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Abstract—In this paper, we present a process to simulate 3D
data; as an unmanned combat aerial vehicle (drone) equipped
with a Ladar sensor could do. The data obtained are colored
3D point clouds in where potential targets are highlighted. Our
objective with these simulated corpus of 3D point cloud data is
to explore the usage of Virtual Reality settings to validate the
selection of a target. To do that we detail an implementation of
a VR headset to visualize our simulated data. We also introduce
a metric to estimate the visibility of the target.

I. INTRODUCTION

Unmanned Combat Aerial Vehicles (UCAVs) can be po-
sitioned in airspace for a long period of time while being
able to rapidly attack a target of interest. The use of 3D
data provided by modern active sensors such as a Laser Radar
(Ladar) on future UCAVs could be a valid option to consider in
order to improve target detection, recognition, and identification
performances [1]. The availability of such types of 3D data will
open new technical challenges, in order to efficiently exploit
them in an operator-in-the loop scheme.

3D interaction techniques for manipulating viewpoints [2]
and 3D objects [3] are now common and could be used to let
the user choose the best possible viewpoint to analyse the data.
Moreover, new low-cost Virtual Reality (VR) hardware displays
(such as the Oculus Rift or HTC Vive) and input devices (such
as the STEM) are now wide spread. These devices are worth
using to offer an immersive experience to the end-users of
our systems. To do so and in order to develop an efficient
3D user interface, which provides the optimal display options
and configurations of the 3D data, a number of human factor
experiments and analyses have to be conducted.

Our contributions in this paper include: 1) an innovative
method to generate 3D point clouds from 3D scenes composed
by meshes, 2) a metric to quantify the difficulty of finding a
target inside 3D point clouds and 3) an integration of a VR
headset to visualize 3D point clouds by the human operator.

II. PREVIOUS WORK

Our research is inspired by previous work on the usage of
drones and Ladar sensors in military context, on solutions to
generate 3D point clouds and visualize them by human operator
at the command and control station.

A. Military UCAV context

In current battlefield, a drone (UCAV) is in few cases
positioned in the airspace to attack a target. One operator
pilots the drone while a second operator uses sensor feedback
for finding the target. Classically, infrared (IR) cameras or 2D
radars are commonly available sensors on a drone. Also, to help
the operator 2D automatic target recognition (ATR) algorithms
are common on drones, for advanced tracking systems of a
target [4]. However, these algorithms can present false alarms
that preclude the reliable automatic selection of such targets [5],
[6]. Operator-in-the-loop, i.e. man designation, is thus required
to guarantee successful recognition of a target and effective
impact by a missile launched from the drone [1]. Moreover, IR
images can easily be noisy because of sensitivity of IR signals
to weather changes, internal camera defaults or configuration.

In 2004, the U.S. Army Research wanted to exploit the usage
of current and future airborne Laser Radar (Ladar) sensors [1].
Now, this type of sensors is compact enough to be envisaged
onboard of a drone. The main advantage of Ladar is that the data
acquired are 3D point cloud data. As for IR or 2D radar, ATR
algorithms with 3D data have been recently explored [7]. A high
recognition performance (more than 90%) is obtained. However,
this result confirms that an operator is still required for a fully
correct target detection/recognition. Having the operator-in-the-
loop means he has to manipulate and visualize the generated
3D point cloud data. Doing that will permit adaptation of the
point of view and the zoom factor on the data to correctly
detecting the target. Our objective in this work then is related
to Human-Computer Interaction and Virtual Reality research
domains. To explore different VR solutions of visualization
and interaction, we first need to create a database of military
3D point clouds representing what a Ladar embedded on a
drone could generate. The process for generating these data is
one of our contributions described in this paper.

B. Generating 3D point clouds

Previous research already explored the simulation of Ladar
sensors [8]. A lot of work focuses on the physical modelling and
simulation of Ladar [9]–[12] such as the sensor model (pulse
energy, beam divergence), the atmospheric model (turbulence,
fog) and the terrain model (material, reflection). For the



application of these simulations, Kim et al. [11] investigate the
fusion of multiple sensors (GPS, IMU and laser scanner) to
precisely acquire 3D point clouds with airborne Ladar dealing
with sensor errors. Chevalier et al. [10] provided a comparison
between simulated and real Ladar data in order to compare
algorithms for detecting a target. Lohani et al. [13] took into
account, in their simulation, the flight parameters of the aircraft
mounting the Ladar while Peinecke et al. [8] proposed a
simulation using the GPU for fast calculations. All this previous
work uses the principle of ray casting for simulating the laser
beam and calculating the 3D point clouds.

