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Abstract. Temporal and spatial reasoning is a central task for numerous appigan many areas
of Artificial Intelligence. For this task, numerous formalisms using thditaiie approach have been
proposed. Clearly, these formalisms share a common algebraic strulttithis paper we propose
and study a general definition of such formalisms by considering cdleskd on basic relations of
an arbitrary arity. We also describe tG@AT (the Qualitative Algebra Toolkit), a JAVA constraint
programming library allowing to handle constraint networks based ore thaalitative calculi.

Keywords: Qualitative temporal and spatial reasoning, constraint reasoning.

1 Introduction

Numerous qualitative constraint calculi have been developed in the pastanto represent and
reason about temporal and spatial configurations. Representingasmhing about spatial and
temporal information is an important task in many applications, such as compsitem,\ge-
ographic information systems, natural language understanding, rabation, temporal and
spatial planning, diagnosis and genetics. Qualitative spatial and tempasaning aims to de-
scribe non-numerical relationships between spatial or temporal entitipically a qualitative
calculus [1-5] uses some particular kind of spatial or temporal objeagssubsets in a topo-
logical space, points on the rational line, intervals on the rational line) t@sept the spatial or
temporal entities of the system, and focuses on a limited range of relationseettvese objects
(such as topological relations between regions or precedence bdimeguoints). Each of these
relations refers to a particular temporal or spatial configuration. Fomiostan the field of qual-
itative reasoning about temporal data, consider the well known formah#iedcAllen’s calculus
[1]. It uses intervals of the rational line for representing temporal entifiesteen basic relations
between these intervals are used to represent the qualitative situatiorebeéngporal entities.
An interval can be before the other one, can follow the other one, chtherother one, and so
on. The thirteen basic relations are JEPD (jointly exhaustive and pairigieénd), which means
that each pair of intervals satisfies exactly one basic relation.

Constraint networks called qualitative constraint netwo€Ns) are usually used to represent
the temporal or spatial information about the configuration of a specifiaf gttities. Each con-
straint of aQCN represents a set of acceptable qualitative configurations between sopwak
or spatial entities and is defined by a set of basic relations. The congigisotem forQCNs
consists in deciding whether a given network has instantiations satisfyimgtiséraints. In order
to solve it, methods based on local constraint propagation algorithms hamedbéned, in par-
ticular methods based on various versions of the path consistency alg{@ithim

In the literature most qualitative calculi are based on basic binary relafiblese basic relations



are always JEPD. Moreover, the operators of intersection, of catiggoand of inverse used for
reasoning with these relations are always defined in a similar way. Hencamassert that these
qualitative calculi share the same structure. Recently, non binary quaitieuli have been
proposed. The difference between binary calculi and non binarylcaésides in the fact that
new operators are necessary for the non binary case, namely ttedarpdrpermutation and the
operator of rotation.

In this paper we propose and study a very general definition of a quaditaiculus. This defini-
tion subsumes all qualitative calculi used in the literature. Moreover, tormwledge, implemen-
tations and software tools have only been developed for individuallcaltie QAT (Qualitative
Algebra Toolkit) has been conceived as a remedy to this situation. Splgitica QAT is a JAVA
constraint programming library developedGRIL-CNRSat the University of Artois. It aims to
provide open and generic tools for defining and manipulating qualitativegeand qualitative
networks based on these algebras.

This paper is organized as follows. In Section 2, we propose a forrfiaitam of a qualitative
calculus. This definition is very general and it covers formalisms basdzhsio relations of an
arbitrary arity. Section 3 is devoted to qualitative constraint networksr Afteoducing the QAT
library in Section 4, we conclude in Section 5.

2 A general definition of Qualitative Calculi

2.1 Relations and fundamental operations

A qualitative calculus of arity: (with n > 1) is based on a finite sé&8 = {By,...,B;} of k
relations of arityn defined on a domaib. These relations are called basic relations. Generally,
is a small integer and the sBtis an infinite set, such as the $&¢bf the natural numbers, the set
Q of the rational numbers, the set of real numbers, or, in the case of &ttaitulus, the set of all
intervals on one of these sets. We will denotd bthe set ofn-tuples onD, that is, elements of
D™. Moreover, given an elementbelonging ta/ and an integei € {1,...,n}, z; will denote
the element oD corresponding to théh component ofc. The basic relations df are complete
and jointly exclusive, in other words, the d&imust be a partition i = D™, hence we have:

Property 1 B,NB; =0, Vi,j € {1,...,k} suchthat # j andif = U;cq1, . 1y Bi-

Given a sef3 of basic relations, we define the sétas the set of all unions of the basic relations.
Formally, the sefd is defined byd = {|J B : B C B}.

