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DIMENSION PRESERVING RESOLUTIONS OF SINGULAR

POISSON STRUCTURES

HICHEM LASSOUED1,2

Abstract. We give examples of Poisson structures that admit symplectic
resolutions of the same dimension. We also give a simple condition under
which proper in the smooth case or semi-connected symplectic resolutions in
the real analytic and holomorphic case can not exist: open symplectic leaves
have to be dense and the singular locus can not be of codimension one.
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Introduction

Poisson manifolds make sense in smooth, real analytic and holomorphic geome-
tries. In these three contexts, Poisson manifolds of dimension n are known to admit
symplectic realizations of dimension 2n (see [4], [7], [9], [17] for the smooth case and
[3] for the real analytic and holomorphic cases). Recall that a symplectic realization
of a Poisson manifold (M,πM ) is a triple (Σ,ΠΣ, ϕ) where (Σ,ΠΣ) is a symplectic1

Poisson manifold and ϕ : Σ →M is a surjective submersion which is also a Poisson
morphism.

It is obviously impossible to find a symplectic realization (Σ,ΠΣ, ϕ) of a Poisson
manifold (M,πM ) such that dim(Σ) = dim(M), unless M is itself symplectic. But
it is possible to modify the concept of realization and to impose only that ϕ is
a surjective map, but not necessarily a submersion. More precisely, we define
symplectic resolutions as follows:

Definition 0.1. Let (M,πM ) be a Poisson manifold of dimension n. We call
symplectic resolution a triple (Σ, πΣ, ϕ) where (Σ,ΠΣ) is a symplectic manifold of
dimension n and ϕ : Σ →M is a surjective Poisson morphism.

Under the mild assumption that all manifolds are second-countable, we shall see
that the only real or complex Poisson manifolds that may admit a symplectic reso-
lution are those that admit open symplectic leaves (see Proposition 1.2). Definition
0.1 therefore only makes sense when n is even.

Date: First submission: March 10th, 2017. This version March 20th, 2019.
1Symplectic manifolds are Poisson manifolds for which the Poisson bivector field is invertible.

1



2 HICHEM LASSOUED1,2

The term symplectic resolution has been coined in the context of algebraic ge-
ometry, see, e.g. Arnaud Beauville [1], Bao-Hua Fu [8] or Gwym Bellamy - Travis
Schedler [2]. We refer to [2] for a list of examples. The concept that we have
introduced above is consistent with this previously given meaning. It can not be
compared in a rigorous manner: We work within differential geometry and they
work in algebraic geometry. Moreover, for these authors, singular points are those
where the variety is singular and for us singular points are those where the Poisson
structure is singular. But the Poisson structures that algebraic geometers resolve
are symplectic at regular points, and their resolutions are birational symplectomor-
phisms at these points. In our context, at regular points, resolution are also local
smooth, real analytic or holomorphic symplectomorphisms. It is therefore justified
to use the same name. Also, Definition 0.1 matches the definition of symplectic
resolution given in [11], Section 4 (with minor adaptations).

Several examples of smooth symplectic resolutions exist. For instance, the Pois-
son structure on R2 given by:

{x, y}R2 := x2 + y2

is shown in [11] to admit symplectic resolutions. More non-trivial Examples are
given in Section 1. However, we give in this article a simple example of a smooth
Poisson structure of dimension 2 which does not have proper symplectic resolution,
namely the Poisson structure on M = R2 given by:

{x, y}M := x.

We also show that its complexification does not admit connected symplectic reso-
lutions in the holomorphic case. In fact, we show the following result: For (M,πM )
a manifold of dimension 2, whose singular locus contains a curve, there exists no
proper symplectic resolutions in the smooth case and no connected symplectic res-
olutions in the real analytic or holomorphic case, see Theorems 2.6 and 2.12.