In our research, we propose an easy and fast method for
generating 3D point clouds starting from any 3D mesh. We
use the principle of ray casting to calculate the position of
each 3D point cloud without including physical modeling of
the atmosphere and the beam Ladar. Moreover, we choose
to model the movement of the UCAV as a circular trajectory
around an area simulating a loitering munitions scenario. We
develop an innovative data processing on the 3D point clouds
as they are acquired in order to color them to highlight potential
targets. These choices permit to describe with few parameters
our method for generating 3D point clouds and assure a quick
and easy process for non-experts in physics with Ladar sensors.

C. Visualization of 3D point clouds

Visualization of Ladar data, i.e. 3D point clouds, could be
done in the same way as 3D Meshes. A lot of tools exist to
load and visualize 3D point clouds, with both OpenGL and
DirectX 3D API. Among them the Point Cloud Library (PCL)
[14] including many C++ implementations of 3D point clouds
algorithms for filtering, estimation, reconstruction, registration,
model fitting and segmentation. CloudCompare [15] is also a
good example of GUI software to visualize and to compare
3D point clouds.

In this work, we want to combine Virtual Reality visual-
ization and 3D point clouds. Burwell et al. [16] showed that
users positively evaluate the usage of Head-Mounted Display
(HMD) for visualizing 3D point clouds: immersion and real-
time manipulation, are considered advantageous for viewing
the depth and structure of point clouds. Oliver et al. [17]
successfully visualized 3D point clouds in a CAVE setting for
several interactive analysis tools of geology data. Bruder et
al. [18] used HMD for visualization of culture heritage 3D
point clouds. Both examples show that VR visualization and
dense 3D point clouds (more than 20 million 3D points) are
now possible with high performance, optimal frame rate and
user satisfaction. In our case, we use a specific toolkit for the
generation of 3D point clouds as the PCL Library. For the
visualization, we aim at easily adding or changing VR settings
in order to explore many available solutions. Thus, we choose
to adopt Unity 3D [19] for its versatility. Moreover, we also
provide a metric for quantifying the difficulty to detect the
target inside the acquired/processed 3D point clouds. The result
of this metric depends on the point of view adopted for the
visualization and of the 3D scene, i.e. the shape of the 3D
objects that occludes the target.

Fig. 1. Drone flight and Ladar sensor parameters.

III. OUR PROCESS

Our full process of 3D points clouds generation from a drone
equipped with a Ladar sensor is divided in three main steps:
1) define the parameters of the Ladar sensor and of the drone’s
flight; 2) generate multiple 3D point clouds and fuse them; 3)
add color for segmentation on the 3D points. For each step,
we first explain the concept then we show the results of our
implementation.

A. Definition of the parameters
In our military context, we consider that the drone rotates

around the area where the target is hiding. For defining the
flight parameters of the drone, we need the Altitude and the
Drone Radius (cf. Fig.1). The point C defines the center of the
circular movement of the drone. For the Ladar sensor, we must
define the resolution of the sensor in pixel (X res ∗ Y res),
the angle α corresponding to the inclination of the Ladar and
the Field of View (FoV) of the sensor (cf. Fig.1). The point P
is corresponding to the point on the ground where the Ladar
sensor is focused. The point O is the farthest point on the
ground visible by the drone. The length CO defines the overlap
area after the center C (cf. Fig.1). This overlap permits you to
see high elements (buildings or trees for example) close to the
center C. If CO is null, a hole without 3D points could appear.

With all these rules, the Altitude, the overlap size CO, the
angles α and FoV are enough for determining the Drone Radius
(1) and the size of the length sense on the ground, i.e. Length
sense (2).

