
HAL Id: hal-01487062
https://hal.science/hal-01487062

Preprint submitted on 10 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

SQLCert: Coq mechanisation of SQL’s compilation:
Formally reconciling SQL and (relational) algebra

Véronique Benzaken, Evelyne Contejean

To cite this version:
Véronique Benzaken, Evelyne Contejean. SQLCert: Coq mechanisation of SQL’s compilation: For-
mally reconciling SQL and (relational) algebra. 2016. �hal-01487062�

https://hal.science/hal-01487062
https://hal.archives-ouvertes.fr

SQLCert: Coq mechanisation of SQL’s
compilation

Formally reconciling SQL and (relational) algebra

Véronique Benzaken and Évelyne Contejean

LRI - CNRS - Université Paris Sud - Université Paris Saclay, France

Abstract. SQL is the standard language for manipulating data stored
in relational database systems. In theory, SQL is based on the relational
data model. However, there is an important mismatch between the theo-
retical foundations and the corresponding standard specification, as SQL
history spread over decades. Briefly, the disparities concern the treatment
of relations: finite sets in theory, finite bags in practice, the treatment of
attributes and the chosen corresponding algebra used to compile queries.
We propose SQLCert, a Coq mechanisation of three, among four, central
steps of SQL’s compilation chain: the syntactic analysis, the semantics
analysis and the logical optimisation steps. To this purpose, we pro-
pose SQLCoq a Gallina grammar and associated Coq-mechanised seman-
tics accounting for the native fragment of SQL described in the ISO/IEC

2006 Final Committee draft. As SQL compilers’ logical optimisation is
based on algebraic rewritings, we also define ExtAlg a Coq-mechanised
extended bag-set-algebra, deeply relate SQLCoq to it and prove, using
Coq, most of the commonly used in practice (SQL’s queries) rewritings,
yielding strong guarantees for the optimiser. Doing so, we thus formally
reconcile SQL and its theoretical algebraic counterpart and provide the
first, to our knowledge, executable mechanisation proposal of a (realistic
fragment of) SQL compiler.

1 Introduction

Current data-centric applications ranging from e-commerce, health crises’ mon-
itoring, to homeland security involve increasingly massive data volumes which
are precious and whose availability, integrity and reliability is highly desirable.
An important part of such data are handled by relational database management
systems (RDBMS) through their query language: SQL which is the standard
for such systems and whose ISO/IEC specification is found in [11]. RDBMS’s,
while intensively used in practice, have not yet reached the same high safety
level guarantees as found in other critical systems, potentially yielding puzzling
behaviours or even disastrous situations. Such a lack of strong assurance is prob-
lematic. Surprisingly, while formal methods are nowadays widely used to specify
critical systems and to ensure that they comply with their specifications, such
methods have not been broadly promoted for data-centric systems. Of course

adopting such an approach in this context does involve taking into account a
SQL compiler as an important piece in the chain and among formal methods, a
promising way is to rely on the use of interactive theorem provers like Coq [18]
or Isabelle [19]

More precisely, SQL compilation consists in four steps. The first two steps
that include parsing and semantic analysis, translate the query in an algebraic
expression. The last two steps also called the planning phase consist in logi-
cal and physical optimisation. The logical optimisation step exploits algebraic
equivalences to perform sound query rewritings. The physical optimisation is in
charge of producing query evaluation plans which are trees whose nodes are con-
crete, system-provided, implementations of algebraic operators. This last step is
data dependent and is achieved based on auxiliary data structures and system
maintained statistics.

According to textbooks [1], RDBMS and, thus, SQL are based, in theory,
on the relational data model. However, there is an important mismatch between
the theoretical foundations and the corresponding standard specification. Such a
discrepancy is common but is even more serious in this context as SQL’s history
spreads over more than thirty years. Unlike what happened for “classical” pro-
gramming languages, such as C let’s say, in this particular context, the divergence
has been accentuated due to the fact that SQL not being Turing complete more
and more features have been added along the time (e.g., aggregates1). Briefly,
the disparities concern the treatment of relations: finite sets in theory, finite bags
in practice. The treatment of attributes and the corresponding algebra used also
diverge. In theory if attributes are named the corresponding algebra should be
a named set-algebra and if only their positions are used an unnamed set-algebra
is the correct corresponding one. In practice, attributes in SQL are named and
have a position but the underlying algebra is an (almost) unnamed bag-algebra.
Moreover, SQL syntax and semantics as described in the ISO/IEC JTC 1/SC 32 [11]
document consist of thousands pages of informal specifications written in natural
language. Obviously, it is hard to be convinced that the specification does have
any theoretical algebraic counterpart and thus there are no strong guarantees
that SQL compilers that do implement this specification do really comply with
the theoretical foundations. To conclude, based on what is found in textbooks
on the one hand and on the standardisation document on the other hand, any
usable in practice mechanisation of SQL needs to:

1. faithfully handle a significant fragment of the language,

2. model relations and query results as finite bags,

3. carefully deal with attributes names and

4. provide and rigorously relate the considered fragment (i.e., formally proving
semantics’s preservation) to an extended algebra that accounts for well-known
query rewritings.

1 an aggregate is an accumulator applied to a collection: count, sum, avg, min,

max...

2

In addition, as it would not be realistic to handle SQL in its entirity2, such
a mechanisation should come together with a solid proof of concepts so as to
convince users that it faithfully reflects the SQL’s behaviours observed in main-
stream systems.

Contributions In this article we propose SQLCert a formal framework that
accounts for the three first compilation steps previously mentioned together
with its proof of concept. SQLCert, handles the native fragment of SQL de-
scribed page 315-398 in [11] i.e., select-from-where-group-by-having state-
ments with function symbols, aggregates and nested queries. To this end, we first
define SQLCoq a SQL-friendly Gallina grammar that accounts for this fragment
together with its associated Coq mechanised semantics [[]]SQLcoq

. We also define
a notion of well-formed SQLCoq queries. Each well-formed query being accepted
by [[]]SQLcoq . Well-formedness forces queries to enjoy an algebraic counterpart.
As such, it discards queries that are rejected by SQL, and also those that are
unduly (lazily) accepted. This shall be made precise in Section 3.

Our second contribution consists in defining and formalising, using Coq, a
bag-set extended algebra (ExtAlg) that is versatile enough to deal with function
symbols with a predefined semantics (e.g., SQL aggregates avg,count,sum) as
well as user defined ones. By formally defining an embedding of (the named)
relational algebra, mechanised in [4], into ExtAlg and rigorously proving its
correctness, ExtAlg gracefully hosts the relational algebra. Unlike what is found
in the literature, ExtAlg is very concise and parametric with respect to the data
model and is the first to date mechanised executable bag-set algebra for SQL.
We also proved, using Coq, most of (bag)-algebraic equivalences used in practice
for logical optimisation, hence covering the third step of the compilation chain.

Our third contribution formally relates, using Coq, [[]]SQLcoq to the semantics
of ExtAlg, and proves the corresponding adequacy (semantics’ preservation)
theorem together with an Ocaml extraction, thus providing SQLCoq a mechanised
bag-set algebraic counterpart. We also provide a proof of concept that allows to
realise our abstract modelisation thus yielding an executable specification.

All those results yield a Coq mechanised compiler chain of SQLCoq and as
such is an indispensable stage towards deeply specifying a SQL compiler. Such a
compiler chain is the first, to our knowledge, executable mechanisation proposal
of a (realistic fragment of) SQL compiler able to formally reconcile SQL with its
algebraic theoretic foundations.

Organisation In Section 2 we first remind relational algebra. Section 3 briefly
presents SQL, relating it with its algebraic counterpart, and precisely detail,
through examples, the discrepancy between the theoretical foundations and the
specification, evidencing surprising behaviours encountered. SQLCoq is detailed
in Section 4. Section 5 presents our extended algebra, the embedding, its cor-
rectness proof as well as the soundness proof of many rewritings used in practice.

2 The standardisation document only concerning SQL is more than 1300 pages long!

3

Section 6 details our SQL’s compiler mechanisation together with its proof of ad-
equation. We compare our contributions with related works, conclude, drawing
lessons, and give perspectives in Section 7.

