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Abstract. Temporal and spatial reasoning is a central task for numerous applications in many areas
of Artificial Intelligence. For this task, numerous formalisms using the qualitative approach have been
proposed. Clearly, these formalisms share a common algebraic structure. In this paper we propose
and study a general definition of such formalisms by considering calculibased on basic relations of
an arbitrary arity. We also describe theQAT (the Qualitative Algebra Toolkit), a JAVA constraint
programming library allowing to handle constraint networks based on those qualitative calculi.
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1 Introduction

Numerous qualitative constraint calculi have been developed in the past inorder to represent and
reason about temporal and spatial configurations. Representing and reasoning about spatial and
temporal information is an important task in many applications, such as computer vision, ge-
ographic information systems, natural language understanding, robot navigation, temporal and
spatial planning, diagnosis and genetics. Qualitative spatial and temporal reasoning aims to de-
scribe non-numerical relationships between spatial or temporal entities. Typically a qualitative
calculus [1–5] uses some particular kind of spatial or temporal objects (e.g.subsets in a topo-
logical space, points on the rational line, intervals on the rational line) to represent the spatial or
temporal entities of the system, and focuses on a limited range of relations between these objects
(such as topological relations between regions or precedence betweentime points). Each of these
relations refers to a particular temporal or spatial configuration. For instance, in the field of qual-
itative reasoning about temporal data, consider the well known formalism called Allen’s calculus
[1]. It uses intervals of the rational line for representing temporal entities. Thirteen basic relations
between these intervals are used to represent the qualitative situation between temporal entities.
An interval can be before the other one, can follow the other one, can end the other one, and so
on. The thirteen basic relations are JEPD (jointly exhaustive and pairwise disjoint), which means
that each pair of intervals satisfies exactly one basic relation.
Constraint networks called qualitative constraint networks (QCNs) are usually used to represent
the temporal or spatial information about the configuration of a specific setof entities. Each con-
straint of aQCN represents a set of acceptable qualitative configurations between some temporal
or spatial entities and is defined by a set of basic relations. The consistency problem forQCNs
consists in deciding whether a given network has instantiations satisfying theconstraints. In order
to solve it, methods based on local constraint propagation algorithms have been defined, in par-
ticular methods based on various versions of the path consistency algorithm[6, 7].
In the literature most qualitative calculi are based on basic binary relations.These basic relations
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are always JEPD. Moreover, the operators of intersection, of composition and of inverse used for
reasoning with these relations are always defined in a similar way. Hence wecan assert that these
qualitative calculi share the same structure. Recently, non binary qualitative calculi have been
proposed. The difference between binary calculi and non binary calculi resides in the fact that
new operators are necessary for the non binary case, namely the operator of permutation and the
operator of rotation.
In this paper we propose and study a very general definition of a qualitative calculus. This defini-
tion subsumes all qualitative calculi used in the literature. Moreover, to our knowledge, implemen-
tations and software tools have only been developed for individual calculi. The QAT (Qualitative
Algebra Toolkit) has been conceived as a remedy to this situation. Specifically, the QAT is a JAVA
constraint programming library developed atCRIL-CNRSat the University of Artois. It aims to
provide open and generic tools for defining and manipulating qualitative algebras and qualitative
networks based on these algebras.
This paper is organized as follows. In Section 2, we propose a formal definition of a qualitative
calculus. This definition is very general and it covers formalisms based onbasic relations of an
arbitrary arity. Section 3 is devoted to qualitative constraint networks. After introducing the QAT
library in Section 4, we conclude in Section 5.

