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Abstract: Many mechanical systems can operate with strong nonlinear behavior, making the negligence of such
effects a source of errors in the prediction of the system response. A methodology, that has been successfully
used, to predict the behavior of such systems is based on the identification of Volterra kernels. However, this
technique is subject to uncertainties that are induced by the measurements noise. This work presents a study
that assesses the influence of these uncertainties in the Volterra kernels, expanded with Kautz functions, and
their propagation through the nonlinear dynamic system. The proposed method is applied to a nonlinear beam.
Monte-Carlo simulations are used to compute the propagation of uncertainties in Volterra kernels. The results
have been shown that the kernels are greatly influenced by the presence of uncertainties and confidence limits
for the system responses can be established.
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INTRODUCTION

Many engineering structures have geometries, gaps, bolted connections, clearance, gaps, cracks and mate-
rials constitutive relationships that conduces to highly nonlinear effects that make the systems exhibit com-
plex nonlinear responses containing harmonic distortion, jumps, modal interactions, bifurcation, and chaos
(Noël and Kerschen, 2016). Thus, it should necessarily be considered in the analysis of the dynamic behavior
of such structures, according to many authors (Virgin, 2000; Worden and Tomlinson, 2001). In this sense, the
Volterra series expanded in the orthonormal basis, with the Kautz functions, have been used to predict the
dynamic responses of system with nonlinear behavior (Shiki et al., 2013a; da Silva, 2011a). A lot of papers
as Shiki et al. (2013b), Shiki et al. (2014), Hansen et al. (2014a), Hansen et al. (2014b), Scussel and da Silva
(2016) and Shiki et al. (2016) have shown the practical application of this approach in deterministic systems
without consider the uncertainties quantification.

However, any real system is uncertain with respect to the project nominal values, due to material imperfec-
tions, irregularities on the manufacturing process, noise in the measurements, etc. (Iaccarino, 2009; Oden et al.,
2010; Soize, 2013) thus, it is essential for a reliable system identification technique take into account the param-
eters uncertainties. There are two types of uncertainties in mathematical-mechanical modeling of real systems,
the data uncertainties and the model uncertainties (Soize, 2005). In this paper, only the data uncertainties
related with the noise effects and changes in the measurements process are considered.

In a previous paper, uncertainties analyses in Volterra series was made considering simulated system that
approximates the behavior of a nonlinear beam with variation in the Young’s Modulus value (Villani et al., 2015).
Now, this paper deals with the uncertainty analysis in the models used in the Volterra kernels identification
considering a real system with nonlinear behavior. Hence, it must defined confidence limits for identifying
towards a future damage detection in the mechanical system, considering the variabilities in its behavior.

THE STOCHASTIC VOLTERRA SERIES

In this work a parametric probabilistic approach (Soize, 2012, 2013) is employed. In this sense, the model
parameters subjected to uncertainties are described as random variables or random processes, defined on the
probability space (Θ,Σ,P), where Θ is a sample space, Σ is a σ-algebra over Θ, and P is a probability measure.
It is assumed that any random variable θ ∈ Θ 7→ Y(θ) ∈ R in this probabilistic setting, with probability
distribution PY(dy) on R, admits a probability density function (PDF) y 7→ pY(y) with respect to dy.

The discrete time Volterra series can be used to represents different types of nonlinear systems using the
convolution concept (Schetzen, 1980). In a deterministic way, the response y(k) of a nonlinear system can be
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described by:

y(k) =

∞∑

η=1

N1−1∑

n1=0

. . .

Nη−1∑

nη=0

Hη(n1, . . . , nη)

η∏

i=1

u(k − ni) = y1(k) + y2(k) + y3(k) + · · · , (1)

where u(k) is the input signal, y(k) is the system response, Hη(n1, . . . , nη) is the η-order Volterra kernel, y1(k)
is the linear contribution and y2(k) e y3(k) are the quadratic and cubic contributions of y(k).

Now, considering the presence of uncertainties, the system response becomes a random process (θ, k) ∈
Θ× R 7→ y(θ, k) that can be described by:

y(θ, k) =

∞∑

η=1

N1−1∑

n1=0

. . .

Nη−1∑

nη=0

Hη(θ, n1, . . . , nη)

η∏

i=1

u(k − ni) = y1(θ, k) + y2(θ, k) + y3(θ, k) + · · · , (2)

where the random processes (θ, n1, .., nη) ∈ Θ × Rη 7→ Hη(θ, n1, . . . , nη) represents the random version of the
η-order Volterra kernel.