We then extend these results to Poisson manifolds of arbitrary dimension. In
the smooth case, we show in Theorem 2.21 and 2.25 that, if a Poisson manifold
admits a proper symplectic resolution, then it admits an open symplectic leaf and
do not admit a sub-manifold of codimension 1 in its singular locus. In the real
analytic case, we show that if a Poisson manifold admits a connected symplectic
resolution, then it admits an open symplectic leaf and do not admit a sub-manifold
of codimension 1 in their singular locus. In the holomorphic setting, we deduce from
this result a much stronger result: connected symplectic resolutions do not exists
for non-symplectic Poisson manifolds, so that the theory of holomorphic symplectic
resolutions is essentially empty, see Theorem 2.26.

Acknowledgment: The comments of the referee have greatly helped to improve
both the mathematical content and the presentation of the article. She or he really
did an exceptional contribution and I would like to thank her or him for her or
his kindness and professionalism. Of course, I thank my advisors Camille Laurent-
Gengoux and Zoubida Benhamadi. I had also interesting comments from Martin
Bordemann, Mohamed Boucetta, Aziz El Kacimi and Salah Mehdi.

Conventions: Throughout this article, unless otherwise specified, all manifolds
are second countable. We denote a Poisson structure on a smooth, real analytic or
complex manifold M by πM or {·, ·}M indifferently. We write πM when we see it as
a section of ∧2TM and by {·, ·}M when we see it as a skew-symmetric biderivation
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of the sheaf of smooth, real analytic or holomorphic functions on M . As we shall
in general not consider two Poisson structures on the same manifold, this notation
will not be ambiguous. For us, a symplectic structure on a manifold Σ is a Poisson
bivector field which is non-degenerate at all point σ ∈ Σ. It shall be denoted by
a capital Greek letter ΠΣ. A symplectic point of a Poisson manifold (M,πM ) is a
point where πM is non-degenerate.

We denote by Msing the set of singular points of a Poisson structure πM . In
particular, for (M,πM ) a Poisson manifold of dimension 2n:

Msing :=
{
m ∈M,Rk

(
π
#
M |m

)
6= 2n

}
.

1. Examples of smooth symplectic resolutions

We give examples of smooth and complex manifolds of dimension 2 that ad-
mit symplectic resolutions. Taking products of two-dimensional Poisson structures
and products of their corresponding symplectic resolutions, we obtain examples of
arbitrary even dimension.

First, let us define some notions that we will use throughout this article.
A smooth Poisson structure [12] on a manifoldM is a section πM of ∧2TM →M

that commutes with itself with respect to the Schouten-Nijenhuis bracket:

[πM , πM ] = 0.

Poisson structures are in one-to-one correspondence with Lie algebra brackets {., .}M
on C∞(M,R) which are derivations in each variables (referred to as Poisson brack-
ets). Real analytic and holomorphic Poisson structures on a real analytic or com-
plex manifold M are also defined as being real analytic or holomorphic bivector
fields πM on M satisfying [πM , πM ] = 0. For every U ⊂ M , a real analytic or
holomorphic Poisson structure on M induces a Poisson bracket on the algebra of
holomorphic functions defined on U . When U is an open subset of Rn or Cn, Pois-
son structures on U are in one-to-one correspondence with Poisson brackets on real
analytic or holomorphic functions on U , see e.g. [10].

Since, in dimension 2, every bivector field is Poisson, the Jacobi identity does
not play any role. But the dimension 2 case is an interesting example because there
exist open symplectic leaves, and they are dense (unless we choose a bivector field
which is equal to zero on an open subset). Smooth Poisson structures on M := R2

(or an open subset of R2) are given by:

(1.1) {x, y}M = f(x, y),

where x, y are the canonical coordinates onM , and f(x, y) is a smooth function. We
suppose that the Poisson manifold (M,πM ) described by (1.1) admits a symplectic
resolution (Σ,ΠΣ, ϕ), with ΠΣ the symplectic structure on Σ. Since M = R2, the
map ϕ is of the form ϕ = (u, v), where u and v are two smooth functions on Σ with
values in R. For every choice (p, q) of local coordinates on (Σ,ΠΣ), the functions u
and v are functions of the variables p and q.

