vector space
spanned by the functions {φn}Nn=1 in order to minimize the error incurred by the approximation (Hughes, 2000).
This procedure results in the following N ×N set of nonlinear ordinary differential equations

[M ] ü(t) + [C] u̇(t) + [K]u(t) = f(t) + fNL

(
u(t)

)
, (19)

supplemented by the following pair of initial conditions

u(0) = u0 and u̇(0) = u̇0. (20)

where [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, and the upper dot again
denotes the time derivative. Also, f(t), fNL

(
u(t)

)
, u0, and u̇0 are vectors of RN , which respectively represent

the distributed external force, the nonlinear force, the initial position, and the initial velocity.

The initial value problem of Eqs.(19) and (20) has its solution approximated by Newmark method (Newmark,
1959). Details about this integration scheme can be found in Hughes (2000).

3 STOCHASTIC APPROACH

3.1 Probabilistic Model

Consider a probability space (Ω,A,P), where Ω is sample space, A is a σ-field over Ω and P is a probability
measure. In this probabilistic space, the elastic modulus is assumed to be a random variable E : Ω → R that
associates to each event ω ∈ Ω a real number E(ω). Also, the distributed external force acting on the system
is given by the random field F : [0, L]× [0, T ]× Ω→ R such that

F (x, t, ω) = σφ1(x)N(t, ω), (21)

where σ is the force amplitude, and N(ω, t) is a Gaussian white noise with zero mean and unit variance. A
white noise is a random process which all instants of time are uncorrelated. In other words, the behavior of the
process at any given instant of time has no influence on the other instants. A typical realization of the random
external force, given by Eq.(21), for fixed position, is shown in Figure 2.
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Figure 2 – This figure illustrates a realization of the random external force.

Consequently, the displacement of the bar is the random field U : [0, L]× [0, T ]× Ω→ R, which evolves
according the following stochastic partial differential equation

ρA
∂2U

∂t2
(x, t, ω) + c

∂U

∂t
(x, t, ω) =

∂

∂x

(
E(ω)A

∂U

∂x
(x, t, ω)

)
+ F (x, t, ω), (22)

being the partial derivatives now defined in the mean square sense (Papoulis and Pillai, 2002). This problem
has boundary and initial conditions similar to those defined in Eqs.(2) and (3), by changing u for U only.

3.2 Elastic Modulus Distribution

The elastic modulus cannot be negative, so it is reasonable to assume the support of random variable
E as the interval (0,∞). Therefore, the probability density function (PDF) of E is a nonnegative function
pE : (0,∞)→ R, which respects the following normalization condition

∫ ∞
0

pE(ξ)dξ = 1. (23)

Also, the mean value of E is known real number µE , i.e.,

E [E] = µE , (24)

where the expected value operator of E is defined as

E [E] =

∫ ∞
0

E(ξ)pE(ξ)dξ (25)

Finally, one also wants E to have a finite variance, i.e.,

E
[
(E − µE)

2
]
<∞, (26)

which is possible (Soize, 2000), for example, if

E
[
ln (E)

]
<∞. (27)

Following the suggestion of Soize (2000), the maximum entropy principle (Shannon, 1948; Jaynes, 1957a,b)
is employed in order to consistently specify pE . This methodology chooses for E the PDF which maximizes the
differential entropy function, defined by

S [pE ] = −
∫ ∞
0

pE(ξ) ln
(
pE(ξ)

)
dξ, (28)

subjected to (23), (24), and (27), the restrictions that effectively define the known information about E.
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Respecting the constraints imposed by (23), (24), and (27), the PDF that maximizes Eq.(28) is given by

pE(ξ) = 1(0,∞)
1

µE

(
1

δ2E

) 1

δ2E


1

Γ(1/δ2E)

(
ξ

µE

) 1

δ2E
− 1


exp

(
− ξ

δ2EµE

)
, (29)

where 1(0,∞) denotes the indicator function of the interval (0,∞), δE is the dispersion factor of E, and Γ
indicates the gamma function. This PDF is a gamma distribution.