In the binary case, the various qualitative calculi considered in the literatursider a particular
basic relation corresponding to the identity relationfariWe generalise this by assuming that a
qualitative calculus of arity. satisfies the following property:

Property 2 Vi,j € {1,...,n} suchthat # j, A;; € A with A;; = {z e U : z; = z;}.

Note that the relationsg);; are called diagonal elements in the context of cylindric algebras [8].
Given anonempty seéf C {1,...,n} x {1,...,n} such that for al(i, j) € E we havei # j,

Ap will denote the relatiofi\{4;; : (¢,7) € E}. We note that from Property 1 and Property 2 we
can deduce thal\p € A. Hence, the relation of identity dm, denoted byd,,, which corresponds

t0 Agiit1):1<i<n—1}, DelONgs taA.

In the sequel we will see how to use the elementgldb define particular constraint networks
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called qualitative constraint networks. Several fundamental operatiodsare necessary for rea-
soning with these constraint networks, in particular, the operation of gatiom, the operation
of rotation and the operation of qualitative composition also simply (and wrpoglied compo-
sition or weak composition [9, 11].

In the context of qualitative calculi, the operations of permutation and rotatea been intro-
duced by Isli and Cohn [5] for a formalism using ternary relations oricyaoderings. These
operations are unary operations which associate to each elemdrda oflation belonging té/.
They can be formally defined in the following way:

Definition 1. Let R € A. The permutation and the rotation &f, denoted byR*™ and R™ re-
spectively, are defined as follows:

- RY ={(z1,...,p—2,Tn, Tp—1) : (z1,...,2,) € R} (Permutation),
- R™ ={(z2,...,%p,71) : (z1,...,7,) € R} (Rotation).

In the binary case, these operations coincide and correspond to ttatiopef converse. To our
knowledge, all binary qualitative calculi satisfy the property that the es®/relation of any basic
relation is a basic relation. A similar property is required in the general case:

Property 3 For each relationB; € B we haveB,™ € BandB}" € B.
These operations satisfy the following properties:
Proposition 1. LetR € A.
- RY=U{BY":BeBandB C R}andR™ =J{B™: Be BandB C R}.

For binary relations, the operation of composition is a binary operation velsisbciates to two re-
lations R; and R the relationo(R;, Ra) = {(x1,x2) : Ju € D with (z;,u) € R; and(u, z2) €
R»}. For several qualitative calculi of arity = 2 the composition of two relation®;, Rz € A

is not necessarily a relation of (consider for example the interval algebra on the intervals de-
fined on the integers). A weaker notion of composition is used. This operatemoted in the
sequel by, and called qualitative composition, is by definition the smallest relatiortt.(inclu-
sion) of .4 containing all the elements of thmna fidecomposition (R, R2) = ({R € A :
o(R1, R2) C R}. Foran arbitrary arity:, composition and qualitative composition can be defined
in the following way:

Definition 2. LetRy,..., R, € A.

—o(Ry, ..., Ry))={(x1, ..., xp): JueD,(x1, ..., Tp_1, u) € Ry,
(1, Tp_o,u,xy) € Ro, ... (u,z2,...,2,) € Rp},
—<>(R1,...,Rn):ﬂ{REA:o(Rl,...,Rn)gR}.

Note that we use the usual definition of the polyadic composition for the tipera Both op-
erations are characterized by their restrictions to the basic relatiois lotleed, we have the
following properties:

Proposition 2. LetRy,..., R, € A.

—O(Rl,. , n) (Al,..., )214168, A GBandA1CR1,...,A
A,

U{o Rn};
—O(Rl,. , n) {(Al,...A)ZAleB, A eBandA1CR1,..., Rn}

Iﬂ Iﬁ



Another way to define the qualitative composition is given by the following psdjon:

Proposition 3. LetRy,...,R, € A.

O(Rl,...,Rn) = U{A € B: dry,...,xp,u € D,dA4,..., A, € BWIth(aﬁl,,l‘n) S
A,(Sﬂl,...,l‘n,hu)EAl,(:El,...,ZL‘n,Q,U,SUn)EAQ,...,(U,‘TQ,...,II/‘”)EAn,AlgRl,...,
A, C Ru}.

