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Abstract—Quasi-synchronous systems aim to reduce energy
consumption by allowing timing violations in a synchronous
circuit, while performance guarantees are provided by analyzing
the system with a suitable deviation model. This paper studies the
performance of quasi-synchronous LDPC decoders for regular
codes of finite length. We present an approach to accurately
predict the decoding performance and energy consumption of
the decoder for a specific average channel quality and maximum
number of iterations. These analytical results are then compared
with gate-level circuit simulations of a quasi-synchronous decoder.

I. INTRODUCTION

The scale of static and dynamic variations in CMOS process
technologies is increasing rapidly, with the result that design
guardbands put in place to ensure the reliable operation of
the circuit are quickly becoming important contributors to the
overall delay of the circuit [1]. A possible approach to reduc-
ing the guardbands is to tolerate occasional timing violations
in the circuit. We call systems that achieve this without a
compensation mechanism in hardware quasi-synchronous (QS)
systems. For this approach to work, it is necessary to be able to
accurately characterize the performante of the QS system while
accounting for the deviations caused by timing violation events.
Low-density parity-check (LDPC) decoders are ideal candidate
for a QS implementation because only their average error-
correction performance is of interest, and because the high level
of parallelism of the decoding algorithm could allow tolerating
even static variations as long as they are not significantly
correlated across processing units.

The behavior of faulty LDPC decoders has attracted numer-
ous contributions. Notable previous works include the analysis
in [2] of the Gallager-A and Sum-Product algorithms when
messages exchanged in the decoder are affected by noise, and
an analysis of faulty finite-alphabet LDPC decoders where
deviations are modeled using conditional distributions [3].
However, these analyses use models that are not directly ap-
plicable to deviations caused by timing violations. An analysis
of the Min-Sum algorithm was performed in [4] for the case
where computations are reliable, but messages are stored in an
unreliable memory. Finally, a deviation model that takes into
account the state dependence of timing violations is proposed
in [5] for the special case of binary-output circuits.

In this paper, we use a deviation modeling approach proposed
in [6] that can generate accurate memoryless deviation models
of QS circuits, and show how this deviation model can be used
to predict the performance and energy consumption of a QS
decoder operating on a finite-length code. Two approaches can
be used to predict the error correction performance. First, the
deviation model can be used within a Monte-Carlo simulation

based on a high-level software implementation of the algorithm.
More interestingly, for moderately long codes, the performance
can be predicted from density evolution (DE) results, allowing
to determine the performance of a particular finite-length QS
decoder very rapidly. As a result, the operating condition
can be optimized specifically in terms of the chosen code
length, signal-to-noise ratio (SNR), and maximum number of
iterations.

II. DECODER ARCHITECTURE

In this paper, we restrict our attention to regular LDPC codes,
in which all variable nodes have degree dv , and all check
nodes have degree dc. The decoder that we consider implements
the Offset Min-Sum (OMS) algorithm, a well known approx-
imation to the Sum-Product algorithm that achieves similar
performance. An LDPC decoder proceeds by exchanging belief
messages between the variable and check nodes of the code’s
Tanner graph, and a decoder implementation can be divided
into variable-node processor (VNP) blocks that implement the
variable node (VN) computation, and check-node processor
(CNP) blocks that implement the check node (CN) compu-
tation. We implement a row-layered decoder architecture, in
which all the messages sent by a given CN are computed in
parallel, but VN messages are generated one edge at a time.
By using this architecture with the corresponding row-layered
message-passing schedule, the number of decoding iterations
can be reduced approximately by a factor of two [7], and for this
reason it is widely used for circuit implementations (e.g. [8]).

One CNP block can be combined with dc VNP blocks to
form a processor unit. Each VNP block in the unit takes as
input the VN total belief Λi, as well as the intrinsic belief λ`i ,
which corresponds to the message that was previously received
by the VN on edge ` ∈ {1, 2, . . . , dv} (note that Λi =

∑
` λ

`
i ).

After sending messages to the CNP and receiving messages
back, each VNP outputs the updated values of Λi and λ`i . This
processor can be pipelined, and in this architecture we divide it
into two pipeline stages. The complete architecture is composed
of a number of processor units and of a memory.