DroneRadius = tan(α+
FoV

2
) ∗Altitude− CO (1)

Lengthsense = DroneRadius + CO

− tan(α− FoV

2
) ∗Altitude (2)

In our implementation, we use the PCL library [14]. PCL
uses the Visualization Toolkit library (VTK) [20] for the 3D
rendering. We simulate the Ladar sensor with a virtual camera
that looks at the point F with an angle of view of FoV. In all
our examples, we use these values for the simulation: Alitude
= 300m; OC = 10m; FoV = 6.5◦; α = 45◦; X res = Y res =
128px. We obtains DroneRadius ≈ 326.12m and Lengthsense
≈ 68.36m corresponding to a full circular area covered with a
diameter of 125m.
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Fig. 2. Three illustrations of our process.

B. Generation of the 3D point clouds

In order to generate the full 3D point clouds viewed by
the drone, we subdivide the circular movement of the drone
by NoV (Number of Views) position. For each position of
the drone, we generate one 3D point cloud of X res ∗ Y res
points that fits what the Ladar sensor sees. At the end, this
step generates NoV different 3D point clouds. After that, we
fuse all these point clouds into a big 3D point cloud of NoV ∗
X res ∗ Y res point clouds that represent all the area visible
by the drone. In our implementation, we choose to generate
100 different positions of the drone: NoV = 100. We iteratively
translate the virtual camera simulating the Ladar sensor to each
position of the drone. For calculating the position of each point
cloud, we use the principle of ray casting. For each pixel (128
∗ 128) of the image of the virtual camera simulating the Ladar
sensor, we launch a virtual ray. We then store the position of
the point corresponding at the intersection with this ray and
the meshes of the 3D scene. For one area, we obtain point
clouds of 1,638,400 points. For our tests, we use a full 3D
mesh model of our university campus and the closest village.
We add some targets, i.e. a tank inside these meshes. Fig.2b
shows three examples of 3D point clouds generated by this
step. On the Fig.2, the point of view adopted for each example
is chosen arbitrarily in order to better understand the 3D scene

and see the target. Moreover, the field of view is not the FoV
of the Ladar sensor; it is the default value of 30◦.

C. Coloration of the 3D points

At this point, we only obtain white 3D point clouds. We
would like to add some color. We use two principles: 1) use
a color map in order to highlight point clouds close to the
ground, i.e. where the target is; 2) leave the ground in white.

For the color, we use the jet color map. This color map is
included for example in Matlab and permits to use every color
only once. We interpolate the color between the minimum
height (Z coordinate) and the maximum height of the 3D point
clouds. We choose a jet color map with 64 values and we
put the red color on the point close to the ground (minimum
height value) and the blue color on the maximum height value
in order to display the target in red color (cf. Fig.2c).

For the white ground color, we use the iterative RANSAC
method [21] for detecting planar surfaces inside the 3D
point cloud. We use the implementation of this segmentation
operation available with PCL [14] as follow. For each NoV 3D
point cloud generated in the previous step, we apply five steps:

1) Keep the 3D points included between the minimum
height value and the minimum height value plus a
threshold and save it in PC.
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Fig. 3. Illustrations of our method for calculating the metric difficulty.

2) Apply the RANSAC algorithm on PC.
3) Add in PG (points ground) the result of the algorithm if

the normal of the plane detected is perpendicular to the
ground (normal(plane).z < 0.9).

4) Remove the PG points inside PC.
5) Loop to the step 2) until the number of points inside PC

is less than 1% of the initial PC number of points.
At the end, we set all the 3D points included in PG to white.

In step 1), we take the value of the threshold as 3 corresponding
to search the planar surface between the minimum height value
and 3 meters in order to not detect ground on the top of
buildings. This threshold is one of the changeable parameters
to correctly find the ground if the area has some cliffs or hills.
In step 3), the normal vector test permits you to remove vertical
plane detections corresponding, for example, to building walls,
sides of cars, trunks of trees. Fig.2c shows examples of results
of our full process with the complete colorization.

IV. VR VISUALIZATION
After multiple generations of different 3D scenes with our

process, we have implemented the visualization of the 3D point
clouds using an immersive HMD setup. In this section, we
also detail our method for calculating a metric to evaluate the
difficulty of finding a target inside the 3D point clouds.