2 A general definition of Qualitative Calculi

2.1 Relations and fundamental operations

A qualitative calculus of arityn (with n > 1) is based on a finite setB = {B1, . . . ,Bk} of k

relations of arityn defined on a domainD. These relations are called basic relations. Generally,k

is a small integer and the setD is an infinite set, such as the setN of the natural numbers, the set
Q of the rational numbers, the set of real numbers, or, in the case of Allen’s calculus, the set of all
intervals on one of these sets. We will denote byU the set ofn-tuples onD, that is, elements of
Dn. Moreover, given an elementx belonging toU and an integeri ∈ {1, . . . , n}, xi will denote
the element ofD corresponding to theith component ofx. The basic relations ofB are complete
and jointly exclusive, in other words, the setB must be a partition ofU = Dn, hence we have:

Property 1 Bi ∩ Bj = ∅, ∀ i, j ∈ {1, . . . , k} such thati 6= j andU =
⋃

i∈{1,...,k} Bi.

Given a setB of basic relations, we define the setA as the set of all unions of the basic relations.
Formally, the setA is defined byA = {

⋃
B : B ⊆ B}.

In the binary case, the various qualitative calculi considered in the literature consider a particular
basic relation corresponding to the identity relation onD. We generalise this by assuming that a
qualitative calculus of arityn satisfies the following property:

Property 2 ∀ i, j ∈ {1, . . . , n} such thati 6= j, ∆ij ∈ A with ∆ij = {x ∈ U : xi = xj}.

Note that the relations∆ij are called diagonal elements in the context of cylindric algebras [8].
Given a non empty setE ⊆ {1, . . . , n} × {1, . . . , n} such that for all(i, j) ∈ E we havei 6= j,
∆E will denote the relation

⋂
{∆ij : (i, j) ∈ E}. We note that from Property 1 and Property 2 we

can deduce that∆E ∈ A. Hence, the relation of identity onU , denoted byIdn, which corresponds
to ∆{(i,i+1):1≤i≤n−1}, belongs toA.
In the sequel we will see how to use the elements ofA to define particular constraint networks
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called qualitative constraint networks. Several fundamental operationsonA are necessary for rea-
soning with these constraint networks, in particular, the operation of permutation, the operation
of rotation and the operation of qualitative composition also simply (and wrongly) called compo-
sition or weak composition [9, 11].
In the context of qualitative calculi, the operations of permutation and rotationhave been intro-
duced by Isli and Cohn [5] for a formalism using ternary relations on cyclic orderings. These
operations are unary operations which associate to each element ofA a relation belonging toU .
They can be formally defined in the following way:

Definition 1. Let R ∈ A. The permutation and the rotation ofR, denoted byR# andRy re-
spectively, are defined as follows:

– R# = {(x1, . . . , xn−2, xn, xn−1) : (x1, . . . , xn) ∈ R} (Permutation),
– Ry = {(x2, . . . , xn, x1) : (x1, . . . , xn) ∈ R} (Rotation).

In the binary case, these operations coincide and correspond to the operation of converse. To our
knowledge, all binary qualitative calculi satisfy the property that the converse relation of any basic
relation is a basic relation. A similar property is required in the general case:

Property 3 For each relationBi ∈ B we haveBy

i ∈ B andB#

i ∈ B.

These operations satisfy the following properties:

Proposition 1. LetR ∈ A.

– R# =
⋃
{B# : B ∈ B andB ⊆ R} andRy =

⋃
{By : B ∈ B andB ⊆ R}.

For binary relations, the operation of composition is a binary operation whichassociates to two re-
lationsR1 andR2 the relation◦(R1, R2) = {(x1, x2) : ∃u ∈ D with (x1, u) ∈ R1 and(u, x2) ∈
R2}. For several qualitative calculi of arityn = 2 the composition of two relationsR1, R2 ∈ A
is not necessarily a relation ofA (consider for example the interval algebra on the intervals de-
fined on the integers). A weaker notion of composition is used. This operation, denoted in the
sequel by⋄, and called qualitative composition, is by definition the smallest relation (w.r.t. inclu-
sion) of A containing all the elements of thebona fidecomposition :⋄(R1, R2) =

⋂
{R ∈ A :

◦(R1, R2) ⊆ R}. For an arbitrary arityn, composition and qualitative composition can be defined
in the following way:

Definition 2. LetR1, . . . , Rn ∈ A.