2 Theory: the relational model

The relational model serves different related purposes: it allows to represent in-
formation through relations and to refine the represented information by further
restricting it through integrity constraints. It also provides ways to extract infor-
mation through query languages based on algebra3. Relational algebra consists of
a set of operators with relations as operands. We briefly recall the basics as found
in [1]. Intuitively, in the relational model, data is represented by tables (relations)
consisting of rows (tuples), with uniform structure and intended meaning, each
of which gives information about a specific entity. Tuples have a support which
is a finite set of fields together with their corresponding basic type. The columns
of a table also have names, called attributes. Each attribute is associated with its
corresponding domain (noted dom()) which is a basic (flat) type. In practice, the
structure of a table is given by a relation name and a finite set of attributes: its
sort. Its contents, i.e., the finite set of tuples populating it, is referred to as the
instance of the relation. For a tuple t to belong to relation r the well-sortedness
condition support(t) = sort(r) must hold. Two different equivalent versions of
the model exist: the unnamed and the named ones. Whether we place ourselves
in a named or unnamed perspective different algebraic operators are considered.

2.1 Unnamed setting

In the unnamed setting, the specific attributes of a relation are ignored: only their
position is available to query languages. Three primitive algebraic operators form
the unnamed algebra: selection, projection and Cartesian product. This algebra
is more often referred to as the SPC algebra.

q := r | σf (q) | πW (q) | q × q

We define the operators forming the SPC algebra. First, base relations, r, are
queries. The two primitive forms for the selection condition f over an expression
q of arity n are j = c and j = k, where j, k are positive integers ≤ n and
c ∈ dom(j). The semantics is given by [[σj=c(q)]] = {t | t ∈ [[q]] ∧ tj = [[c]]} where

tj is the jth component of tuple t. The operator σj=k is defined analogously.
Projection π can be used to delete and/or permute columns of an expression.
The general form of this operator is πW , where W is a possibly empty sequence,
j1, . . . , jn of positive integers, possibly with repeats. This operator takes as input
any expression with arity≥ max(j1, . . . , jn) (where the max of ∅ is 0) and returns
an expression with arity n whose semantics is [[πj1,...,jn(q)]] = {(tj1 , . . . , tjn) | t ∈
[[q]]}. The Cartesian product provides the capability for combining expressions.

3 or first-order logic.

4

It takes as inputs a pair of expressions having arbitrary arities n and m and
returns an expression with arity n+m. [[q1 × q2]] = {(t1, . . . , tn, s1, . . . , sm) | t ∈
[[q1]] ∧ s ∈ [[q2]]}. Cross-product is associative and non-commutative and has the
non empty 0-ary relation {()} as left and right identity.

2.2 Named setting

In the named setting, attributes are viewed as an explicit part of the database.
They are used by the query language. Obviously, for modelling purposes, names
carry much more information than column numbers, this explains why relational
systems use attributes’ names rather that positions. Four operators form the
SPJR algebra:

q := r | σf (q) | πW (q) | ρg(q) | q ./ q

Again, in this setting, base relations, r are expressions. Concerning the selec-
tion operator, in textbooks, it has the form σa=c or σa=b, where a, b ∈ attribute
and c ∈ dom(a). The notation a = c (a = b resp.,) is improper and corresponds
to x.a = c (x.a = x.b resp.,) where x is a free variable. The selection applies
to any expression q of sort S, (with a, b ∈ S) and yields an expression of sort
S. The semantics of the operator is [[σf (q)]] = {t | t ∈ [[q]] ∧ [[f]]{x → t}} where
[[f]]{x→ t} stands for “t satisfies formula [[f]]”, x being the only free variable of
[[f]]. Formula satisfaction is based on the standard underlying interpretation.

The projection operator has the form π{a1,...,an}, n ≥ 0 and operates on all
expressions, q, whose sort contains the subset of attributes W = {a1, . . . , an}
and produces an expression of sort W . The semantics of projection is [[πW (q)]] =
{t|W | t ∈ [[q]]} where the notation t|W represents the tuple obtained from t by
keeping only the attributes in W . The natural join operator, denoted ./, takes
arbitrary expressions q1 and q2 having sorts V and W , respectively, and produces
an expression with sort equal to V ∪W . The semantics is, [[q1 ./ q2]] = {t | ∃v ∈
[[q1]],∃w ∈ [[q2]], t|V = v∧t|W = w}. It is important to notice that when sort(q1) =
sort(q2), then [[q1 ./ q2]] = [[q1]] ∩ [[q2]] , and when sort(q1) ∩ sort(q2) = ∅, then
[[q1 ./ q2]] is the cross-product of [[q1]] and [[q2]] ([[q1]] × [[q2]]). The join operator
is associative and commutative4. An attribute renaming for a finite set V of
attributes is a one-one mapping from V to attribute. In textbooks, an attribute
renaming g for V is specified by the set of pairs (a, g(a)), where g(a) 6= a; this is
usually written as a1a2 . . . an → b1b2 . . . bn to indicate that g(ai) = bi for each
i ∈ [1, n], n ≥ 0. A renaming operator for expressions over V is an expression
ρg, where g is an attribute renaming for V ; this maps to outputs over g[V].
Precisely, for q over V , [[ρg(q)]] = {v | ∃u ∈ [[q]],∀a ∈ V, v(g(a)) = u(a)}.

4 This seems to contradict the fact that cross product is not commutative in the SPC
setting. Notice that in such a setting, if t = (1, 2) and t′ = (3, 4), {t} × {t′} and
{t′} × {t} are different, whereas in an SPJR setting, if t(a1) = 1, t(a2) = 2 and
t′(a3) = 3, t′(a4) = 4, their combination, whatever the order, is the function tt′

defined by tt′(a1) = 1, tt′(a2) = 2, tt′(a3) = 3, tt′(a4) = 4.

5

2.3 Adding union, intersection and difference

Though union, intersection and difference are not part of the SPC and SPJR
minimal algebras, we include them as they are part of SQL. As standard in
mathematics, q1 ∪ q2 (resp. q1 ∩ q2, q1 \ q2) is the set containing the union (resp.,
intersection, difference) of the two sets of tuples. The subtle point is that these
set operators can only be applied over sets of tuples with the same sort.

3 Reality: SQL

There is an important mismatch between the theoretical foundations and the
corresponding standard specification. Such a gap concerns (i) the structure of
attributes, tuples, relations and query sorts, (ii) the nature of relations’ contents
and (iii) the relationship between queries and algebra. It has puzzling impacts,
as will be made explicit in Section 3.3 and 3.4, that any faithful and accurate
mechanisation has to account for.

3.1 Attributes, tuples and relations: named and unnamed settings

Quoting page 51 of the ISO document attributes are specified by:

“The terms column, field, and attribute refer to

structural components of tables, row types, and

structured types, [...] in analogous fashion. As

the structure of a table consists of one or more

columns, so does the structure of a row type

consist of one or more fields [...] Every struc-

tural element, whether a column, a field, or an

attribute, is primarily a name paired with a de-

clared type. The elements of a structure are or-

dered. Elements in different positions in the

same structure can have the same declared type

but not the same name. [...] in some cir-

cumstances [...] the compatibility [...] is deter-

mined solely by considering the declared types

of each pair of elements at the same ordinal

position.”

Fig. 1. ISO: attributes and tuples

The specification makes a difference between attributes of a relation called
“columns”, attributes of a tuple called “fields” and attributes of structured
(user-defined) types which are called in turn “attribute”. In any case, attributes
(columns or fields or attributes in the specification) are named and have an or-
dinal position and relations’ sorts in SQL are ordered lists with no duplicates
and according to p 322 in the document, queries’ sorts are ordered lists allow-
ing for attributes’ names duplication5, both in sharp contrast with the relational
model. Under some circumstances covers queries that involve a set operator such
as union, intersect, except for which attributes names are simply forgotten.
Further, SQL’s table’s contents, called collections in page 53 of the ISO docu-
ment, allow for element duplication (page 56) in contrast with finite sets. At that
point, it clearly appears that SQL enjoys both attributes’ names and positions

5 “Let C be some column. Let TE be the <table expression >. C is an underlying
column of TE if and only if C is an underlying column of some column reference
contained in TE. “

6

and does not consider instances of relations as finite sets but rather collections
allowing for duplicates.