The Volterra series inconvenient is the difficult in the series convergence when a high number of terms was
used N1, ..., Nη. So, the kernels can be expanded in a base of orthonormal functions to minimize the problem,
in this case, with the use of Kautz functions (Kautz (1954); Heuberger et al. (2005); da Silva (2011b)). Now,
the Volterra kernels can be defined by:

Hη(θ, n1, . . . , nη) ≈
J1∑

i1=1

. . .

Jη∑

iη=1

Bη (θ, i1, . . . , iη)

η∏

j=1

ψij (θ, nj) , (3)

where J1, . . . , Jη are the number of samples in each orthonormal projections of the Volterra kernels, the random
processes (θ, i1, . . . , iη) ∈ Θ × Rη 7→ Bη(θ, i1, . . . , iη) represents the random Volterra kernels expanded in the
orthonormal basis. The definition of Kautz functions is related with the dynamic system response y(θ, k) and
depend of the system physical parameters (damping ratio and natural frequency). Then, the Kautz functions
are assumed as a random process (θ, n) ∈ Θ × R 7→ ψ(θ, n). In this context, the Volterra series can be rewrite
as the multidimensional convolution between the random orthonormal kernels Bη(θ, i1, . . . , iη) and the input
signal filtered by the Kautz functions:

y(θ, k) ≈
∞∑

η=1

J1∑

i1=1

. . .

Jη∑

iη=1

Bη (θ, i1, . . . , iη)

η∏

j=1

lij (θ, k) , (4)

where the random process (θ, k) ∈ Θ×R 7→ l(θ, k) is a simple filtering of input signal u(k) by the Kautz function
ψij (θ, nj):

lij (θ, k) =

V−1∑

ni=0

ψij (θ, ni)u(k − ni) , (5)

where V = max{J1, . . . , Jη}.
Then, for each realization θ, the terms of the orthonormal kernels Bη (θ, i1, . . . , iη) can be grouped into

uncertain vectors Φ̂ and estimated by least squares method:

Φ̂ = (Γ̂T Γ̂)−1Γ̂T Ŷ , (6)

where the matrix Γ̂ has the input signal filtered lij (θ, k) and Ŷ = [y(θ, 1) · · · y(θ, k)], k is the number of samples
used. More information about the method can be found in da Silva et al. (2010) or da Silva (2011a).

Kautz Functions

The Kautz functions perform well in representing the orthonormal kernels to identify the Volterra kernels
in oscillatory dynamic models, so they are used in this work (Kautz, 1954).

In a deterministic way, the Kautz functions ψ (z) are defined by the Kautz poles β2η−1 = σ + jω and
β2η = σ− jω, where |β2η−1|,|β2η| < 1 for a stable system and η represents the number of the kernel, varying in
1, 2 and 3 in this paper. Thus, the Kautz functions of generalized form are given by:

ψ2j−1(z) =

√
1− b2

√
1− c2

z2 + b(c− 1)z − c
[Hb,c(z)]

j−1 , (7)

ψ2j(z) = ψ2j−1(z)
z − b√
1− b2

, (8)
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where Hb,c(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c

and the values of b and c for the poles β2η−1, β2η considered are obtained

through relationships:

b =
β2η−1 + β2η

1 + β2η−1β2η
, (9)

c = −β2η−1β2η , (10)

where the definition of Kautz poles are function of ωη and ξη:

βη = −ξηωη ± jωη

√
1− ξ2η . (11)

A procedure for optimizing the choice of setting parameters of the Kautz functions (βη) must be used
(da Rosa et al., 2007; da Rosa, 2009). So, considering that the system response y(θ, k) is a random process,
the system parameters ωη and ξη to each kernel are considered as random variables θ ∈ Θ 7→ ξη(θ) ∈ R,
θ ∈ Θ 7→ ωη(θ) ∈ R.

EXPERIMENTAL SETUP

The experimental setup used in the tests is composed by an aluminum beam with dimensions of 300×18×3
[mm] with a steel mass connected in the free end of the beam to cause an magnetic interaction between the
beam and the magnet. A schematic representation of this system with the experimental apparatus is illustrated
in Fig. 1.

(a) Photo (b) Scheme

Figure 1: Experimental setup.

Note that, a MODAL SHOP shaker (Model Number: K2004E01) is attached 77 mm from the clamped
and used to excite the structure considering different levels of voltage amplitude 0.01 V (low level), 0.10 V
(medium level) and 0.15 V (high level). A vibrometer laser Polytec (Model: OFV-525/-5000-S) and a Dytran

load cell (Model: 1022V) is used to measure the velocity in the free end of the beam and the force excitation,
respectively. All signals are measured considering a sampling rate of 1024 Hz and 4096 samples saved using a
m+p Vib Pilot data acquisition system. It is important to note that, the input signal considered is the voltage
applied in the shaker, as done in Tang et al. (2015), and the study considers the beam-shaker system. Through
this strategy, the applied voltage in the shaker is kept constant, while the beam applied force varies over a range
of frequencies.