– ◦( R1, . . . , Rn) = {( x1, . . . , xn) : ∃u ∈ D, ( x1, . . . , xn−1, u) ∈ R1,

(x1, . . . , xn−2, u, xn) ∈ R2, . . . , (u, x2, . . . , xn) ∈ Rn},
– ⋄(R1, . . . , Rn) =

⋂
{R ∈ A : ◦(R1, . . . , Rn) ⊆ R}.

Note that we use the usual definition of the polyadic composition for the operation ◦. Both op-
erations are characterized by their restrictions to the basic relations ofB. Indeed, we have the
following properties:

Proposition 2. LetR1, . . . , Rn ∈ A.

– ◦(R1, . . . , Rn) = ∪{◦(A1, . . . , An) : A1 ∈ B, . . . , An ∈ B andA1 ⊆ R1, . . . , An ⊆ Rn};
– ⋄(R1, . . . , Rn) = ∪{⋄(A1, . . . , An) : A1 ∈ B, . . . , An ∈ B andA1 ⊆ R1, . . . , An ⊆ Rn}.
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Another way to define the qualitative composition is given by the following proposition:

Proposition 3. LetR1, . . . , Rn ∈ A.
⋄(R1, . . . , Rn) =

⋃
{A ∈ B : ∃x1, . . . , xn, u ∈ D,∃A1, . . . , An ∈ B with (x1, . . . , xn) ∈

A, (x1, . . . , xn−1, u) ∈ A1, (x1, . . . , xn−2, u, xn) ∈ A2, . . . , (u, x2, . . . , xn) ∈ An, A1 ⊆ R1, . . . ,

An ⊆ Rn}.

Hence, tables giving the qualitative composition, the rotation and the permutationof basic rela-
tions can be used for computing efficiently these operations for arbitrary relations ofA. Finally,
we have the following properties, which generalize the usual relationship of composition with
respect to converse in the binary case:

Proposition 4. LetR1, . . . , Rn ∈ A andOP ∈ {◦, ⋄}.

– OP(∅, R2, . . . , Rn) = ∅ ;
– OP(R1, . . . , Rn)y = OP(Ry

n , Ry

1 , Ry

2 , . . . , Ry

n−1) ;
– OP(R1, . . . , Rn)# = OP(R#

2 , R#

1 , , R#

3 . . . , , R#

n ).

2.2 An example of a qualitative calculus of arity3: the Cyclic Point Algebra

This subsection is devoted to a qualitative calculus of arity3 known as the Cyclic Point Algebra
[5, 12].
The entities considered by this calculus are the points on an oriented circleC. We will call these
pointscyclic points. Each cyclic point can be characterised by a rational number belonging tothe
interval[0, 360[. This number corresponds to the angle between the horizontal line going through
the centre ofC. Hence, for this calculus,D is the set of the rational numbers{q ∈ Q : 0 ≤ q <

360}. In the sequel we assimilate a cyclic point to the rational number representingit. Given two
cyclic pointsx, y ∈ D, [[x, y]] will denote the set of values ofD corresponding to the cyclic points
met betweenx andy when travelling on the circle counter-clockwise. The basic relations of the
Cyclic Point Algebra is the set of the6 relations{Babc, Bacb, Baab, Bbaa, Baba, Baaa} defined in
the following way:Babc = {(x, y, z) ∈ D3 : x 6= y, x 6= z, y 6= z andy ∈ [[x, z]]}, Bacb =
{(x, y, z) ∈ D3 : x 6= y, x 6= z, y 6= z andz ∈ [[x, y]]}, Baab = {(x, x, y) ∈ D3 : x 6= y},
Bbaa = {(y, x, x) ∈ D3 : x 6= y}, Baba = {(x, y, x) ∈ D3 : x 6= y}, Baaa = {(x, x, x) ∈ D3}.
These6 relations are shown in Figure 1. Based on theses basic relations, we get asetA containing
64 relations. Note that for these basic relations the operation of composition andthe operation
of qualitative composition are the same operations. Table 1 gives the qualitative composition of a
subset of the basic relations. Using Proposition 2, we can compute other qualitative compositions
which are not given in this table. For example,⋄(Baab, Bacb, Babc) = ⋄(Baab, Babc, Bacb)

# =
{Baab}. Actually, the table provides a way of computing any composition of basic relations, since
all qualitative compositions which cannot be deduced from it in that way yieldthe empty relation.
This is the case for example of the qualitative composition ofBaaa with Babc, which is the empty
relation.