3.2 SQL queries: SPJR and SPC

A classical SQL query consists of a select-from-where block that can be ex-
tended with a group-by-having clause. A SQL query returns a collection and
this is why the language is often considered to enjoy a bag (or multiset) seman-
tics6. The distinct keyword is used to force it to mimic a set semantics while
the keyword all to force a bag semantics. However, the term “semantics” in
this particular context is improperly used. It rather covers query’s membership.
At that point, as long as aggregates, functions and difference7 operators are not
used, SQL is not duplicate sensitive. More precisely, if one add or remove the
keyword distinct or all for all SQL operators in a query q , yielding qdistinct
and qall this does not affect the membership relation (i.e., the fact that a tuple
appears at least once in the result) for query evaluation:

∀t, t ∈ [[q]]SQL ⇐⇒ t ∈ [[qdistinct]]SQL ⇐⇒ t ∈ [[qall]]SQL

Of course, the tuple’s multiplicity is affected. As previously stated, there is a
tight link between SQL and its algebraic counterpart as illustrated through ex-
amples in Figure 2. We assume the following database schema which contains
relations tbl0(a,b,c) tbl1(a,b,c) and tbl2(d,e,f). We further assume that
all attributes vary in a unique domain: int. The first two queries return all

(1) select a, c from tbl0 where b>3; π{a,c}(σb>3(tbl0))

(2)
select a as a1, c as c1

πa1,c1(ρ{a→a1;c→c1}(σb>3(tbl0)))
from tbl0 where b>3;

(3) select * from tbl0,tbl1; tbl0×tbl1

(4)
select * from tbl1, (select d, f from tbl2) as t2 let t2 = π{d,f}(tbl2)
where b=d; in σb=d(tbl1× t2)

(5)
select * from tbl1

πa,b,c(σc=e(tbl1×tbl2))
where tbl1.c in (select tbl2.e from tbl2);

Fig. 2. ISO SQL’s queries and their algebraic counterpart

the tuples in relation tbl0, for which the where clause b>3 is satisfied. Indeed
they respectively correspond to the algebraic expressions π{a,c}(σb>3(tbl0)).
and ρ{a→a1;c→c1}(π{a,c}(σb>3(tbl0))). The third query details how relations can
be combined through the from part of select- from-where blocks. However,
rather than computing a join (./), as would be expected in a named setting, a
cross product is used instead and the resulting query’s sort issued by the system

6 Even if tuples’s multiplicities are not part of the tuple definition nor are they prim-
itive in SQL.

7 Such is the case for the select-from-where-group-by-having

7

is {a,b,c,a,b,c}. The algebraic counterpart: tbl0 × tbl1 is thus improper as
it induces attribute’s name collision. According to SQL’s from clause specifi-
cation (p323-324 of [11]), shown in Figure 3, it seems that a cross product is
indeed used. Obviously, it is hard to be convinced that the specification corre-

1. Let TRLR be the result of TRL Case:
(a) If TRL simply contains a single

<table reference> TR then TRLR is
the result of TR.

(b) If TRL simply contains n <table
reference> s, where n > 1, then let
TRL-P be the <table reference list>
formed by taking the first n1 elements
of TRL in order, let TRL-L be the
last element of TRL, and let TRLR-
P be the result of TRL-P. If TRLR-
P contains m rows, m ≥ 1 (one),
then for every row Ri 1 (one)≤ i
≤ m let TRLR-Li be the correspond-
ing evaluation of TRL-L under all

outer references contained in TRL-L
Let SUBRi be the table containing ev-
ery row formed by concatenating Ri
with some row of TRLR-Li Every row
RR in SUBRi is a row in TRLR,
and the number of occurrences of RR
in TRLR is the sum of the num-
bers of occurrences of RR in every
occurrence of SUBRi . The result of
the <table reference list> is TRLR
with the columns reordered according
to the ordering of the descriptors of
the columns of the <table reference
list> .

2. The result of the <from clause> is TRLR

Fig. 3. ISO: SQL’s from clause specification

sponds to a cross product and thus there are no strong guarantees that SQL
compilers, that do implement this specification, really comply with its algebraic
counterpart. The next query in Figure 2 illustrates the fact that queries can be
combined through bindings to fresh names yielding algebraic expressions up to
β-reduction. The last example illustrates the fact that SQL’s where conditions
and relational algebra’s formulae do not match though an algebraic expression
can still be assigned to such queries.

Queries on Figure 4 do not fall in the relational algebra fragment because
they use either function symbols in the select (or where) clause (avg(a+c)) or
in a group-by-having clause8, quantifiers in the where clause (c >= all) thus
having no relational algebra counterpart. Membership characterisation for the

(6) select * from tbl1 where (c >= all (select b from tbl1));

(7) select avg(a+c) from tbl1;

(8) select 2*(a+c), sum(a) from tbl1 group by a+c, b having b > 6;

Fig. 4. ISO SQL’s queries with no algebraic counterpart

first query corresponds to:

{x | x ∈ tbl1 ; ∀ y ∈ tbl1, c(x) ≥ b(y)}

which has no algebraic counterpart. The second query computes the average
value of the mono-column table resulting of computing, for each tuple occurring
in tbl1, the average of the sum of attributes a and c. Last, let’s grasp the
behaviour of the group-by-having clause as it is specified page 345 of the ISO

8 group-by-having are used with aggregates if not they correspond to a select block.

8

document. In a first step, the group-by clause minimally partitions tbl1 (or
more generally the relation resulting of the evaluation of the from clause) into
several homogeneous groups according to the values of the expressions e1, . . . , en
following the group-by (a+c and b). Homogeneous means that all tuples in a
given group have the same values for the ei’s. In a second step, each group yields
a single tuple, computed via the expressions e′k’s occurring in the select part
(2*(a+c) and sum(a)). For the whole query being accepted, these expressions
have to be built only upon functions applied over ei’s or aggregates applied
without any restrictions9. Then groups (and hence a final tuple) can be discarded
by the having clause, which is a logical formula built upon expressions with the
same restrictions as for the e′k’s.

3.3 Sorts’ mismatch and attributes’ ambiguity

The following queries illustrate puzzling behaviours related to the fact that sorts
are not handled as sets. More precisely the first select allows a collapsing

(1) select a as c,b as c from tbl1; (2) select * from tbl0, tbl1;

(3)
select a from tbl0, tbl1;

(4) select tbl0.a from tbl0, tbl1;
ERROR: column reference "a" is ambiguous

(5)

select a from

(6)

select tbl0.a from

(select * from tbl0, tbl1) tbl; (select * from tbl0, tbl1) tbl;

ERROR: column reference "a" is ambiguous ERROR: missing FROM-clause entry for

LINE 1: select a from table "tbl0" LINE 1: select tbl0.a

(select * from tbl0, tbl1) tbl; from (select * from tbl0, tbl1) tbl;

(7) select tbl0a from(select * from tbl0, tbl1) t3(tbl0a,tbl0b,tbl0c,tbl1a,tbl1b,tbl1c);

Fig. 5. Sorts’ mismatch and attributes’ ambiguity

“renaming” from both a and b to c which produces a result which is not, in
theory, a relation since its sort is not a set

As previously stated the evaluation of the second query is not a join but
a Cartesian product but its resulting sort is {a,b,c,a,b,c}. This is admitted
because internally attribute’s names are prefixed by the relation’s name they are
attached to, hence being pairwise distinct. When there is no mean to distinguish
between two columns with the same name, the system cannot assign a semantics
to from and complains. This is illustrated by query (3) which is rejected and its
reformulation (4) which is accepted.

However, queries as the second one, accepted at top level, while they should
be, in theory, discarded, are adequately rejected as sub-queries only on a by-need
basis, as illustrated by (5). One could expect that the same solution than the

9 This restriction ensures that a group will provide a single flat tuple. Whenever
another expression should occur in the select part, let’s say a, a group may contain
several distinct values for it, and would provide a set of values for a.

9

one taken previously for disambiguating the query in this context should work.
Unfortunately such is not the case (as shown by (6)). Since SQL is unable to
correctly manage an environment it is impossible to precisely point an attribute
when it comes from an inner query as mentioned page 329 of the ISO document.
The only way to get the query accepted is to reformulate it explicitly renaming
attributes as expressed by query (7).

3.4 Non linearity

Let us further comment about the actual semantics of the from clause and con-
sider the query in Figure 6, a non linear variant of the second query in Figure 5.
The remark we made about internal disambiguation of attributes explains why
it is impossible to build an auto Cartesian product. But this is baffling as SQL
actually detects this case but refuses to assign it a corresponding algebraic ex-
pression.

select * from tbl0, tbl0;

ERROR: table name "tbl0" specified more than once

Fig. 6. Non linearity

However, the situation is more subtle than a mere scoping problem. Basically,
it is closely related to bags and to the fact that SQL mixes SPJR and SPC
algebras. Indeed, there are two potential semantics for this query whether one
wants to preserve tuple’s multiplicities or only membership. In other words, in
theory, in a set theoretic setting, auto join and intersection coincide but such is
not the case for bags for which this property does not hold: multiplicities are
multiplied for cross products and joins while for intersection they correspond
to a min. SQL’s does not want to favour one algebra w.r.t., another and thus
rejects the query.