Proposition 1.2. Let Σ be a smooth manifold, ΠΣ a symplectic structure on Σ,
and ϕ : Σ → M = R2 a surjective smooth map, the pair (Σ,ΠΣ, ϕ) is a symplectic
resolution of the Poisson manifold (M,πM ) which is given by (1.1) if and only if

(1.3) {p, q}Σ

(
∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p

)
= f(u(p, q), v(p, q)),
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where p, q are local coordinates on (Σ,ΠΣ) and ϕ = (u, v).

Proof. The map ϕ is Poisson if and only if {ϕ∗x, ϕ∗y}Σ = ϕ∗{x, y}M = ϕ∗f(x, y),
with (x, y) the coordinates on M = R

2. As u = ϕ∗x et v = ϕ∗y, this condition is
equivalent to {u, v}Σ = f(u(p, q), v(p, q)), and the result is obtained by writing in
the coordinates (p, q) the bracket {u, v}Σ. �

Remark 1.4. Proposition 1.2 extends in an obvious manner to real analytic and
holomorphic Poisson structure.

Example 1.5. This example has appeared in [11], Section 6. We construct a
symplectic resolution of the smooth Poisson structure on M := R2 given by

(1.6) {x, y}M = x2 + y2,

where x, y denote the canonical coordinates ofM = R
2. Our candidate of symplec-

tic resolution is given by Σ := R2 equipped with the canonical symplectic bracket
{p, q}Σ = 1, with (p, q) the coordinates on Σ = R2. We define a map ϕ from Σ to
M by:

(1.7)
ϕ : Σ → M

(p, q) 7→ (q sin(pq), q cos(pq)).

It is easy to check that ϕ is surjective. We are left with the task of showing
that this map ϕ is a Poisson morphism, for which it suffices to check that the
condition given by Equation (1.3) is satisfied. This is done by direct computation.
For u(p, q) = q sin(pq) and v(p, q) = q cos(pq). We have on the one hand

f(u(p, q), v(p, q)) = (q sin(pq))2 + (q cos(pq))2 = q2,

and on the other hand:

∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p
=

∂q sin(pq)

∂p

∂q cos(pq)

∂q
−
∂q sin(pq)

∂q

∂q cos(pq)

∂p

= q2(cos2(pq) + sin2(pq)) = q2.

Since {p, q}Σ = 1 and f(u(p, q), v(p, q)) = q2. This proves the claim.

Remark 1.8. The symplectic resolution of Example 1.5 is a real analytic sym-
plectic resolution. But it is not a holomorphic symplectic resolution. The map ϕ
of Example 1.5 extends naturally to a holomorphic Poisson map from ΣC = C2

to MC = C
2, equipped with the natural holomorphic extensions of the Poisson

structures that appear in Example 1.5. This map is still Poisson and ΣC is still
symplectic. But ϕ, as defined in (1.7), is not surjective from ΣC to MC, so it does
not define a holomorphic symplectic resolution.

We construct a symplectic resolution of a smooth and real analytic Poisson
structure more general than the one given in Example 1.5.

Example 1.9. We equip R2 :=M with the Poisson structure defined by

{x, y}M = x2n + y2m, with n ≥ m ≥ 1,

where x, y denote the canonical coordinates ofM = R
2. Our candidate of symplec-

tic resolution is given by Σ := R2, equipped with the Poisson bracket

(1.10) {p, q}Σ = q2n−2m sin2n(pq2m−1) + cos2m(pq2m−1),
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where p, q denote the canonical coordinates of Σ = R2. This Poisson bracket is
symplectic, because q2n−2m sin2n(pq2m−1) + cos2m(pq2m−1) is strictly positive for
all p, q ∈ R. We define a map ϕ from Σ to M by:

ϕ : Σ → M

(p, q) 7→ (q sin(pq2m−1), q cos(pq2m−1)).

To show that (Σ, ϕ) is a symplectic resolution of M , it is sufficient to check that
Equation (1.3) is satisfied. In this case, we have u(p, q) = q sin(pq2m−1) and
v(p, q) = q cos(pq2m−1) and

(1.11) f(u(p, q), v(p, q)) = (q sin(pq2m−1))2n + (q cos(pq2m−1))2m.