3 Qualitative Constraint Networks

3.1 Basic notions

Typically, qualitative constraint networks (QCNs in short) are used to express information on a
spatial or temporal situation. Each constraint of a constraint network represents a set of acceptable
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Fig. 1.The6 basic relations of the Cyclic Point Algebra.

R1 Baaa Baaa Baab Baab Baab Baab Baba Babc

R2 Baaa Baab Baba Babc Bbaa Bacb Baab Babc

R3 Baaa Baab Bbaa Bacb Baba Babc Babc Bacb

⋄(R1, R2, R3) {Baaa} {Baab} {Baaa} {Baab} {Baab} {Baab} {Babc} {Babc}

Table 1.The qualitative composition of the Cyclic Point Algebra

a Baaa Baab Baba Bbaa Babc Bacb

a# Baaa Baba Baab Bbaa Bacb Babc

ay Baaa Baba Bbaa Baab Babc Bacb

Table 2.The permutation and the permutation operation of the Cyclic Point Algebra

qualitative configurations between some temporal or spatial entities and is defined by a set of basic
relations. Formally, aQCN is defined in the following way:

Definition 3. A QCN is a pairN = (V, C) where:

– V is a finite set ofl variables{v′0, . . . , v
′
l−1} (wherel is a positive integer);

– C is a map which to each tuple(v0, . . . , vn−1) of V n associates a subsetC(v0, . . . , vn−1) of
the set of basic relations:C(v0, . . . , vn−1) ⊆ B. C(v0, . . . , vn−1) are the set of those basic
relations allowed between the variablesv0,. . . ,vn−1. Hence,C(v0, . . . , vn−1) represents the
relation ofA corresponding to the union of the basic relations belonging to it.

We use the following definitions in the sequel:

Definition 4. LetN = (V, C) be aQCN with V = {v′0, . . . , v
′
l−1}.

– A partial instantiation ofN onV ′ ⊆ V is a mapα of V ′ onD. Such a partial instantiation is
consistentif and only if(α(v0), . . . , α(vn−1)) ∈ C(v0, . . . , vn−1), for all v0, . . . , vn−1 ∈ V ′.

– A solutionofN is a consistent partial instantiation onV . N is consistentif and only if it has
a solution.

– Anatomic QCN is aQCN whose every constraint is defined by just one basic relation ofB.
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– A scenarioon a set of variablesV ′ is an atomic QCN whose variables are the setV ′. A
consistent scenarioofN is a scenario that admits a solution ofN as a solution.

– A QCN N ′ = (V ′, C ′) is equivalent to N if and only ifV = V ′ and both networksN and
N ′ have the same solutions.

– A sub–QCN of aQCN N = (V, C) is aQCN N ′ = (V, C ′) where:
C ′(v0, . . . , vn−1) ⊆ C(v0, . . . , vn−1) for all v0, . . . , vn−1 ∈ V .

Moreover we introduce the definition of normalizedQCNs which intuitively correspond toQCNs
containingcompatibleconstraintsw.r.t. the fundamental operations of rotation and permutation.

Definition 5. LetN be aQCN. ThenN is normalized iff:

– C(v2, . . . , vn, v1) = C(v1, . . . , vn)y,
– C(v1, . . . , vn−2, vn, vn−1) = C(v1, . . . , vn)#,
– C(v1, . . . , vi, . . . , vj , . . . , vn) ⊆ ∆ij , ∀ i, j ∈ {1, . . . , n} such thati 6= j andvi = vj .