The magnet interaction with the beam generates a nonlinear hardening behavior (Kovacic and Brennan,
2011). This hardening effect is illustrated in the beam extreme velocity curves obtained during the stepped sine
test shown in Fig. 2. When the input signal is high, the beam presents a jump phenomenon that is represented
by a sudden drop in the amplitude of the response. This result clearly shows the nonlinear behavior of the
mechanical system one wants to identify.

Fig. 3 shows the spectrogram of input and output signals for two levels of excitation (Low - 0.01 V and High
- 0.15 V) when a linear chirp signal is applied in the beam-shaker system with a rate of 10 Hz/s, between 10
and 50 Hz. The nonlinear effects can be also seen when the high level of input signal is applied, with the arise
of multiple harmonics in the system response. With low level of input signal applied (Fig. 3a and 3b) it can
be seen that the system responds with the excitation frequency and the natural frequency (linear behavior),
so with high level of input signal applied (Fig. 3c and 3d) the system responds with the excitation frequency,
the natural frequency and two and three times the natural frequency when the first mode is excited (nonlinear
behavior). The quadratic and cubic effects are related with the shaker and magnet presence, respectively.
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Figure 2: Beam extreme velocity during a stepped sine test, where △ represents the low level of
input signal (0.01 V), ◦ the medium level (0.10 V) and � the high level (0.15 V).
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(a) Input low level (0.01 V).
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(b) Output low level (0.01 V).
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(c) Input high level (0.15 V).
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(d) Output high level (0.15 V).

Figure 3: Specgram of the inputs and outputs considering differents levels.

RESULTS AND DISCUSSIONS

In all simulations were used sampling frequency of 1024 Hz and 4096 samples. The structure was excited
considering two different levels of voltage amplitude 0.01 V (low level) and 0.15 V (high level) with chirp signal
varying the frequency between 10 to 50 Hz with rate of 10 Hz/s and repeated 150 times in different days between
April and May of 2015 to study the system variations.

The identification of modal parameters damping ratio (ζ) and natural frequency (ωn) uses the underlying
linear dynamics of the beam, obtained when input has low level of amplitude (0.01 V) through the system FRFs
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and the line-fit method (Kouroussis et al., 2012). The modal parameters are important and used in the poles
parameters optimization process. After identifying several realizations of the modal parameters (150 in fact), the
PDFs (Probability Density Function) of damping ratio ζ, natural frequency ωn are nonparametrically estimated,
through histograms and kernel smoothed density curves (Ridgeway, 2007). Fig. 4 shows the normalized PDFs of
damping ratio and natural frequency, where the normalization is performed according to the following expression:

A(n)
norm =

A(n) − µA

σA
, (12)

where A
(n)
norm is the normalized value of the parameter A to each realization n, µA is the mean and σA the

standard deviation.
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(a) ωn (µωn = 23.3 Hz and σωn = 0.1 Hz).
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(b) ξ (µξ = 0.0175 and σξ = 0.0009).

Figure 4: PDFs of the natural frequency and damping ratio of the equivalent linear system.

First, the number of Kautz functions should be selected. For the linear kernel, it is usual to select an order
J1 = 2 functions since this value maintains the second-order nature of linear vibrating systems. The orders
of J2 and J3 was chosen as 2 and 6 functions because the nonlinearity of the system has cubic behavior what
makes the number of functions of third kernel be higher. The parameters ωn and ζ were used to defined the
optimization process limits to find the optimal Kautz poles values to each realization. Tab. 1 shows the limits
used to each kernel that are function of the modal parameters. The optimization process is more complicated in
systems with data uncertainties as opposed to deterministic systems, then, more studies should be performed in
the future to observe if the optimization is really needed or if only the stochastic identification of Volterra kernels
would be able to describe the variability of such systems. Fig. 5 shows the distribution of Kautz parameters,
estimated by the optimization process using a genetic algorithm, to each response realization. This parameters
are used to estimated the Kautz functions that are used to filter the input signal. It can be seen that the PDFs
of the parameters related with the first kernel (ω1 and ξ1) are very similar with the PDFs of modal parameters
(ωn and ζ), because the first kernel describes the linear behavior of the system. The dispersion of the second
kernel parameters (ω2 and ξ2) are larger, because of the fact that the second kernel has lower contribution in
the system response. Finally, the third kernel parameters (ω3 and ξ3) has multi-modal behavior with means
close to the system modal parameters that influences the higher contribution of the third kernel in the response.