The values Λi and λ`i are represented using a fixed-point
representation. When using the OMS algorithm, these values
can be thought of as integers without loss of generality. The
belief totals Λi are initialized using the channel outputs. We
assume that codewords are transmitted over an Additive White
Gaussian Noise (AWGN) channel. For a channel output yi and
channel noise variance σ2

w, the initial belief total Λ
(0)
i is given

by rounding

Λ
(0)
i =

αyi
σ2
w

(1)



to the nearest integer. The number of bits used to represent the
messages, the value of α, and the offset parameter of the OMS
algorithm are chosen based DE results obtained for a reliable
decoder (these values are given in Section IV).

Note that to generate the circuit results in Section IV, we
actually use a decoder containing a single processor unit,
since the number of processors has no impact on decoding
performance or energy consumption. Since we focus on the
energy required by the computations, we assume that the
memory is reliable and consumes no power.

III. PERFORMANCE ANALYSIS

A. Deviation Model

The signal propagation delays in CMOS circuits vary accord-
ing to many factors, but in this paper we focus on the delay
variations associated with the state of the circuit, and assume
that the operating condition condition of the circuit, denoted
γ, is deterministic. The fact that propagation delays depend on
the state of the circuit makes it challenging to model deviations
caused by timing violations, since deviations depend not only
on the circuit’s current input but also on the previous one.

We will model deviations occurring in a QS LDPC decoder
by using the approach proposed in [6], where the dependence
on the circuit’s state is replaced with a dependence on the sta-
tistical distribution of the input, yielding a memoryless model
that is nonetheless accurate. Since we are usually interested
in the progress made by the decoder from one iteration to
the next, we can summarize the effect of deviations on the
decoder by considering that every message ν

(t)
i,j exchanged

from a variable node i to a check node j in iteration t is
replaced by a faulty message µ

(t)
i,j . We then define a family

of conditional distributions of µ
(t)
i,j given ν

(t)
i,j , indexed by

the operating condition γ, and by the message error rate at
the beginning of the iteration p

(t−1)
e . To further improve the

model’s accuracy, we also condition the distributions on the
value of the transmitted bit xi corresponding to variable node
i. Omitting the node indices i and j, the model can be denoted
as

P(γ,p(t−1)
e )

µ(t)|ν(t),x
(µ | ν, x) . (2)

The model is said to be weakly symmetric if

P(γ,p(t−1)
e )

µ(t)|ν(t),x
(µ | ν, x = 1) = P(γ,p(t−1)

e )

µ(t)|ν(t),x
(−µ | −ν, x = −1)

holds for any given realization of the channel noise, and in that
case it is shown in [6] that DE can be used to determine the
performance of the QS decoder when the code length tends to
infinity.

The deviation model in (2) describes the iterative behavior
of the decoder, but when studying the decoding of a finite-
length code, we are also interested in measuring the error rate
at the output of the decoder, which depends on the a-posteriori
estimate represented by the VN total Λi. To do this, we define
a second deviation model similar to (2) but that provides the
conditional distribution of the faulty belief total in terms of the
ideal one, that is in terms of the value that would be computed
if the last decoding iteration had been reliable. Denoting the

ideal belief total of some VN after iteration t by K(t), the
output deviation model is given by

P(γ,p(t−1)
e )

Λ(t)|K(t),x
(Λ |K,x) . (3)

Note that the output deviation model could be simplified further
since in most cases the output is only used to take a binary
decision on the value of the transmitted bit.

B. Deviation and Energy Measurements

In order to quickly cover the range of possible input dis-
tributions that will be seen by the circuit, we approximate
the distribution of extrinsic messages in the decoder as a
one-dimensional (1-D) Normal distribution, that is a Normal
distribution with a mean µ and variance σ2 such that µ = ασ2,
where α is the constant in (1). Note that this approximation
is only used to measure deviations, and not to measure the
error rate of the decoder. The 1-D Normal distribution can
be equivalently described in terms of its error rate parameter
pe = 1

2 erfc
(

1√
2σ2

)
. We select a small set of pe values, and

for each value, measure the conditional distributions in (2) and
(3) by performing Monte-Carlo simulations on the gate-level
representation of the processing circuit. This is repeated for
every operating condition γ of interest to construct the complete
deviation model. Simultaneously, we also record the switching
activity in the circuit in terms of pe, in order to estimate the
circuit’s power consumption and construct an energy model that
depends on pe.

Even though the deviation measurements are performed by
assuming a specific noise variance σ2

w for the AWGN channel,
the deviation model does not depend on σ2

w, and we have
observed that the model remains accurate for other variance
values.