Given anyQCN, it is easy to transform it into an equivalentQCN which is normalized. Hence we
will assume that allQCNs considered in the sequel are normalized.
Given aQCN N , the problems usually considered are the following: determining whetherN is
consistent, finding a solution, or all solutions, ofN , and computing the smallestQCN equivalent
toN . These problems are generally NP-complete problems. In order to solve them, various meth-
ods based on local constraint propagation algorithms have been defined, in particular the method
which is based on the algorithms of path consistency [6, 7] which we will refer to as the⋄-closure
method.

3.2 The⋄-closure method

This subsection is devoted to the topic of⋄-closedQCNs. TheseQCNs are defined in the following
way:

Definition 6. LetN = (V, C) be aQCN. ThenN is⋄-closed iffC(v1, . . . , vn) ⊆ ⋄(C(v1, . . . , vn−1, vn+1),
C(v1, . . . , vn−2, vn+1, vn), . . . , C(v1, vn+1, v3, . . . , vn), C(vn+1, v2, . . . , vn)),∀v1, . . . , vn, vn+1 ∈
V .

For qualitative calculus of arity two this property is sometimes called the path-consistency prop-
erty or the3-consistency property, wrongly since qualitative composition is in generalweaker
than composition (see [13] for a discussion to this subject). In the binary case, the usual local
constraint propagation algorithmsPC1 andPC2 [6, 7] have been adapted to the qualitative case
for computing a sub-QCN which is⋄-closed and equivalent to a givenQCN. As an extension of
PC − 1 to then-ary case we define the algorithmPC1n (see Algorithm 1). In brief, this algorithm
iterates an operation (line 7–8) which suppresses non possible basic relations from the constraints
using weak composition and intersection. This operation is repeated until a fixpoint is reached. It
can be easily checked that theQCN output byPC1n is ⋄-closed and equivalent to the initialQCN

used as input. The time complexity of AlgorithmPC1n is O(|V |(n+1)) where|V | is the number
of variables of theQCN andn the arity of the calculus. We can prove the following properties:

Proposition 5. Applying the algorithmPC1n to a normalizedQCN N yields aQCN which is
normalized,⋄-closed, and equivalent toN .
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Algorithm 1 PC1n

Compute the closure of aQCN N = (V, C)
1: Do
2: N ′ := N
3: For eachvn+1 ∈ V Do
4: For eachv1 ∈ V Do
5: . . .
6: For eachvn ∈ V Do
7: C(v1, . . . , vn) := C(v1, . . . , vn)∩
8: ⋄(C(v1, . . . , vn−1, vn+1), C(v1, . . . , vn−2, vn+1, vn), . . . , C(vn+1, v2, . . . , vn))
9: Until (N == N ′)

10: return N

In the binary case, a⋄-closedQCN is not always3-consistent but it is(0, 3)-consistent, which
means, respectively, that we cannot always extend a partial solution ontwo variables to three
variables, but that we know that all sub-QCNs on three variables are consistent. This last property
can be extended to then-ary case:

Proposition 6. LetN = (V, C) be aQCN. If N is ⋄-closed then it is(0, n)-consistent.

Note that in the same manner, we can extendPC2 to then-ary case and prove similar results.

3.3 Associating a binary qualitative calculus to a qualitative calculus of arity n

Consider a qualitative calculus of arityn. There is actually a standard procedure for associating a
binary calculus to it. Moreover, if aQCN is defined on then-ary calculus, it can be represented
by QCN in the associated binary calculus. We now proceed to sketch this procedure. Consider a
qualitative calculus with a set of basic relationsB = {B1, . . . ,Bk} of arity n defined onD. We
associate to it a qualitative formalism with a set of basic relationsB′ = {B′

1, . . . ,B
′
k′} of arity 2

defined on a domainD′ in the following way:

– D′ is the setDn = U . Hence, each relation ofB′ is a subset ofU ′ = D′ × D′ = Dn × Dn =
U × U .

– For each relationBi ∈ B, with 1 ≤ i ≤ k, a basic relationB′
i is introduced inB′. B′

i is
defined by the relation{((x1, . . . , xn), (x1, . . . , xn)) : (x1, . . . , xn) ∈ Bi}. Note that the set
of relationsB′

P = {B′
1, . . . ,B

′
k} forms a partition of the relation of identity ofD′ which we

will denote by∆′
12.