Hence, tables giving the qualitative composition, the rotation and the permutdtimsic rela-
tions can be used for computing efficiently these operations for arbitedatians of A. Finally,
we have the following properties, which generalize the usual relationghgproposition with
respect to converse in the binary case:

Proposition 4. LetRy,..., R, € AandOP € {o,¢}.

— OP(@,RQ,...,Rn) :w,
— OP(Ry,...,R,) ™ =O0P(R, R, Ry,...,R> 1) ;
— OP(Ry,...,R,)" =0OP(RJ",RY,,RT...,,RY).

2.2 An example of a qualitative calculus of arity3: the Cyclic Point Algebra

This subsection is devoted to a qualitative calculus of &itypown as the Cyclic Point Algebra
[5,12].

The entities considered by this calculus are the points on an orientedindle will call these
pointscyclic points Each cyclic point can be characterised by a rational number belongihg to
interval[0, 360[. This number corresponds to the angle between the horizontal line gomgthr
the centre of’. Hence, for this calculug) is the set of the rational numbefg € Q : 0 < ¢ <
360}. In the sequel we assimilate a cyclic point to the rational number represéntiigen two
cyclic pointsz, y € D, [[z, y]] will denote the set of values @f corresponding to the cyclic points
met betweernr andy when travelling on the circle counter-clockwise. The basic relations of the
Cyclic Point Algebra is the set of therelations{ B, Bacb, Baabs Bbaas Baba, Baaa } defined in
the following way: By = {(7,9,2) € D3 : 2 # y,x # 2,y # z andy € [[z,2]]}, Bacb =
{($7y7z) S D3 - X 7é Y, T 7& ZY 7é zandz € [[x,y]]}, Baab = {(xvxay) S D3 - L 7& y}7
Bpaa = {(y,z,7) € D?: 2 # y}, Bapa = {(2,y,2) € D3 : 2 # y}, Buga = {(z,7,2) € D3}.
Theseb relations are shown in Figure 1. Based on theses basic relations, wealgt eontaining
64 relations. Note that for these basic relations the operation of compositiotharaperation
of qualitative composition are the same operations. Table 1 gives the qualitatiyosition of a
subset of the basic relations. Using Proposition 2, we can compute othldative compositions
which are not given in this table. For examp¥B,ap, Bachs Bave) = ©(Baabs Babes Bach) ™ =
{B.ab}- Actually, the table provides a way of computing any composition of basic refatgince
all qualitative compositions which cannot be deduced from it in that way yiel@mpty relation.
This is the case for example of the qualitative compositioBgf, with B, which is the empty
relation.

3 Qualitative Constraint Networks

3.1 Basic notions

Typically, qualitative constraint network&Q(CNs in short) are used to express information on a
spatial or temporal situation. Each constraint of a constraint networ&septs a set of acceptable
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Byaa(X,¥,2) Bava(X,¥,2) Baaa(X,¥,2)

Fig. 1. The6 basic relations of the Cyclic Point Algebra.

Rl Baaa Baaa Baab Baab Baab Baab Baba Babc
R2 Baaa Baab Baba Babc Bbaa Bacb Baab Babc
B
B,

RS aaa Baab Bbaa Bacb Baba Babc Babc Bacb
O(qu R27R3) { aaa} {Baab} {Baaa} {Baab} {Baab} {Baab} {Babc} {Babc}

Table 1. The qualitative composition of the Cyclic Point Algebra

| a ||Baaa|Baab|Baba|Bbaa|Babc|Bacb|
aq_) Baaa Baba Baab Bba,a Bacb Babc
am Baaa Baba Bbaa Baab Babc Bacb

Table 2. The permutation and the permutation operation of the Cyclic Point Algebra

gualitative configurations between some temporal or spatial entities andiedibfi a set of basic
relations. Formally, &CN is defined in the following way:

Definition 3. AQCN is a pair N = (V, C) where:

— Vis afinite set of variables{vy, ...,v,_,} (wherel is a positive integer);

— C'is a map which to each tupley, . . ., v,—1) of V™ associates a subsét(vy, . .., v,—1) of
the set of basic relationg(vo, ..., vp—1) C B. C(vo,...,v,—1) are the set of those basic
relations allowed between the variables. . . v,—1. Hence,C(vy, . .., v,—1) represents the

relation of A corresponding to the union of the basic relations belonging to it.
We use the following definitions in the sequel:
Definition 4. LetN = (V,C) be aQCN with V' = {v[, ..., v]_;}.