C. Density Evolution

Since messages in the decoder are quantized, the error cor-
rection performance of the decoder on a cycle-free graph can be
evaluated exactly by performing DE with discrete distributions
[9]. We perform DE in the usual way, but we take into account
the layered message-passing schedule used by the hardware
implementation, and apply an additional transformation on the
distribution of VN-to-CN messages according to (2). For each
decoding iteration, we also compute the distribution of the VN
total belief Λi. Note that Λi is obtained by summing dv CN-to-
VN messages together (rather than dv−1 in the case of extrinsic
messages). After evaluating the distribution of the ideal total,
we apply (3) to obtain the distribution of Λi.

D. Finite-length Performance

The performance of a finite-length LDPC code differs from
the performance given by performing DE on a cycle-free graph
for two reasons. First, good LDPC codes necessarily contain
cycles [10], which introduce harmful correlation among the
messages exchanged by a belief propagation decoder. Second,
because the codewords have a finite length, the channel noise
realization associated with a particular transmitted frame has a
varying distribution. We now discuss how the error-correction
performance and energy results obtained by using DE with the



deviation model can be used to determine the performance and
energy consumption of a quasi-synchronous decoder operating
on a a finite-length code, in the case of a transmission through
the AWGN channel.

To illustrate the variations in channel noise, it is helpful to
first consider a binary symmetric channel with parameter po. In
a codeword of infinite length, a fraction po of the transmitted
bits will be received in error, with probability 1. However,
in a finite-length codeword, the number of incorrect bits in
a codeword will vary according to a Binomial distribution.
Denoting by pobs the fraction of incorrect bits observed in the
codeword, the observed channel can be described by a binary
symmetric channel (BSC) with parameter pobs. For a code of
length N , this parameter has the distribution

Ppobs
(pobs) =

(
N

Npobs

)
pNpobs
o (1− po)N−Npobs . (4)

For large N , this distribution can be approximated by a
Gaussian distribution with mean po and variance po(1−po)/N .

In the case of the AWGN channel, the observed channel
cannot be described by a single parameter. Nonetheless, it is
shown in [11] that approximating the noise realization by a
1-D Gaussian distribution with error-rate parameter pobs leads
to accurate predictions of the performance of moderately long
codes. This is also corroborated by our own results presented
in Section IV.

Since the decoding performance concentrates to the cycle-
free case as the code length goes to infinity, we can expect the
cycles to have a smaller impact on performance as the code
length increases. In fact, it was shown in [11] that the frame
and bit error rates of moderately long codes can be determined
accurately based only on the channel threshold associated with
the code ensemble and with the decoding algorithm.

The results presented in [11] apply to the case where the
number of decoding iterations is large. We present a similar
method that is able to predict the decoding performance for
any number of decoding iterations. Being able to predict the
bit and frame error rate as a function of the number of
iterations is important to explore tradeoffs involving latency.
In addition, predicting the frame error rate as a function of
decoding iterations will allow a precise evaluation of the energy
consumption of the decoder.

Let us denote by P
(t)
γ,N (po) the output bit error rate of the

decoder after t iterations, when using a code of length N and
an operating parameter γ, and when the average channel error
rate is po. Similarly, let P (t)

γ,∞(po) denote the output bit error
rate after t iterations for an infinite-length code, which can
be obtained using DE. Recall that in this case, the observed
channel has parameter pobs = po with probability 1. If we
ignore the effect of cycles, the distinction between P

(t)
γ,N (po)

and P
(t)
γ,∞(po) is only due to the variability of the observed

channel. Therefore, we can express the finite-length bit-error
rate (BER) as

P
(t)
γ,N (po) =

∫ 1
2

0

P (t)
γ,∞(pobs) φN

(
pobs; po,

po(1− po)
N

)
dpobs,

(5)

where φN (x;µ, σ2) is the probability density function of a
normal random variable with mean µ and variance σ2. The
function P (t)

γ,∞(po) can be evaluated at discrete intervals using
DE, and linear interpolation used to construct a continuous
function. Since a single deviation model is valid for all pobs

values of interest, no additional circuit simulation is required.
The frame-error rate (FER) R(t)

γ,N (po) can be evaluated in a
similar way. In a cycle-free graph and for a given received
frame with an observed noise distribution of pobs, a frame
remains in error if at least one bit is estimated incorrectly.
Therefore, when the channel noise corresponds to an error rate
of exactly pobs, the FER R

(t)
γ,∞(pobs) is given by

R(t)
γ,∞(pobs) = 1−

(
1− P (t)

γ,∞(pobs)
)N

. (6)

In the finite-length case, we take the expectation over the
possible channel noise realizations, and obtain

R
(t)
γ,N (po) =

∫ 1
2

0

R(t)
γ,∞(pobs) φN

(
pobs; po,

po(1− po)
N

)
dpobs.