– For all i, j ∈ {1, . . . , n} we define the relationEij by:
Eij = {((x1, . . . , xn), (x′

1, . . . , x
′
n)) ∈ U ′ : xi = x′

j} \ ∆′
12. E0 = {Eij : i, j ∈ {1, . . . , n}}.

Em with m > 0 is inductively defined byEm = {R1 ∩ R2, R1 \ (R1 ∩ R2), R2 \ (R1 ∩
R2) : R1, R2 ∈ Em−1}. Let m′ the smallest integer such thatEm′

= Em′+1. B′
E

= {R ∈
Em′

such thatR 6= ∅ and∄R′ 6= ∅ ∈ Em′

with R′ ⊂ R}. The set of relations ofB′
E

are added
to the setB′.

– Let F be the binary relation onD′ defined byF = U ′ \ (Eij ∪ B′
P ). We addF toB′.

Hence the final set of basic relations is the setB′ = B′
P ∪B′

E
∪ {F}. The reader can check thatB′

satisfies properties 1, 2 and 3 and hence defines a qualitative calculus ofarity 2.

Now, consider aQCN N = (V, C) defined onB. Let us define an equivalentQCN N ′ = (V ′, C ′)
onB′ :
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– To defineV ′, for eachn-tuples ofn variables(v1, . . . , vn) of V we introduce a variable
v′{v1,...,vn}

in B′.
– Given a variablev′ = v′{v1,...,vn}

belonging toV ′ we defineC ′(v′, v′) by the relation{B′
i :

Bi ∈ C(v1, . . . , vn)}.
– Given two distinct variablesv′i = v′

{vi
1
,...,vi

n}
andv′j = v′

{vj
1
,...,v

j
n}

belonging toV ′, C ′(v′i, v
′
j)

is the relationE defined in the following way: letγ the set of pairs of integer defined by
{(k, l) ∈ N × N : vi

k = v
j
l }. E is the set of basic relations ofB′ (more precisely ofB′

E
)

defined as the relation
⋂

(k,l)∈γ Ekl.

The reader can check thatN is a consistentQCN iff N ′ is a consistentQCN. This construction
is inspired by the technique called dual encoding [10] used in the domain of discrete CSPs to
convertn-ary constraints into binary constraints.

{Baab, Babc}

vjvi

vk

v′ijk v′lim

v′ijk

{B′
aab, B

′
abc} E12

Fig. 2. Converting a ternary constraintCijk of the cyclic point algebra into a binary constraint (left). Expressing a
structural constraint betweenv′

ijk andv′

lim for distinct integersi, j, k, l, m (right).

4 The Qualitative Algebra Toolkit (QAT)

Clearly, all existing qualitative calculi share the same structure, but, to our knowledge, implemen-
tations and software tools have only been developed for individual calculi. The QAT (Qualitative
Algebra Toolkit) has been conceived as a remedy to this situation. Specifically, the QAT is a JAVA
constraint programming library developed atCRIL-CNRSat the University of Artois. It aims to
provide open and generic tools for defining and manipulating qualitative algebras and qualitative
networks based on these algebras. The core of QAT contains three main packages. In the sequel
of this section we are going to present each of those packages.

The Algebra package is devoted to the algebraic aspects of the qualitative calculi. While
programs proposed in the literature for using qualitative formalisms aread hocimplementations
for a specific algebra and for specific solving methods, the QAT allows the user to define arbitrary
qualitative algebras (including non-binary algebras) using a simple XML file. This XML file,
which respects a specific DTD, contains the definitions of the different elements forming the
algebraic structure of the qualitative calculus: the set of basic relations, the diagonal elements, the
table of rotation, the table of permutation and the table of qualitative composition. We defined
this XML file for many qualitative calculi of the literature: the interval algebra [1], the point
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algebra [14], the cyclic point algebra [15], the cyclic interval algebra [16], the rectangle algebra
[17], the INDU algebra [4], the multidimensional algebra [18], the RCC-5 algebra [2], the RCC-8
algebra [2], the cardinal direction algebra [3]). Tools allowing to definea qualitative algebra as
the Cartesian Product of other qualitative algebras are also available.