3.5 Other SQL features: null values, outer joins, order-by

SQL provides NULL values. Such values could seem tricky to handle but they will
be dealt with by simply considering them as absorbing elements in expressions
and by defining a three-valued logic for formulae. For this reason we shall not deal
for the moment with outer joins as they make intensive use of NULL values.
Last we do not handle order by clause nor ranking aspects (limit for instance).
While used in practice, they are not central to this work. Moreover, they require
collections to be equipped with an order. All those features will be taken into
account in future work.

3.6 Assessment

SQL relations and result of queries are not finite sets but finite collections allow-
ing for duplicates. Such an option was historically made for performance reasons

10

as duplicate elimination is an expensive task. This early choice was not harmful
as long as duplicate sensitive constructs were not present. But as the language
evolved over years, including more and more features, among those aggregates, it
happened that SQL queries results were duplicate sensitive and particular atten-
tion has to be dedicated to handle this situation cleanly and faithfully (especially
in the context of query rewriting).

As we illustrated, SQL provides attributes as denotable entities. This sug-
gests that a named SPJR version of the algebra should underly the language’s
semantics. Unfortunately, according to the ISO specification, SQL underlying
algebra seems to be, with no strong guarantees, SPC though the only way to
denote columns is through attributes’ names. This introduces another founda-
tional mismatch in the language yielding potential bugs as it is under application
programmers’ responsibility to manage names in an unnamed setting. Again, we
insist, any decent, accurate, mechanisation of SQL has to manage attributes very
carefully.

4 SQLCert

We now present the SQLCert framework. SQLCert handles SQL’s collections
as bags and provides SQLCoq a name-based SQL-compliant Gallina grammar
together with its Coq formalised semantics that will be, in Section 6, formally
connected to a bag-set algebra. In particular, SQLCoq sticks to the ISO standard
and, thus, faithfully reflects the aforementioned SQL’s puzzling situations.

4.1 SQLCoq: syntax

SQLCoq is written in Gallina and takes into account nested SQL queries with
aggregates and function symbols and assigns them a Coq mechanised semantics.
For the sake of clarity, we choose to present it as an abstract syntax. More
precisely, SQLCoq grammar is given by (where α denotes an attribute):

sq ::= table name

| select (∗ | −−−−−→ea as α) from
−−→
sq[r] where F group by (singleton |

−→
ef) having F

| sq union sq | sq intersect sq | sq except sq
r ::= ∗ | −−−−→α as α
f ::= + | - | * | / | sqrt | sin | ... | user defined function
a ::= Max | Min | Count | Sum | Avg | user defined aggregate

ef ::= value | α | f(
−→
ef)

ea ::= ef | a(ef) | f(
−→
ea)

F ::= F and F | F or F | not F | A
A ::= true | p(−→ea) | p(−→ea, all sq) | p(−→ea, any sq) | (∗ | −−−−−→ea as α) in sq
p ::= = | <= | >= | < | > | user defined predicate

We tried, as far as possible to stick to SQL’s syntax but the SQL-aware reader
shall notice that SQLCoq differs from SQL in different ways. First, for the sake of

11

uniformity, we impose to have the whole select-from-where-group-by-having
construct (no optional where and group-by-having clauses). When the where

clause is empty, it is forced to true. Similarly, as the group-by clause par-
titions the collection of tuples obtained evaluating the from clause, when no
group-by is present in SQL, we force SQLCoq to work with the finest partition10

which corresponds to the singleton case. We also force explicit and mandatory
renaming of attributes, when ∗ is not used. In our syntax, select a, b from

tbl1; is expressed by select a as a, b as b from (table tbl1[∗]) where true

group-by singleton having true. A further, more subtle, point worth to men-
tion is the distinction we make between ef and ea. Both are expressions but
the former are built only with function symbols (f) and are evaluated on tuples
while the latter also allow unested11 aggregates symbols (a) and are, in that
case, evaluated on collections of tuples. Only ef are used by the group-by so as
to generate uniform groups (as it is the case in SQL). In the same line, we used
the same language F for formulae either occurring in the where (dealing with a
single tuple) or in the having clause (dealing with collections of tuples) simply
by identifying each tuple with its corresponding singleton. Also, no aliases for
queries are allowed.

select ∗ from tbl1 as t1(a1,b1,c1), tbl1 as t2(a2,b2,c2) where a1 = a2;

is expressed by:

select ∗ from (table tbl1[a as a1, b as b1, c as c1],

table tbl1[a as a2, b as b2, c as c2])

where a1 = a2 group by singleton having true

Indeed, when attributes are properly renamed, query aliases become useless,
hence we choose to not use them in our syntax. This syntax captures admissible
SQL queries such as:

select * from tbl1

where a+b >= all (select (tbl0.a+tbl1.c) from tbl0, tbl1);

select a, count(b) from tbl1 group by a

having avg(c) >= all (select a from tbl1) ;

which are expressed (omitting the group by singleton having true) by:

select * from tbl1[*]

where a+b >= all (select (a0 + c1) as a0_plus_c1

from tbl0[a as a0, b as b0, c as c0],

tb11[a as a1, b as b1, c as c1]);

select a as a, count(b) as countb from tbl1[*] group by a

having avg(c) >= all (select a as a from tbl1[*]);

10 The partition consisting of the collection of singletons, one singleton for each tuple
in the result of the from

11 ea is of the form: avg(a); sum(a+b); sum(a+b)+3; sum(a+b)+avg(c+3) but not of
avg(sum(c)+a)

12

This mentioned, SQLCoq matches SQL. In particular, at that point, attribute
ambiguities are still possible. In order to avoid the related problems mentioned
in Section 3 and to accurately account for SQL, while being compliant with an
algebraic model, we shall introduce, in Figure 7, the definition of well-formed
(SQLCoq) queries which relies, in turn, on the notion of query sort. Each well-
formed SQLCoq query will enjoy an algebraic counterpart.

WF(table n) = true
WF(sq1�sq2) = WF(sq1) ∧ WF(sq2) ∧ sort(sq1) = sort(sq2)

WF(select
−−−−−→
ea as α from

−−−−→
sqj [rj] where F1 group by singleton having F2) =

WF(
−−−−→
sqj [rj]) ∧ WFs(F1) ∧ WFs(F2) ∧ pairwise 6=(−→α) ∧

∧
ea A(ea) ⊆ s

if s =
⋃
j sort(sqj [rj])

WF(select
−−−−−→
ea as α from

−−−−→
sqj [rj] where F1 group by

−→
ef having F2) =

WF(
−−−−→
sqj [rj]) ∧ WFs(F1) ∧ WFs(F2) ∧ pairwise 6=(−→α) ∧

∧
ea A(ea) ⊆ s∧

A(
−→
ef) ⊆ s ∧

∧
ea builtupon(ea,

−→
ef) ∧ builtupon(F2,

−→
ef)

if s =
⋃
j sort(sqj [rj])

WF(select ∗ from
−−−−→
sqj [rj] where F1 group by G having F2) =

WF(select
−−−−−−→
(ai as ai)ai∈s from

−−−−→
sqj [rj] where F1 group by G having F2)

if s =
⋃
j sort(sqj [rj])

WF(
−−−−→
sqj [rj]) =

∧
j WF(sqj [rj]) ∧ pairwise∩=∅(

−−−−−−−−→
sort(sqj [rj])) ∧ pairwise 6=(

−−−−→
sqj [rj])

WF(sq[∗]) = WF(sq)

WF(sq[
−−−−−→
bi as ai]) = pairwise 6=(−→ai) ∧

⋃
i{bi} = sort(sq) ∧ WF(sq)

WFs(F1 and F2) = WFs(F1) ∧ WFs(F2)
WFs(F1 or F2) = WFs(F1) ∧ WFs(F2)
WFs(not F) = WFs(F)
WFs(true) = true