(7)
The energy consumption of the decoder during iteration

t + 1 is modeled as a function of the message error rate p(t)
e

and of the current operating condition γ. Since p
(t)
e is fully

determined by the channel distribution pobs, by γ, and by t, we
can also express the energy as a function of these quantities.
We denote the energy consumption of iteration t for a fixed
observed channel pobs by E

(t)
γ,∞(pobs). If we assume that the

decoder is terminated as soon as a valid codeword is found, the
decoding energy required to decode a particular frame depends
on the number of iterations that was required for that frame.
The average energy consumed by the decoder to decode each
codeword is therefore

Eγ,N (po) =

∫ 1
2

0

(
L∑
t=1

E(t)
γ,∞(pobs)R

(t−1)
γ,∞ (pobs)

)

· φN
(
pobs; po,

po(1− po)
N

)
dpobs, (8)

where L is the maximum number of decoding iterations. If the
latency of one iteration is Tγ and is constant throughout the
decoding, we can also obtain the average energy-delay product
(EDP) metric of the decoder as

EDPγ,N (po) = Eγ,N (po) · Tγ . (9)

If the latency is not constant, it simply appears inside the sum
in (8).

E. Operating Condition Selection

In CMOS circuits, there exists a tradeoff between energy
consumption and latency. For this reason, it is interesting to
seek to minimize the product of energy and delay, or EDP.
The EDP objective provides more flexibility in finding solutions
because the clock period of the circuit can be chosen arbitrarily,
whereas the supply voltage is constrained to the points for
which the standard cell libraries have been characterized.

The EDP metric of the decoder varies in terms of the
channel quality. Since a finite-length code of reasonable length



cannot achieve a low error rate near the ensemble threshold,
the optimization should be performed at the SNR where the
decoder is likely to be operated. We choose an SNR of 1.7 dB,
which corresponds to a channel output error rate of po = 0.112.

When the decoder is to be operated at a single operating
condition γ, one way to minimize EDP is simply to evaluate
(9) for every possible γ. Using MATLAB, (8) can be evaluated
in a few seconds on a laptop CPU.

IV. RESULTS

A. Experimental Setup

We construct a (3, 6) code of length N = 32000 using a
random construction free of 4-cycles. The code was generated
using MacKay’s freely available code5 generator [12]. By
studying the performance of a reliable implementation of the
decoder, we set α in (1) to 4 and the OMS correction offset
to 1, while the number of quantization bits used to represent
messages is set to 6 in order to obtain decoding performance
similar to a floating-point implementation.

The processing unit of the decoder is synthesized using
Cadence Encounter [13] to TSMC’s 65 nm process. The
synthesis uses the tcbn65gplus cell library and is performed
at the default supply voltage of Vdd = 1 V, with a target clock
period of 2 ns. After synthesis, we generate timing annotations
for the circuit at several Vdd values, in increments of 0.05 V.
A testbench then instantiates the gate-level version of the
processing unit. The testbench connects the processor with
the memory, and implements an early termination mechanism
that stops the decoder as soon as a valid codeword is found.
The early termination mechanism itself is not affected by
timing violations. The received frames that are processed by
the decoder are generated by transmitting random codewords
modulated with binary phase-shift keying through an AWGN
channel.

In addition to the simulation of the decoder circuit, the
performance of the QS decoder can be evaluated by building the
deviation model into a high-level software implementation of
the decoding algorithm. Deviations applied to VN-to-CN mes-
sages are sampled from (2), and deviations applied to the VN
total beliefs are sampled from (3). At every decoding iteration,
the message error rate parameter p(t−1)

e of the deviation model
is updated to track the error rate progress of the particular frame
being decoded. Note that unlike the predictions based on DE,
the high-level Monte-Carlo approach is expected to be accurate
for any code length.