3.3 Stochastic Solver: Monte Carlo Method

Uncertainty propagation in the stochastic dynamics of the continuous–discrete system under study is com-
puted by Monte Carlo (MC) method (Metropolis and Ulam, 1949). This stochastic solver uses a Mersenne
twister pseudorandom number generator (Matsumoto and Nishimura, 1998), to obtain many realizations of E
and F . Each one of these realizations defines a new Eq.(4), so that a new variational problem is obtained. After
that, these new variational problems are solved deterministically, such as in section 2.5. All the MC simulations
reported in this work use 4096 samples to access the random system. Further details about MC method can be
seen in Liu (2001); Shonkwiler and Mendivil (2009); Robert and Casella (2010).

4 NUMERICAL EXPERIMENTS

The numerical experiments presented in this section adopt the following deterministic parameters for the
studied system: ρ = 7900 kg/m3, c = 5 kNs/m, A = 625π mm2, k = 650 N/m, kNL = 650 × 1013 N/m3,
L = 1 m, σ = 5 kN and T = 10 ms. The random variable E, is characterized by µE = 203 GPa and δE = 10%.
The initial conditions for displacement and velocity are respectively given by

u0 = α1φ3(x) + α2x, and v0 = 0, (30)

where α1 = 0.1 mm and α2 = 0.5 × 10−3. Note that u0 reaches the maximum value at x = L. This function
is used to “activate” the spring cubic nonlinearity, which depends on the displacement at x = L. A parametric

study, with
m

ρAL
= 0.1, 1, 10, 50, is performed to investigate the effect of the end mass on the bar dynamics.
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Figure 3 – This figure illustrates the mean value (blue line) and a 98% of probability interval of confidence
(grey shadow) for the random process U(L, ·, ·), for several values of the discrete–continuous mass ratio.
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4.1 Analysis of Random System Envelope of Reliability and Phase Space

The mean value of U(L, ·, ·) and an envelope of reliability, wherein a realization of the stochastic system has

98% of probability of being contained, are shown, for different values of the discrete–continuous mass ratio
m

ρAL
,

in Figure 3. By observing this figure one can note that, as the value of lumped mass increases, the decay of the
system displacement amplitude decreases significantly. This indicates that this system is not much influenced
by damping for large values of the discrete–continuous mass ratio.

The mean phase space of the fixed-mass-spring bar at x = L is shown, for different values of the discrete–
continuous mass ratio, in Figure 4. The observation made in the previous paragraph can be confirmed by
analyzing this figure, since the system mean orbit tends from a stable focus to an ellipse as the discrete–

continuous mass ratio increases. In other words the limiting behavior of the system when
m

ρAL
→ ∞ is a

mass-spring system.
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Figure 4 – This figure illustrates the mean value of the fixed-mass-spring bar phase space at x = L, for several values
of the discrete–continuous mass ratio.

4.2 Analysis of Random System PDF

The difference between the system dynamical behavior, for different values of m, is even clearer if one looks
to the PDF estimations of the (normalized) random variable U(L, T, ·), which are presented in Figure 5. For
small values of the discrete–continuous mass ratio, the PDF of U(L, T, ·) displays multimodal shape, which tends
to a unimodal shape as the lumped mass grows, i.e., the discrete–continuous mass ratio increases. Furthermore,

it can be noted that when
m

ρAL
= 50 the greatest probability occurs around the mean value of U(L, T, ·).

5 CONCLUDING REMARKS

A model to describe the dynamics of fixed-mass-spring bar with a random elastic modulus is presented. The
random parameter is modeled as a random variable with gamma distribution, being the probability distribution
of this parameter obtained by the principle of maximum entropy. The paper analyzes some configurations of the
model to order to characterize the effect of the lumped mass in the overall behavior of this dynamical system.
This analysis shows that the dynamics of the random system is significantly altered when the values of the
lumped mass are varied.
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Figure 5 – This figure illustrates estimations to the PDF of the (normalized) random variable U(L, T, ·), for several
values of the discrete–continuous mass ratio.
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