— Apartial instantiation of AV onV’ C V is a mapa of V/ onD. Such a partial instantiation is
consistentf and only if (a(vo), . .., a(v,—1)) € C(vo, ..., vnp—1), forall vg,...,v,—1 € V.

— Asolutionof V' is a consistent partial instantiation ori. A/ is consistentf and only if it has
a solution.

— Anatomic QCN is a QCN whose every constraint is defined by just one basic relatidh of
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— A scenarioon a set of variabled”’ is an atomic QCN whose variables are the sét'. A
consistent scenarimf  is a scenario that admits a solution 4f as a solution.

— AQCN N = (V') is equivalentto NV if and only ifV = V'’ and both networkg/” and
N" have the same solutions.

— Asub-QCN of aQCN NV = (V,C) is aQCN N’ = (V, C") where:
C/(Uo, e. 7Un—1) - C(Uo, c. ,Un—l) for all V0y---,Up_1 € V.

Moreover we introduce the definition of normaliz&@Ns which intuitively correspond tQCNs
containingcompatibleconstraintswv.r.t. the fundamental operations of rotation and permutation.

Definition 5. Let \ be aQCN. Then\ is normalized iff:

— C(va,...,vp,v1) = C(vg,...,00)7,

— C(v1, .y Un—2,Up, V1) = Clvg,...,v,)7,

- C(vl,...,vi,...,vj,...,vn) - Az‘j, Vi j€ {1,...,77,} such that ;éjandvi = V5.
Given anyQCN, it is easy to transform it into an equivaléRCN which is normalized. Hence we
will assume that alQCNs considered in the sequel are normalized.
Given aQCN N, the problems usually considered are the following: determining whethisr
consistent, finding a solution, or all solutions,/df and computing the smalleQCN equivalent
to V. These problems are generally NP-complete problems. In order to solagvtagous meth-
ods based on local constraint propagation algorithms have been défipedticular the method
which is based on the algorithms of path consistency [6, 7] which we wilt tefas the>-closure
method.

3.2 The¢-closure method

This subsection is devoted to the topicetlosedQCNs. Thes&)CNs are defined in the following
way:

Definition 6. Let\ = (V,C) be aQCN. ThenV is<¢-closed iffC(v1, . .., v,) C o(C(v1, -+, Vn—1,Vn+1),

C(Ul, .. .,vn_g,vn+1,vn), .. .,C’(vl,vn+1,v3, ce ,’Un), C(Un+1,1)2, . ,Un)),VUl, eeyUpn,Unt1 €
V.

For qualitative calculus of arity two this property is sometimes called the patsistency prop-
erty or the3-consistency property, wrongly since qualitative composition is in genezaker
than composition (see [13] for a discussion to this subject). In the binasy, ¢the usual local
constraint propagation algorithn®s”'1 andPC2 [6, 7] have been adapted to the qualitative case
for computing a sulCN which isco-closed and equivalent to a giv€)CN. As an extension of
PC — 1to then-ary case we define the algoritHP€ 1, (see Algorithm 1). In brief, this algorithm
iterates an operation (line 7—8) which suppresses non possible basan®feom the constraints
using weak composition and intersection. This operation is repeated unfiaiixs reached. It
can be easily checked that tR&€N output byPC1, is ¢-closed and equivalent to the initiQCN
used as input. The time complexity of AlgorithRC1, is O(|V|(**1)) where|V| is the number
of variables of the&QCN andn the arity of the calculus. We can prove the following properties:

Proposition 5. Applying the algorithmPC1, to a normalizedQCN N yields aQCN which is
normalizedo-closed, and equivalent t&'.



Algorithm 1 PC1,

Compute the closure of @QCN N = (V, C)
1: Do

N =N
For eachy,+1 € V Do
For eachy; € V Do

For eachv,, € V Do

Cv1y...,vn) :=C(v1,...,0,)N

: o(C(viy .y Un—1,Vn41), C(V1,. .., Vn—2,Vng1,Un),- -, C(Unt1,v2,...,00))
: Until (M == N")

10: return A/

2
3
4
5:
6
7
8
9

In the binary case, a-closedQCN is not always3-consistent but it ig0, 3)-consistent, which
means, respectively, that we cannot always extend a partial solutitwamariables to three
variables, but that we know that all S@Ns on three variables are consistent. This last property
can be extended to theary case:

Proposition 6. Let V' = (V, C) be aQCN. If A/ is o-closed then it i0, n)-consistent.
Note that in the same manner, we can exten® to then-ary case and prove similar results.