The QCN package contains tools for defining and manipulating qualitative constraint net-
works on any qualitative algebra. As for the algebraic structure, a specific DTD allows the use
of XML files for specifyingQCNs. The XML file lists the variables and relations defining the
qualitative constraints. Functionalities are provided for accessing and modifying the variables of
a QCN, its constraints and the basic relations they contain. Part of theQCN package is devoted
to the generation of random instances ofQCNs. A large amount of the research about qualitative
calculi consists in the elaboration of new algorithms to solveQCNs. The efficiency of these algo-
rithms must be validated by experimentations on instances ofQCNs. Unfortunately, in the general
case there does not exist instances provided by real world problems. Hence, the generation of ran-
dom instances is a necessary task [19]. TheQCN package of the QAT provides generic models
allowing to generate random instances ofQCNs for any qualitative calculus.

The Solver package contains numerous methods to solve the main problems of interest when
dealing with qualitative constraint networks, namely the consistency problem,the problem of
finding one or all solutions, and the minimal network problem. All these methods are generic and
can be applied toQCNs based on arbitrary qualitative calculi. They make use of the algebraic
aspect of the calculus without considering the semantics of the basic relations. In other words,
they make abstraction of the definitions of the basic relations and only uniquelymanipulatethe
symbolscorresponding to these relations. Nevertheless, by using the object-oriented concept, it is
very easy to particularize a solving method to a specific qualitative algebra ora particular kind
of relations. We implemented most of the usual solving methods, such as the standard generate
and test methods, search methods based on backtrack and forward checking, and constraint local
propagation methods. The user can configure these different methods by choosing among a range
of heuristics. These heuristics are related to the choice of the variables orthe constraints to be
scanned, of the basic relations in a constraint during a search. The order in which the constraints
are selected and the order in which the basic relations of the selected constraint are examined can
greatly affect the performance of a backtracking algorithm [19]. The idea behind constraint or-
dering heuristics is to first instantiate the more restrictive constraints first. The idea behind value
ordering basic relations is to order the basic relations of the constraints so that the value that most
likely leads to a solution is the first one to be selected. The QAT allows the user toimplement
new heuristics based on existing heuristics. As for local constraint propagation methods, whereas
in discrete CSPs arc consistency is widely used [20],path consistencyis the most efficient and
most frequently used kind of local consistency in the domain of the qualitativeconstraints. More
exactly, the methods used are based on local constraint propagation based on qualitative composi-
tion, in the manner of thePC1n algorithm described in the previous section. In addition toPC1n,
we have extended and implemented algorithms based onPC2 [21].

5 Conclusions

We propose and study a general formal definition of qualitative calculi based on basic relations
of an arbitrary arity. This unifying definition allows us to capture the algebraic structure of all
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qualitative calculi in the literature. The main elements of the algebraic structure are diagonal
elements, and the operations of permutation, rotation and qualitative composition. We give a
transformation allowing to build a qualitative calculus based on binary basic relations from a
qualitative calculus based on arbitrary basic relations. The expressivepowers of both calculi are
similar. Moreover we generalize the constraint propagation methodPC1 to the general case,i.e.
for relations of any arity. In a second part we describe the QAT1 (Qualitative Algebra Toolkit), a
JAVA constraint programming library allowing to handle constraint networksdefined on arbitrary
n-ary qualitative calculi. This toolkit provides algorithms for solving the consistency problem
and related problems, as well as most of the heuristics used in the domain. QATis implemented
using the object oriented technology. Hence, it is an open platform, and its functionalities are
easily extendable. New heuristics (resp. methods) can be defined and tested. Among the tools it
provides are classes allowing to generate and to use benchmarks of qualitative networks. Hence
new heuristics or new solving algorithms can be conveniently evaluated.
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