WFs(p(
−→
ea)) =

∧
ea A(ea) ⊆ s

WFs(p(
−→
ea, all sq)) =

∧
ea A(ea) ⊆ s ∧ WF(sq)

WFs(p(
−→
ea, any sq)) =

∧
ea A(ea) ⊆ s ∧ WF(sq)

WFs(∗ in sq) = s = sort(sq)

WFs(
−−−−−→
ea as α in sq) =

∧
ea A(ea) ⊆ s ∧

⋃
ea{α} = sort(sq)

builtupon(value,
−→
ef) = true

builtupon(α,
−→
ef) = α ∈

−→
ef

builtupon(a(ef1),
−→
ef) = true

builtupon(f(
−→
ea),
−→
ef) =

∧
ea builtupon(ea,

−→
ef)

builtupon(f(
−→
ef1),
−→
ef) = f(

−→
ef1) ∈ ef ∨ (

∧
e
f
1
builtupon(ef1 ,

−→
ef))

Fig. 7. Well-formedness

SQLCoq queries sorts The notion of sort is the SQLCoq counterpart of the
notion of sorts in the relational model i.e., a finite set of attributes. More pre-
cisely, following [1], we assume that the set of attribute names together with

13

their corresponding types is globally defined. This implies that typing is handled
by sorts: no two attributes with the same name and different types can exist.
Sorts are recursively defined below. In order to define the base case, we assume
that we are given a function basesort , which associates a set of attributes to each
table name.

sort(table n) = basesort(n); sort(sq[
−−−−−→
bi as ai]) =

⋃
i{ai}; sort(sq[∗]) = sort(sq)

sort(sq1�sq2) = sort(sq1), where � ∈ { union , intersect , except }
and sort(sq1) = sort(sq2)

sort(select −−−−−→ei as ai from
−−−−→
sqj [rj] where F1 group by G having F2) =

⋃
i{ai}

sort(select ∗ from
−−−−→
sqj [rj] where F1 group by G having F2) =

⋃
j sort(sqj [rj])

Well-formed SQLCoq queries The well-formedness condition serves different
purposes. First, it ensures that sorts are sets. Second it guarantees that bag-
theoretic (union, intersect and except) operators are sort compatible i.e.,
that their arguments have the same sorts. Third, it prevents from having dan-
gling attributes in the context. It discards queries that are rejected by SQL,
hence, rejecting non linear queries. It imposes from clauses to be true Cartesian
products by forcing attributes disambiguation. Last, it allows to discard queries
that do not have an algebraic counterpart.

More precisely let us detail the definition given in Figure 7 step by step.
The first two lines are straightforward. The definition for the select-from-
where-group-by-having clause deserves some comments. Condition pairwise6=(−→α)

forces tuples resulting from the evaluation of
−−−−−→
ea as α to have a support that is

a set. Condition pairwise∩=∅(
−−−−−−−−→
sort(sqj [rj])) states that the sorts of the from

part are pairwise disjoint, and condition pairwise6=(
−−−−→
sqj [rj]) ensures that they

are pairwise distinct, hence forcing the (evaluation of) from to be true Carte-
sian products and discarding non linear queries. Notation A(ea) represents the
set of attributes occurring in ea. By imposing A(ea) ⊆ s, WF ensures that no

dangling references to attributes in the (select
−−−−−→
ea as α) are possible which is

further achieved, thanks to WFs, for attributes in the where or having clauses.
WFs defines the well-formedness condition for formulae and consists in a classi-
cal structural inductive definition. In particular when the where condition is of

the form (
−−−−−→
ea as α) in sq, WFs imposes the support of the left hand side to be

equal to the sort of sq. The last condition, builtupon(ea,
−→
ef) is more involved,

informally this condition establishes that ea is an expression only built from
−→
ef ,

constants and any aggregates (a(ef1)), thus, guaranteeing that the groups gener-
ated by the group-by have an homogeneous behaviour w.r.t., the evaluation of
F2 and the computation of the outermost select.

14

4.2 SQLCoq: semantics

We assume that we are given a database instance [[]]base defined as a function
from relation names to bags of tuples as well as [[]]p an interpretation for each
predicate symbol i.e., a function from vectors of values to Booleans and [[]]ag
and [[]]fun interpretations for symbols of aggregates and functions respectively.

We denote by t[
−−−−→
aiasbi] the tuple u defined by:

support(u) = {bi}i
∀i, u.bi = t.ai

We then define [[]]SQLcoq
the semantics of SQL queries, and give in Figure 8, [[]]b,

the semantics of formulae. The basic cases, where ∪, ∩ and \ correspond to the
bag operators, are straightforward:

[[p(−→ai)(t)]]b = [[p]]p(
−→
t.ai)

[[p(−→ai , all sq)(t)]]b is true iff forall tuple u in [[sq]]SQLcoq , [[p]]p(
−→
t.ai, u.sort(sq)) holds

[[p(−→ai , any sq)(t)]]b is true iff there exists a tuple u in [[sq]]SQLcoq ,

such that [[p]]p(
−→
t.ai, u.sort(sq)) holds

[[(∗ in sq)(t)]]b is true iff t belongs to the set [[sq]]SQLcoq

[[(
−−−→
aiasbi in sq)(t)]]b is true iff t[

−−−→
aiasbi] belongs to the set [[sq]]SQLcoq

Fig. 8. Formulae semantics

[[table name]]SQLcoq = [[name]]base
[[sq union sq]]SQLcoq = [[sq]]SQLcoq ∪ [[sq]]SQLcoq

[[sq intersect sq]]SQLcoq
= [[sq]]SQLcoq

∩ [[sq]]SQLcoq

[[sq except sq]]SQLcoq
= [[sq]]SQLcoq

\ [[sq]]SQLcoq

The most complex case is the select-from-where-groupby-having one. Infor-
mally, a first step consist in evaluating the from and where parts. Then the (inter-
mediate) collection of tuples obtained is partitioned according to the group-by

criteria yielding a collection of collections of tuples. Each such collection being
homogeneous w.r.t., the grouping criteria and the having condition. Last, the
select clause is applied yielding again a collection of tuples as a result. More
formally:

[[select eaas α from
−−→
sq[r] where F1 group by G having F2]]SQLcoq

=

{
T [
−−−−→
eaas α]

∣∣∣∣∣ [[F2]]b(T) = true∧
T ∈ partition(G, [[select ∗ from

−−→
sq[r] where F1]]SQLcoq)

}

15

where

T [
−−−−→
eaiasbi] =

{
support =

⋃
i{bi}

T [
−−−−→
eaasbi](bi) = T (ea)

T (ea) being defined by:

T (ea) =


if ea = ef , then ef (t), for any t ∈ T
if ea = f(−→eai), then [[f]]fun(

−−−−→
eai(T))

if ea = a(e), then [[a]]ag{e(t) | t ∈ T}

provided that T is a non-empty collection of tuples, homogeneous w.r.t., aggre-
gate ea. and where partition is defined by:

partition(
−→
ef ,S) =

⋃
t∈S{{s ∈ S | ∀e

f
i ∈
−→
ef , s(efi) = t(efi)}}

5 Extended algebra

As illustrated in Section 3 relational algebra cannot capture SQL queries. In
this section we present ExtAlg a very concise, yet expressive, bag-set algebra
together with its (mechanised) semantics [[]]ExtALG. ExtAlg, non trivially, extends
the SPJR algebra presented in Section 2 allowing us to relate SQLCoq semantics,
thus SQL’s one, to it as will be shown in Section 6. Our Coq formalisation is
based on, borrows and extends, the work in [4]. We then formally prove using
Coq the correctness of the embedding of the SPJR algebra (taken from [4]) into
ExtAlg.