A. Immersive HMD setup

In our setup we visualize 3D point clouds on the OSVR HDK
1.3 HMD (Open Source Virtual Reality Hacker Development
Kit 1.3 [22]). For rendering, we use the official OSVR package
for Unity 3D with direct mode rendering and distortion
correction. To display the 3D point clouds generated by our
process with the PCL library in Unity 3D, we have written
an asset in C# to load a ”.PCD” file according to the format
defined by PCL. For the head tracking, we use the data provided
by the internal sensor of the HDK 1.3. For the position, we
use an external motion capture (OptiTrack system) with six
infrared cameras. We have implemented two modes for the
interaction with the user:

• An automatic mode, where the point of view of the user
rotates around the center of the 3D point clouds. This

mode gives the user the same perspective as a drone
rotating around the simulated area. The user can only
use the head tracking to adapt his/her point of view;
he/she cannot change his/her position. When he/she sees
a potential target, he/she can press the space bar to stop
this mode and enter the second mode.

• In this second mode, the user can walk through the 3D
point clouds, move his/her body and head to be close to
the potential target.

For rendering, we use a computer with Windows 10,
a 3.70GHz Intel Xeon E5-1630 processor, 16GB of main
memory and one Nvidia GeForce GTX 960 graphics card. The
VR visualization is rendering in full HD resolution with a
stereoscopic renderer and no significant lag is seen.

B. Metric for estimating visibility

We would like to propose a metric that characterizes how
difficult it is to see a target inside a 3D point cloud. This value
depends on the point of view chosen by the user. The main
concept of the metric is to calculate the percentage of visible
pixels of the target for each view.

Firstly, we generate three white 3D point clouds with our
process detailed in section III-B: P1 with only the mesh of the
target (cf. Fig.3a), P2 with only the meshes of the environment
(buildings, trees) without the ground (cf. Fig.3b) and P3 the
meshes of the target and the environment without the ground
(cf. Fig.3c). P1 corresponds to the theoretical point clouds of
the target if there is not environment and P3 corresponds to
the point clouds viewed by the drone with a perfect detection
of the ground. Secondly, the metric is calculated for each point
of view of the user as follows:

1) Calculate the binary image I1 (cf. Fig.3a), I2 (cf. Fig.3b)
and I3 (cf. Fig.3c) from a single point of view of P1,
P2 and P3 respectively.

2) Calculate I4 = I2 xor I3. This image (cf. Fig.3d)
corresponds to the visible pixels of the target.

3) The metric is the ratio between the number of pixels in
I4 (target occluded by the environment) and the number
of pixels in I1 (total number of pixels in the target).



From the point of view chosen in the Fig.3, the number of
pixels of target visible with the environment is 4733px (Fig.3d)
and the number of pixels of the target visible without the
environment is 6908px (Fig.3a). The metric is thus 68.5%.

To estimate the global difficulty of an area, we take different
point of views on the point clouds. We choose to segment the
circular rotation into 100 images, rotating the virtual camera
as in the first mode of the immersive visualization. The final
metric is the mean metric across all each images. For example,
on the three examples of the Fig.2, the metrics are 54.4%,
77.6% and 24.6%. We calculate the final metric on different
areas. On easy areas, when the target is almost fully visible in
each image, the metric is more than 50%. On difficult areas,
the metric is less than 20%.

V. CONCLUSION AND FUTURE WORK

In this paper, we detail a process to generate 3D point clouds
based on 3D meshes. To do that, we simulate the data sensed by
a Ladar embedded on a drone flying around a simulated combat
area. Our full process generates colored 3D point clouds with
the estimated ground in white and potential targets in red. Our
quick and easy process permits the generation of many 3D
point clouds in order to create a corpus of data, for exploring
the usage of Virtual Reality settings to visualize and manipulate
them. For this, we provide details about an implementation
method for visualization with a VR headset. We also define a
method to estimate the difficulty of finding a target inside the
3D point clouds generated.

Our future work is now to explore, in depth, the usage
of the VR setting with our corpus. First, we will plan user
experiences to evaluate the display and interaction fidelity [23]
with a VR headset for searching a target inside 3D point clouds.
Secondly, we plan to design and evaluate natural interaction
techniques [24] for manipulating the 3D point clouds: for
example, techniques for zooming close to the target, for using
a cutting plane in order only to display the 3D point clouds
close to the target, or for changing the color of the 3D point
clouds for improved viewing. Finally, designing how to display
and interact with results of a 3D ATR algorithm [7] could be
also a good proof of concept, to develop the usage of Virtual
Reality in a military context.
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