3.3 Associating a binary qualitative calculus to a qualitative calculus arity n

Consider a qualitative calculus of arity There is actually a standard procedure for associating a
binary calculus to it. Moreover, if CN is defined on ther-ary calculus, it can be represented
by QCN in the associated binary calculus. We now proceed to sketch this precéthmsider a
qualitative calculus with a set of basic relatiofis= {By, ..., By} of arity n defined onD. We
associate to it a qualitative formalism with a set of basic relati$ins {B',...,B},} of arity 2
defined on a domaib’ in the following way:

— D' is the setD™ = U{. Hence, each relation &' is a subset of// = D’ x D’ = D" x D" =
UxU.

— For each relatiorB; € B, with 1 < i < k, a basic relatiorB; is introduced in53’. B] is
defined by the relatiof((z1, ..., zy), (z1,...,2,)) : (z1,...,2,) € B;}. Note that the set
of relationsB, = {B/, ..., B}} forms a partition of the relation of identity &’ which we
will denote by Al,.

— Foralli,j € {1,...,n} we define the relatio&;; by:

Eij = {((z1,...,2n), (&), ... 20)) € U' 2wy = 2} \ Al E® = {Ey5 : 4,5 € {1,...,n}}.
E™ with m > 0 is inductively defined b\ = {R; N Ro, Ry \ (R1 N Ry), Ry \ (R1 N
Ry) : Ry, Ry € E™ ). Let m’ the smallest integer such thet" = E™'+1. BL = (R ¢
E™ such that? # () andAR’ # () € E™ with R’ C R}. The set of relations d8L. are added
to the set3'.

— LetF be the binary relation ob’ defined byF = ¢/’ \ (E;; U B). We addF to B'.

Hence the final set of basic relations is thelSet= B}, U B¢ U {F}. The reader can check that
satisfies properties 1, 2 and 3 and hence defines a qualitative calcualrity af

Now, consider QCN N = (V, C) defined onB. Let us define an equivale@CN N/ = (V' C")
onB':



— To defineV’, for eachn-tuples ofn variables(vy, ..., v,) of V we introduce a variable
v’{vl 77777 o in 8.

— Given a variable) = v¢, , belonging tol” we defineC’(v’,v") by the relation{B; :
B; € C(Ul, ce ,vn)}.

— Given two distinct variables, = U%vi,‘..,v@} andv; = U%M ol belonging toV’, C’ (v, v})
is the relationE defined in the following way: lety the set of pairs of integer defined by
{(k,1) € Nx N : v} = v}. E is the set of basic relations & (more precisely of3f)
defined as the relatiof;, ;. Ei-

The reader can check thaf is a consistenQCN iff A/ is a consistenQCN. This construction
is inspired by the technique called dual encoding [10] used in the domaiisakte CSPs to
convertn-ary constraints into binary constraints.

@
{Buab, Bane} — @

{B(lmlﬁ Bt/;bc} Elg

Fig. 2. Converting a ternary constraift;;, of the cyclic point algebra into a binary constraint (left). Expressing a
structural constraint betwee;,, andvy;,,, for distinct integers, j, k, I, m (right).

4 The Qualitative Algebra Toolkit (QAT)

Clearly, all existing qualitative calculi share the same structure, but, tormwlkedge, implemen-
tations and software tools have only been developed for individuallcaltie QAT (Qualitative
Algebra Toolkit) has been conceived as a remedy to this situation. Splgitica QAT is a JAVA
constraint programming library developedGRIL-CNRSat the University of Artois. It aims to
provide open and generic tools for defining and manipulating qualitativbi@gend gqualitative
networks based on these algebras. The core of QAT contains three atkiages. In the sequel
of this section we are going to present each of those packages.