5.1 A concise extended algebra

As we wanted ExtAlg to be extensible and to acknowledge the relational algebra,
it hosts sets and bags through the general type of collection. The syntax of
ExtAlg is given by:

q ::= ∅ | {()} | r | ωP,F,c(q) | q ./ q | q ∪ q | q ∩ q | q \ q
P ::= fine | partition(

−−→
ex.f)

F ::= > | p(−−→ex.a) | F ∨ F | F ∧ F | ¬F | ∀xF | ∃xF
c ::=

−−−−−−−−→
code(α, ea)

x ::= var q nat

ex.f ::= value | x.α | f(
−−→
ex.f)

ex.a ::= ex.f | a(ex.f) | f(
−−→
ex.a)

p ::= < | > | ≤ | ≥ | . . . | user defined predicate
f ::= + | − | ∗ | . . . | user defined function
a ::= Max | Min | Count | Sum | Avg | user defined aggregate

16

The empty collection of tuples (∅), the singleton containing the empty tuple
({()})12 and relation’s names (r) are algebraic expressions with intended obvious
meaning. The core of ExtAlg consists in two operators: the SPJR natural join (./)
and a new operator ω which takes as operand a query q and three parameters: P
a partition criteria, F a formula and c a sequence of pairs (attribute names, and
expressions ea). Notice that code embeds ea’s, as they were defined in Section 4,
and not ex.a. This is relevant since in a context where an expression contains a
single free variable and no bounded variables (as it will be clear when expliciting
ω associated semantics) this free variable could be left implicit. Let us illustrate
the versatility of ExtAlg, considering the following SQLCoq queries:

let rho0 := a as a0, b as b0, c as c0 in

let rho1 := a as a1, b as b1, c as c1 in

select * from from tbl1[*]

where (a+b) >= all (select (a0 + c1) as a0_plus_c1 from tbl0[rho0], tbl1[rho1));

which is expressed as:

let tbl′1 := tbl1 ./ Empty Tuple in
let tbl′′1 := ωfine,>,id(tbl

′
1) in

let q01 := (tbl0[ρ0] ./ tbl1[ρ1]) ∩ (tbl0[ρ0] ./ tbl1[ρ1]) in
let qi := ωfine,>,code(a0 plus c1,a0+c1)(q01) in
let F := ∀xqi , x.a+ x.b ≥ xqi .(a0 plus c1) in
ωfine,F,id(tbl

′
1) ∩ tbl′′1

and

select a as a, count(b) as countb from tbl1[*]

group by a having avg(c) >= all (select a as a from tbl1[*]);

expressed by:

let tbl′1 := tbl1 ./ Empty Tuple in
let tbl′′1 := ωfine,>,id(tbl

′
1) in

let qi := ωfine,>,code(a,a)(tbl1
′′ ∩ tbl1′′) in

let F := ∀xqi , x.α+2
def ≥ xqi .a in

ω
fine,>,
code(a, a′)
code(countb, count

′
b)

(ω
partition{a}, F,
code(α+2

def , avg(c))

code(count′b, count(b))
code(a, a)
code(b, b)
code(c, c)
code(a′, a)

(tbl1′′))

12 More precisely, it is a family of such singletons indexed by the relation’s sort.

17

Operator ω has the following semantics:

[[ωP,F,{code(ai,ci)}i(q)]]ExtALG ={
t

∣∣∣∣support(t) = {ai}i ∧
∃T ∈ [[P]]ExtALG([[q]]ExtALG), t.ai = [[ci]]ExtALG(T) ∧ [[F]]ExtALG(t) = true

}
We do not detail interpretation of formulae nor do we detail interpretation of
functions and aggregates. The only point to mention is that bounded variables
in formulae will be interpreted as tuples in [[q]]ExtALG. We refer the reader to
appendix ?? for the whole (Coq) definition. Operator ω, allows for capturing
renamings, aggregates, functions and group-by-having as will be formally es-
tablished in Section 6.

5.2 Embedding SPJR into ExtAlg

ExtAlg also hosts the SPJR algebra. More precisely the embedding E of SPJR
into ExtAlg is defined by:

E(r) = r

E(πW (q)) = ωfine,>,id(W)(E(q))

E(σF (q)) = ωfine,E(F),id(sort(q))(E(q))

E(ρ(q)) = ωfine,>,{code(ρ(ai),ai)}ai∈sort(q)(E(q))

E(q1 ./ q2) = E(q1) ./ E(q2)
E(q1 � q2) = E(q1) � E(q2)

where

id(W) = {code(a, a)}a∈W

and all operators in ExtAlg are tagged by the set flag. E(F) is formally given
in the Coq definition of algebra– to–ealgebra and simply consist in structurally
applying the embedding.

There is a last subtle point worth to mention. As the reader could notice:

E(πsort(q)(q)) = E(ρidsort(q)(q))

However, we want E to preserve that two syntactically different SPJR-algebraic
queries differs in ExtAlg. Therefore a first stage consists in normalising the SPJR
query based on the following rewriting rules:

N (σtrue(q)) q
N (πsort(q)(q)) q
N (ρid(q)) q

We are able to state the embedding’s correctness theorem whose Coq counterpart
is given in Appendix ??.

18

Theorem 1. Let q be a well-formed SPJR query, for any well-sorted instance,
[[q]]SPJR = [[E(N (q))]]ExtALG.

The main difficulty encountered in proving the theorem was to formally establish
that N was indeed preserving the semantics of the query. This was delicate
because we have explicit variables in formulae and that in relational algebra at
most one free variable may occur in a formula.

5.3 Query logical optimisation: ExtAlg rewritings

Main classical rewritings proven in [4] are transported in the context of ExtAlg.

σf1∧f2(q) ≡ σf1(σf2(q)) (1)

σf1(σf2(q)) ≡ σf2(σf1(q)) (2)

(q1 ./ q2) ./ q3 ≡ q1 ./ (q2 ./ q3) (3)

q1 ./ q2 ≡ q2 ./ q1 (4)

πW1(πW2(q)) ≡ πW1(q) if W1 ⊆ W2 (5)

πW (σf (q)) ≡ σf (πW (q)) if Att(f) ⊆ W (6)

σf (q1 ./ q2) ≡ σf (q1) ./ q2 if Att(f) ⊆ sort(q1)(7)

σf (q1 � q2) ≡ σf (q1) � σf (q2) where � is ∪ or ∩ (8)

The proofs were not involved and each of them took around 150loc. Notice that
they take into account the fact that membership is achieved modulo tuple equiv-
alence and not with tuple syntactic Leibniz equality.

Less classical rewritings are based on the θ-join operator (./θ) which is defined
by σθ(q1 × q2), and on the θ-semi-join (nθ) which is a derived bag algebra
operator that preserves the multiplicity of tuples. It is, informally, expressed
as q1 nθ q2 =def (q1 ./ (δ(πsort(q1)(q1 ./θ q2))) where δ stands for duplicate
elimination. In our context operator δ is derived from our primitive operators as

δ(q) = ω
partition(sort(q)), >, {code(a, a)}a∈sort(q)

(q)

We proved the equivalences θ-semi-join introduction and θ-semi-join push ex-
pressed in [15].

q1 ./θ q2 ≡ q1 ./θ (q2 nθ q1) (9)
(q1 ./θ1 q2) nθ2 q3 ≡ (q1 ./θ1 q

′
2) nθ2 q3 (10)

where q′2 stands for q2 nθ1∧θ2 (q1 × q3))

This strengthen our conviction that ExtAlg is adapted for hosting data-centric
languages. In future work, based on [4] in which we modelled integrity constraints
(functional and general dependencies) we shall prove more equivalences that do
exploit such dependencies.

6 A Coq mechanised SQL’s compilation chain

As explained in the introduction, SQL compilers proceed in four steps corre-
sponding to two phases: the parsing and the planning. The first two steps trans-
late SQL queries into abstract syntax trees whose nodes are, in theory, algebraic
operators and whose leaves are relations. We rather produce an extended alge-
bra expression. Its definition is given in Figure 9. Obviously it is very involved

19

T (table name) = name T (sq1 union sq2) = T (sq1) ∪ T (sq2)

T (sq1 intersect sq2) = T (sq1) ∩ T (sq2) T (sq1 except sq2) = T (sq1) \ T (sq2)

T (select ∗ from
−−→
sq[r] where F1 group by G having F2) =

let −→s := −−−−−→αi as αi, αi ∈
⋃−−−−−−−→

sort(sq[r]) in

T (select −→s from
−−→
sq[r] where F1 group by G having F2) (desuggaring)

T (select
−−−−−→
ea as α from

−−→
sq[r] where F1 group by singleton having F2) =

let q1 := Tfrom (
−−→
sq[r]) in

ω
fine,>,

−−−−−−−→
code(α,ea)

(TF (fine, id(sort(q1)), q1, F1 and F2))

T (select
−−−−−→
eai as αi from

−−→
sq[r] where F1 group by

−→
ef having F2) =

let q1 := Tfrom (
−−→
sq[r]) in

let q2 := TF (fine, id(sort(q1)), q1, F1) in
let m2 be 1 + the maximum of indexes occurring in the attributes of sort(q2) in

let m3 be (1 +m2) + the maximum of the indexes occurring in the attributes of
−→
eai in

let la := {(α+m3+j
def , eaj) | {eaj } = Exp(F2)} in

ω
fine,>,

−−−−−−−−−−−→
code(αi,α

+m2
i)