Table 1: Kautz parameters limits for each realization.

Parameter ω1(θ) ξ1(θ) ω2(θ) ξ2(θ) ω3(θ) ξ3(θ)
Inferior Limit 0.99× ωn(θ) 0.99× ζ(θ) 0.80× ωn(θ) 0.020× ζ(θ) 0.9× ωn(θ) 0.90× ζ(θ)
Superior Limit 1.01× ωn(θ) 1.01× ζ(θ) 1.20× ωn(θ) 5.00× ζ(θ) 1.10× ωn(θ) 3.00× ζ(θ)

Fig. 6 shows the dispersion of the Volterra kernels in time domain considering 98% of confidence. It can
be seen that the dispersion of first kernel is lower than the other two, because the linear parameters and the
linear system responses vary lower than the nonlinear effects. The second kernel has large dispersion and low
amplitude, because it has low contribution (system response is symmetric). Finally, the third kernel has large
dispersion related with the difficult in estimated of Kautz parameters related with it and the nonlinear behavior
that changes a lot in the data measured. The kernels variations permit to the prediction model describe changes
in the system response over the following days. This is very important in the sense of to describe the systems
behavior through a prediction model by separating the uncertainties to damage.
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(a) ω1 (µω1
= 23.26 Hz and σω1

= 0.04 Hz).
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(b) ξ1 (µξ1 = 0.0177 and σξ1 = 0.0006).
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(c) ω2 (µω2
= 23.92 Hz and σω2

= 1.83 Hz).
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(d) ξ2 (µξ2 = 0.0391 and σξ2 = 0.0187).
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(e) ω3 (µω3
= 23.52 Hz and σω3

= 0.24 Hz).
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(f) ξ3 (µξ3 = 0.0197 and σξ3 = 0.0027).

Figure 5: PDFs of the Kautz parameters.

Then, it can be seen in Fig. 7 the comparison between the system responses obtained through the Volterra
model considering two levels of input (Low - 0.01 V and High - 0.15 V) and their limits with 98% of confidence
and the experimental data obtained in different days. In both cases (linear and nonlinear behavior) the model
prediction is good and, despite the variation of the data, the model is able to describes the systems behavior.

The great advantage of using Volterra series is to become easier the separation of linear and nonlinear
contributions of the total response obtained through the model. In this sense, Fig. 8 shows the contributions of
first, second and third kernels with 98% of confidence, considering low and high input. When the input has low
level of amplitude (0.01 V), the system has linear behavior and the contribution in the response is only of the
first kernel. Now, when the input has high level of amplitude (0.15 V), the total response is composed by the
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Figure 6: Volterra kernels limits with 98 % of confidence, the blue line represents the mean value.
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Figure 7: Confidence bands for the system responses obtained through the Volterra model with
98 % of confidence. The mean is represented by the blue line and the experimental data are
represented by the red dots.

linear component (first kernel) and the cubic component (third kernel) and the sum of the contributions allows
the model to describe the nonlinear behavior of the system. It can be seen in Fig. 8b that the cubic component
has more dispersion that the linear, because the estimation of the third kernel is more uncertain.

The model validation was made considering a simple sine input in the region of the first mode (≈ 20 Hz).
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(a) Low input. (b) High input.

Figure 8: Confidence bands for the contributions to the system responses obtained through the
Volterra model with 98 % of confidence. B represents the linear contribution, B represents

the quadratic contribution and B represents the cubic contribution.

First, a low input signal (0.01 V) is applied, Figs. 9a and 9b shows the response in time and frequency domain
with 98% of confidence. It can be seen that the experimental data are within the confidences limits obtained
by the Volterra models. Then, high input signal (0.15 V) is applied to excite the nonlinearities of the system,
Figs. 9c and 9d shows the response in time and frequency domain with 98% of confidence. In this case also,
the model can predict the system response but now the dispersion in the frequency domain is higher. It can be
seen the multiples harmonics in the system response when we consider high level of input (nonlinear behavior).

FINAL REMARKS

The results have showed that there is variation in system response over the days that must be considered
in the modeling of the system. The Volterra kernels expanded through the Kautz functions are able to predict
such variations when they are considered in system identification. The uncertainties in the measurements cause
large changes in the Kautz parameters, especially the parameters related with high order kernels, because their
values are optimized and this procedure is susceptible to variations in the system responses. The confidence
limits established to the system response can be used in the future to study damage detection approaches in
nonlinear uncertain systems. More studies should be conducted to observe the real need to optimize the Kautz
parameters, because this process is very uncertain and causes great variability in the system response. Possibly,
only the stochastic identification of Volterra kernels is able to describe the uncertainties in a simpler way.
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represented by the red line.
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