The Algebra package is devoted to the algebraic aspects of the qualitatbdi.cWhile
programs proposed in the literature for using qualitative formalismaditecimplementations
for a specific algebra and for specific solving methods, the QAT allowssfeta define arbitrary
gualitative algebras (including non-binary algebras) using a simple XML Ties XML file,
which respects a specific DTD, contains the definitions of the differemiezies forming the
algebraic structure of the qualitative calculus: the set of basic relatiandiagonal elements, the
table of rotation, the table of permutation and the table of qualitative compositierdéfihed
this XML file for many qualitative calculi of the literature: the interval algebtd the point
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algebra [14], the cyclic point algebra [15], the cyclic interval algeli@,[the rectangle algebra
[17], the INDU algebra [4], the multidimensional algebra [18], the RCdgglara [2], the RCC-8
algebra [2], the cardinal direction algebra [3]). Tools allowing to defirpualitative algebra as
the Cartesian Product of other qualitative algebras are also available.

The QCN package contains tools for defining and manipulating qualitative constraint n
works on any qualitative algebra. As for the algebraic structure, afepBd D allows the use
of XML files for specifying QCNs. The XML file lists the variables and relations defining the
gualitative constraints. Functionalities are provided for accessing andyimgdihe variables of
a QCN, its constraints and the basic relations they contain. Part dQ @ package is devoted
to the generation of random instancesNs. A large amount of the research about qualitative
calculi consists in the elaboration of new algorithms to s@¢é\s. The efficiency of these algo-
rithms must be validated by experimentations on instanc@dfs. Unfortunately, in the general
case there does not exist instances provided by real world probleanselthe generation of ran-
dom instances is a necessary task [19]. Q&N package of the QAT provides generic models
allowing to generate random instanceXiNs for any qualitative calculus.

The Solver package contains numerous methods to solve the main problenesestivvhen
dealing with qualitative constraint networks, namely the consistency proltkerproblem of
finding one or all solutions, and the minimal network problem. All these methedgemeric and
can be applied t&CNs based on arbitrary qualitative calculi. They make use of the algebraic
aspect of the calculus without considering the semantics of the basic rslatioother words,
they make abstraction of the definitions of the basic relations and only uniqajpulatethe
symbolsorresponding to these relations. Nevertheless, by using the objectearimoncept, it is
very easy to particularize a solving method to a specific qualitative algelagarticular kind
of relations. We implemented most of the usual solving methods, such as tdarst@enerate
and test methods, search methods based on backtrack and forwekihghand constraint local
propagation methods. The user can configure these different methotsdising among a range
of heuristics. These heuristics are related to the choice of the variabthe opnstraints to be
scanned, of the basic relations in a constraint during a search. Téeionghich the constraints
are selected and the order in which the basic relations of the selectechaureste examined can
greatly affect the performance of a backtracking algorithm [19]. Tlea ioehind constraint or-
dering heuristics is to first instantiate the more restrictive constraints firstidea behind value
ordering basic relations is to order the basic relations of the constraintatdbe¢hvalue that most
likely leads to a solution is the first one to be selected. The QAT allows the ugaptement
new heuristics based on existing heuristics. As for local constrainagaijpn methods, whereas
in discrete CSPs arc consistency is widely used [p8th consistencis the most efficient and
most frequently used kind of local consistency in the domain of the qualitednstraints. More
exactly, the methods used are based on local constraint propagatsahdragualitative composi-
tion, in the manner of theC1, algorithm described in the previous section. In additioR€d ,,,
we have extended and implemented algorithms basdtCar{21].

5 Conclusions

We propose and study a general formal definition of qualitative calcskdan basic relations
of an arbitrary arity. This unifying definition allows us to capture the algelstucture of all
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qualitative calculi in the literature. The main elements of the algebraic structerdiagonal
elements, and the operations of permutation, rotation and qualitative compo¥iiogive a
transformation allowing to build a qualitative calculus based on binary bakitiors from a
gualitative calculus based on arbitrary basic relations. The exprgasivers of both calculi are
similar. Moreover we generalize the constraint propagation mett@tl to the general casee.
for relations of any arity. In a second part we describe the &fQualitative Algebra Toolkit), a
JAVA constraint programming library allowing to handle constraint netwdedged on arbitrary
n-ary qualitative calculi. This toolkit provides algorithms for solving the caesisy problem
and related problems, as well as most of the heuristics used in the domains @Adlemented
using the object oriented technology. Hence, it is an open platform, andnitsidnalities are
easily extendable. New heuristics (resp. methods) can be defined el #0ng the tools it
provides are classes allowing to generate and to use benchmarks oftiyeatiedaworks. Hence
new heuristics or new solving algorithms can be conveniently evaluated.
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