(TF (
−→
ef , id(sort(q2)) ∪

−−−−−→
code(la) ∪

−−−−−−−−−−−→
code(α+m2

i , eai)i, q2, F
+la
2))

where α+m3+j
def is a default attribute, shifted in order to avoid capture,

and F+la
2 is the result of applying the corresponding substitution la to formula F2

Tfrom
−−−−−→
(sqj [rj]) =./j Tρ (sqj [rj])

Tρ (sq[∗]) = T (sq) Tρ (sq[
−−−−−→
βi as αi]) = ω

fine,>,
−−−−−−−−→
code(αi,βi)

(T (sq))

Exp(true) = ∅ Exp(not F) = Exp(F)
Exp(F1 and F2) = Exp(F1 or F2) = Exp(F1) ∪ Exp(F2)

Exp(p(
−→
ea)) = Exp(p(

−→
ea, all sq)) = Exp(p(

−→
ea, any sq)) =

⋃
ea{e

a}
Exp(∗ in sq) =

⋃
α∈sort(sq){α} Exp(

−−−−−→
ea as α in sq) =

⋃
ea{e

a}

TV (q, n, f(
−→
ea)) = f(

−−−−−−−−→
TV (q, n, ea)) TV (q, n, f(

−→
ef)) = f(

−−−−−−−−→
TV (q, n, ef))

TV (q, n, a(ef)) = a(TV (q, n, ef)) TV (q, n, α) = (var q n).α

TV (q, n, value) = value

TF (G, c, q, true) = ωG,>,c(q) TF (G, c, q, not F) = ωG,>,c(q) \ TF (G, c, q, F)

TF (G, c, q, F1 and F2) = TF G, c, q, F1) ∩ TF (G, c, q, F2)

TF (G, c, q, F1 or F2) = (TF (G, c, q, F1) ∪ TF (G, c, q, F2)) \ (TF G, c, q, F1) ∩ TF (G, c, q, F2))

TF (G, c, q, p(
−→
ea)) = ω

G,c,p(
−−−−−−−−−→
TV (q, 0, ea))

(q)

TF (G, c, q, p(
−−−−−−−→
ea, all sq)) = let xsq := var(T (sq), 1) in ω

G,∀xsq, p(
−−−−−−−−→
TV (q, 0,ea),

−−−−→
xsq.a)a∈sort(sq))),c

(q)

TF (G, c, q, p(
−−−−−−−→
ea, any sq)) = ω

G,∃(var(T (sq),1), p(
−−−−−−−−→
TV (q, 0,ea),

−−−−−−−−−−−→
TV (T (sq),1,a)a∈sort(sq))),c

(q)

TF (G, c, q, ∗ in sq) = ωG,c,>(q) ./ δ(ωG,>,c(T (sq)))

TF (G,
−−−−−−−−→
code(αi, e

a
i), q,

−−−−−→
ea as α in sq) =

let qG := ω
G,>,

−−−−−−−−−→
code(αi,eai)

(q) in

let m1 be 1 + the maximum of indexes occurring in the attributes of sort(qG) in
let q′ := qG ./ δ(T (sq)+m1) in let F :=

∧
ea as α(var q′ 0).α = TV (q′, 0, ea) in

ωfine,>,id(sort(qG))(ωfine,F,id(sort(q′))(q
′))

Fig. 9. SQL syntactic and semantics steps

20

and deserves some comments. The first four cases are straightforward. The most
complex cases are the select ones. Let us recall the evaluation order of SQLCoq

and ExtAlg respectively. Consider query: select s from lsq where F1 group by

G having F2. SQLCoq and SQL first evaluate the from part lsq and filter the
resulting collection of tuples w.r.t., F1 in a second step they build groups thanks
to G yielding a collection of collections of tuples which is further filtered by F2.
At the end the remaining collections of tuples are flattened using the select

part.

ExtAlg proceeds slightly differently. First it builds a collection of collections
of tuples according to its partition’s criterion P, then it flattens the collection
by evaluating the code part, and filters with its formula F the resulting tuples.
Notice that there is a discrepancy between both evaluation’s orderings. The
rationale for such a discrepancy lies in many aspects. First, in our wish that
ExtAlg be as concise as possible, thus minimising the number of operators. It also
lies in the fact that this development is part of a more general library embedding
standard first-order logic. Hence formulae deal with individuals rather than sets,
bags or any type of collections. Last and not least, for the sake of generality, we
wanted ExtAlg to be data-model agnostic.

The consequence is that for parsing the having condition we have to build
a formula F+la

2 that behaves as F2 but also, we have to simulate each group,
s by an individual tuple t such that: F2(s) = F+la

2 (t). Moreover, each group
filtered by F2 must yield a tuple obtained thanks to the select part of the
query. Hence, tuple t is built from an arbitrary element of s (thanks to the
homogeneity hypothesis imposed by WF), the expressions freely occurring in F2

(Exp(F2)) and the expressions eai occurring in the select part
−−−−−→
eai as αi. This is

captured by: id(sort(q2)) ∪
−−−−−→
code(la) ∪

−−−−−−−−−−−→
code(α+m2

i , eai)i.

In order to avoid overlapping between the three parts of t we shifted the
corresponding attributes. This is expressed by the superscript notation α+j and
α+j
def where j represents an offset and αdef a default attribute name.

The last, subtle, aspect to be detailed is the treatment of
−−−−−→
ea as α in sq.

First, let us explain the intuitive meaning of:

TF (G,
−−−−−−−−→
code(αi, e

a
i), q, F)

It should result in an algebraic expression, which when interpreted, exactly con-
tains the tuples t, with the same number of occurrences, built from a group in

[[q]]ExtALG partitioned according to G, evaluated by the code part
−−−−−−−−→
code(αi, e

a
i)

and satisfying F . The first conditions are expressed by t ∈ [[qG]]ExtALG where
qG = ω

G,>,
−−−−−−−−→
code(αi,e

a
i)

(q). Let t be such a tuple, it then fulfils the above in con-

dition when t[
−−−−−→
ea as α] belongs to [[sq]]SQLcoq

, and, provided that the parser is
sound, also to [[T (sq)]]ExtALG which is equivalent to:

(t, t[
−−−−−→
ea as α]) ∈ [[qG ./ δ(T (sq))]]ExtALG

21

Notice that δ is used on the right part of the natural join, in order to keep the
multiplicity of t. Another way to express this is:

(t, t′) ∈ [[ωfine,F ′,id(qG ./ δ(T (sq)))]]ExtALG

where F ′ expresses that t′ is actually equal to t[
−−−−−→
ea as α]:

F ′ =
∧

ea as α

xsq.a = ea(xqG)

By using the appropriate offset +m1 over T (sq), one can ensure that qG and

T (sq) do not interfere in an another way than by F ′, which leads to the actual
formulation:

TF (G,
−−−−−−−−→
code(αi, e

a
i), q,

−−−−−→
ea as α in sq) =

let qG := ω
G,>,

−−−−−−−−−→
code(αi,eai)

(q) in

let q′ := qG ./ δ(T (sq)+m1) in
let F ′ :=

∧
ea as α(var q′ 0).α = TV (q′, 0, ea) in

ωfine,>,id(sort(qG))(ωfine,F ′,id(sort(q′))(q
′))

Now we are able to state the adequation theorem:

Theorem 2. Let sq be a well-formed SQL query. Then for any well-sorted in-
stance,

[[sq]]SQLcoq
= [[T (sq)]]ExtALG

T has been written in Gallina and we formally proved its correctness. We then
extracted its corresponding Ocaml, correct by construction, implementation.

Clearly, the proof of the adequation theorem was involved but enlightning.
Indeed, very subtle aspects were raised thanks to Coq. For instance, it happened
that the θ-semi-join and the δ duplicate elimination operators of Section 5 ap-
peared essential for correctly translating the in SQL’s predicate. More techni-
cally, translating the in consists in performing query decorrelation as presented
in [16]. It took many efforts, over years, for the database community to cor-
rectly define query decorrelation. Such a (rewriting) technique is closely related
to the notion of semi-joins and duplicate elimination. This did not escape Coq’s
attention!