B. Discussion

We present the bit and frame error rate of the decoder
operated at (Vdd = 0.85 V, Tclk = 2.2 ns) in Fig. 1, and at
(Vdd = 0.85 V, Tclk = 2.3 ns) in Fig. 2. In both cases, the
error rate is evaluated with three different methods. The “gate-
level” results show the error rate measured using a gate-level
simulation of the decoder, with timing annotations correspond-
ing to the chosen operating condition. The “sw MC” results are
generated using the high-level software implementation of the
decoding algorithm. These high-level software results actually
use a flooding message-passing schedule while doubling the
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Fig. 1. Bit (solid curves) and frame (dashed curves) error rate of the (3, 6)
code of length 32,000 for a QS decoder at γ = (0.85V, 2.2 ns), compared
with a reliable decoder.
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Fig. 2. Bit (solid curves) and frame (dashed curves) error rate of the (3, 6)
code of length 32,000 for a QS decoder at γ = (0.85V, 2.3 ns), compared
with a reliable decoder.

maximum number of iterations. Finally, the “DE-based” results
are generated by evaluating (5) and (7) numerically. The gate-
level simulations are of course the most computationally inten-
sive, and for this reason can only be generated for relatively
high error rates. On the other hand, once the deviation models
have been generated, the curves based on DE can be generated
in less than a minute.

We can see in Fig. 1 that operating the decoder at γ =
(0.85 V, 2.2 ns) results in an important loss of coding gain. At
this operating condition, up to 3% of the messages are affected
by deviations. Despite the large deviation rate, both the high-
level simulation and the DE results can accurately predict the
performance of the decoder when the SNR is 1.4 or 1.5 dB.
Starting at 1.6 dB, the DE result predicts an error floor that is
not observed in the decoder that uses early termination. On the
other hand, when early termination is not used (“no ET”), the
DE result accurately predicts the performance. The ability of a
reliable early termination mechanism to eliminate an early floor
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Fig. 3. Average EDP required to decode a frame of the (3, 6) code of length
32,000 at various operating conditions, using layered message-passing. The
dotted curves are based on the frame error rate measured on the gate-level
model.

caused by deviations was previously noted in [14], and can be
explained by the fact that when deviations occur independently
from one iteration to the next, the probability that deviations
prevent termination decreases exponentially in the number of
additional iterations.

When the operating condition is instead selected as γ =
(0.85 V, 2.3 ns), the deviation rate remains below 1%, and the
error correction performance of the QS decoder becomes very
similar to the performance of a reliable decoder. Both the DE-
based results and the high-level software accurately predict the
performance.

Finally, Fig. 3 shows the EDP metric at three different oper-
ating conditions. We can first see that since an early termination
mechanism is used, the maximum number of iterations only has
an impact on EDP at low SNR values. Indeed, the impact of
decoding iterations that have a low probability of being required
is negligible on the average energy and EDP. For this reason,
the erroneous error floor obtained with the DE-based result at
γ = (0.85 V, 2.2 ns) has no impact on the EDP evaluation. The
first interesting thing to note from Fig. 3 is that a QS decoder
can actually have a worse EDP than a reliable decoder, even
as its coding gain is degraded. The reason is that the slower
convergence of the QS decoder can overcome the reduction
in the energy of each decoding iteration. Also note that the
optimal operating condition can be different depending on SNR.
The operating condition that yields the best EDP at 1.7dB is
γ = (0.85 V, 2.3 ns), providing a gain of 15% with respect to
the reliable decoder.

To assess the accuracy of the EDP results, we would ideally
like to measure the energy used by the gate-level decoder at
each iteration. However, this would require measuring switch-
ing activity separately for each iteration, which is cumbersome.
Instead, we assume that the energy model E

(t)
γ,∞(pobs) is

accurate, since it is measured on a test circuit that is identical to
the decoder circuit. We then evaluate the energy consumption
using the frame error rate R(t)

γ,N (po) measured on the gate-level

decoder. The resulting EDP is shown as dotted curves in Fig. 3.
These curves confirm that the frame error rate at each decoding
iteration is predicted accurately, which leads to accurate energy
predictions, as long as the energy model itself is accurate.

V. CONCLUSION

In this paper, we performed gate-level simulations of an
Offset Min-Sum LDPC decoder affected by timing violations,
and showed that its decoding performance can be accurately
predicted using the memoryless deviation model introduced in
[6]. We introduced an analytical approach based on density
evolution that allows predicting the BER and FER of the QS
decoder after any number of iterations, which in turn can be
used to obtain accurate estimates of its energy consumption or
EDP metric.

The EDP gain results presented are only due to the fact that
different circuit inputs activate different paths through a circuit
and cause different delays. We expect that much larger gains
can be obtained once process and operating condition variations
are taken into account.
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