7 Related work, conclusion and perspectives

7.1 Related Work

Many attempts have been made by the database community to define a formal
semantics for SQL. Among those a first, realistic at that time, proposal can be
found in [6]. The most significant work on the topic can be found in [14], were
the authors addressed a credible subset of SQL (with no functions symbols and
no nested queries though). In any case, none of those works did formally obtain

22

strong guarantees as we did in this article, nor did they formally relate their
proposed semantics with a deeply formalised algebra.

The first attempt to formalise the relational data model is found in [10,
9]. However, only the unnamed perspective is formalised using the Agda proof
assistant. The first complete Coq formalisation of the relational model is found
in [4] were the data model, the algebra as well as the integrity constraints aspects
were modelled.

Many efforts to use proof assistants to mechanise commercial languages’ se-
mantics have been already done with the seminal work on Compcert [12] and
later the work on JavaScript [5]. Recently, a similar approach as the one presented
in this article, consisting in relating a language to an algebra, is undertaken by
[17], in the context of an abstract pattern-calculus for rule languages intended
to capture the essence of IBM’s JRules. However only the algebra is mechanised
and no semantics’ preservation theorem is proven in this context.

The very first Coq formalisation of a SQL parser is found in Malecha et
al., [13]. However, they considered a very restricted subset of the language (with
no group-by having clause, no aggregates). Moreover, probably for the sake of
simplicity, they placed themselves in the context of an unnamed version of the
language, in which attributes names are not denotable. Such a choice is a little
unrealistic as, in standard SQL, attributes are denotable entities at the language
level. Many of the most difficult problems arise when dealing with attributes as
we illustrated in Section 3.

7.2 Conclusions

Contributions In this article we presented SQLCert a formal framework in-
herently based on attribute names which is the first executable mechanisation
of SQL’s semantics compliant with the theoretical algebraic foundations of the
(relational) model of data. We non trivially extended our previous work [4] so
as to deal with SQL. We proposed and formalised an extended bag-set alge-
bra gracefully hosting the relational one and allowing the underlying database
system to exploit well-known database optimisation techniques thus yielding
trully certified rewritings commonly used by practical optimisers. We formalised
an embedding of (the named) relational algebra into our extended algebra and
proved its correctness. Unlike what is found in the literature, our (extended)
algebra is very concise and more importantly is data model agnostic. We also
provided a Coq mechanisation of the first three steps of the compiler, formally
relating SQLCoq to its algebraic counterpart together with its Coq adequation
proof and its Ocaml extraction. SQLCert is, to our knowledge, the first proposal
of a (realistic fragment of) SQL compiler able to cope with attributes’ names in
a clean way, with finite bags thus formally reconciling SQL with the algebraic
foundations of the relational model and databases.

Lessons We learnt a lot on the Coq, database as well as programming language
design sides. Indeed, in order to capture SQL’s specificity, we had to extend

23

the relational data model and algebra presented in our previous work [4]. In an
early version of the development, we defined ExtAlg with a pure set-theoretic
semantics and only addressed the SQL’s fragment with no duplicates. Then we
addressed the multiset aspects of SQL. Doing so we were pleasantly surprised
to discover that it was not so dramatic: the development, based on second au-
thor’s existing work [7], went smoothly and it took us less than one month to
account for multisets. Therefore, the widespread belief13 that the problem for
SQL’s semantics is to assign it a bag semantics is not as crucial as it seemed
to be. Moreover, going from sets to multisets allowed us to precisely pinpoint
which aspects were relevant. For instance counting tuples’ occurences was crucial
for correctly translating the in predicate as well as for translating disjunction
in formulae. Obviously the proof of the semantics’ preservation theorem was,
as expected, the most involving part of the development. Also, accurately and
faithfully grasp SQL’s semantics as described in the ISO/IEC document was
painful. Even if we knew it, it confirmed us that SQL having initially been de-
signed as a domain specific language intended not to be Turing-complete more
features have been added to it along the time in the standardisation process,
hence, seriously, and sadly, departing it from its original elegant foundations.
This, definitely, made our mechanisation task more complex. However, SQL is
the real-life (relational) database programming language and there is no way
around it!

7.3 Perspectives

In the very short term, we shall include NULL values and order-based SQL’s
features. As we said previously, based on our experience of adding multisets in
our development, we are confident that adding a new kind of collection, lists
for instance, should not be as difficult as one could imagine. The next step to
be addressed is to deeply specify the last part of the query compiler. Rather
than mechanising the cost-based plan selection step, which seems far beyond
what could be expected from Coq, we shall verify that whatever the plan is,
it is correct w.r.t., its algebraic specification. A relevant approach could be to
rely on the work presented in [2, 3]. In this line of research, the idea consists
in implementing and specifying in Gallina/Coq the classical algorithms corre-
sponding to relational algebra operators, implement them in C and then rely
on the VST tool to manually prove that the C version is a correct refinement
w.r.t., the specification. Equally valid could be to rely on the Why(3) deductive
verification tool chain [8].

Last, our extended algebra is parametric w.r.t., the data model. No strong
assumptions were made on the intrinsic nature of tuples and, we think, it is ver-
satile enough to handle nested tuples and/or tree structured data. Indeed, we can
assign to their respective associated accessors a predefined semantics thus open-
ing the way for taking into account NoSQL languages in a clean, very concise,

13 At least in the database community.

24

algebra-based framework, in sharp contrast with the many various, nested rela-
tional algebras existing in the literature. A first step towards this line of research
will consist in taking the formalisation of [17] and embed it into ExtAlg.

25

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] A. W. Appel. Verified software toolchain - (invited talk). In Program-
ming Languages and Systems - 20th European Symposium on Programming,
ESOP 2011, pages 1–17, 2011.

[3] A. W. Appel. Program Logics - for Certified Compilers. Cambridge Uni-
versity Press, 2014.

[4] V. Benzaken, E. Contejean, and S. Dumbrava. A Coq Formalization of
the Relational Data Model. In 23rd European Symposium on Programming
(ESOP), 2014.

[5] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudz-
iuniene, A. Schmitt, and G. Smith. A trusted mechanised JavaScript spec-
ification. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pages 87–100, 2014.

[6] S. Ceri and G. Gotlob. Translating SQL into relational algebra: Optimisa-
tion, semantics, and equivalence of SQL queries. IEEE Trans., on Software
Engineering, SE-11:324–345, April 1985.

[7] E. Contejean. Coccinelle: a Coq library for term rewriting. https://www.

lri.fr/~contejea/Coccinelle/coccinelle.html,.

[8] J.-C. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In
M. Felleisen and P. Gardner, editors, ESOP, volume 7792 of LNCS, pages
125–128. Springer, 2013.

[9] C. Gonzalia. Towards a formalisation of relational database theory in con-
structive type theory. In R. Berghammer, B. Möller, and G. Struth, editors,
RelMiCS, volume 3051 of LNCS, pages 137–148. Springer, 2003.

[10] C. Gonzalia. Relations in Dependent Type Theory. PhD thesis, Chalmers
Göteborg University, 2006.

[11] ISO/IEC. Information technology - database languages - SQL - part 2:
Foundation (SQL/foundation), 2006. Final Commitee Draft.

[12] X. Leroy. A formally verified compiler back-end. J. Autom. Reasoning,
43(4):363–446, 2009.

[13] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Toward a verified
relational database management system. In ACM Int. Conf. POPL, 2010.

[14] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries.
ACM Trans. Database Syst., 16(3):513–534, 1991.

[15] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung, R. Ramakrish-
nan, D. Srivastava, P. J. Stuckey, and S. Sudarshan. Cost-based optimiza-
tion for magic: Algebra and implementation. In Proc., of the 1996 ACM
SIGMOD Int. Conf. on Management of Data, Montreal, Canada, 1996.,
pages 435–446, 1996.

[16] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query decorrelation.
In Proceedings of the Twelfth International Conference on Data Engineer-
ing, February 26 - March 1, 1996, New Orleans, Louisiana, pages 450–458,
1996.

[17] A. Shinnar, J. Siméon, and M. Hirzel. A pattern calculus for rule languages:
Expressiveness, compilation, and mechanization. In 29th European Con-
ference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, pages 542–567, 2015.

[18] The Coq Development Team. The Coq Proof Assistant Reference Manual,
2010. http://coq.inria.fr.

[19] The Isabelle Development Team. The Isabelle Interactive Theorem Prover,
2010. https://isabelle.in.tum.de/.

27