Now, a direct computation gives:

∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p
=

∂q sin(pq2m−1)

∂p

∂q cos(pq2m−1)

∂q

−
∂q sin(pq2m−1)

∂q

∂q cos(pq2m−1)

∂p

= q2m(cos2(pq2m−1) + sin2(pq2m−1)) = q2m.

The explicit values of ∂u
∂p

∂v
∂q

− ∂u
∂q

∂v
∂p
, {p, q}Σ and f(u(p, q), v(p, q)) given respectively

in the previous equation, in Equation (1.10) and in Equation (1.11) satisfy Equation
(1.3). This proves that the triple (Σ,ΠΣ, ϕ) is a symplectic resolution.

More generally, for any Poisson structure of the from

{x, y}M = κ(x, y)(x2n + y2m),

with κ(x, y) a strictly positive function on M , the triple (Σ, (ϕ∗κ)ΠΣ, ϕ) is a sym-
plectic resolution.

Example 1.12. Examples 1.5 and 1.9 are Poisson structures with isolated singu-
larities. We want to introduce an example with non-isolated singularities. We equip
M := R2 with the bracket given in the canonical coordinates by {x, y}M = x. We
define Σ := R2

∐
R2

∐
R2 to be the disjoint union of three copies of R2. We equip

each copy of R2 with the canonical symplectic structure.
Consider the map ϕ : Σ →M defined by :

ϕ(p, q) :=





(exp(p), q) on the first copy
(− exp(p), q) on the second copy

(0, q) on the third copy.

A direct computation using Condition (1.3) implies that the restriction of ϕ to each
of the three copies is a Poisson morphism. As a consequence, ϕ is a Poisson mor-
phism. The map ϕ is surjective, making the couple (Σ, ϕ) a symplectic resolution
of (M,π). Note that the resolution (Σ,ΠΣ, ϕ) is not semi-connected (see Definition
2.4) and not proper.

Here is a non-trivial example in dimension 4 of a Poisson structure which admits
a symplectic resolution.

Example 1.13. Let (M,πM , EM ) be a Jacobi variety [6] of dimension 3 whose
Jacobi structure is given by the following vector field and bivector field:
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EM = 2
∂

∂z
πM = (x4 + y4)

∂

∂x
∧
∂

∂y
+

∂

∂z
∧

[
x
∂

∂x
− y

∂

∂y

]
.

It is routine to check that this structure is Jacobi:

[πM , πM ] = 2EM ∧ π; [E, π] = 0.

We consider the Poisson structure on P =M × R induced by the Jacobi structure
(the ”Poissonization” of the previous Jacobi structure see [6], page 113). It is
defined by

πP = e−t(π + Z ∧E).

Here, Z = ∂
∂t
, and t is the canonical coordinate on R.

A symplectic resolution of the Poisson manifold (P, πP ) is the triple (Σ,ΠΣ, ϕ)
where Σ is a symplectic manifold whose symplectic structure is given by the non-
degenerate Poisson bivector field ΠΣ = e−

q2
2 (cos4(p31q1) + sin4(p31q1))

∂
∂p1

∧ ∂
∂q1

+

4e
−3q2

4
∂

∂p2
∧ ∂

∂q2
. It defines a symplectic structure on ΠΣ. The application ϕ : Σ → P

defined by

ϕ = (f1, f2, f3, f4),

with f1 = e
−q2
4 p1 cos(p

3
1q1), f2 = e

−q2
4 p1 sin(p

3
1q1), f3 = p2, f4 = q2 is a Poisson

morphism. This is a routine computation. It also surjective. It gives a symplectic
resolution of the 4-dimensional Poisson manifold (P, πP )

Example 1.14. So far, all manifolds were assumed to be second countable. If
relax this condition. There is a general but unsatisfactory construction for making
a symplectic resolution of any Poisson manifold of even dimension. Let (M,πM )
be a Poisson manifold of dimension 2d, which can be assumed to be smooth, real
analytic or holomorphic. Below, K = R or C depending on the context.

For a symplectic leaf S of πM , consider the direct product ΣS := S × K2d−2s

where 2s is the dimension of the leaf S. Let us equip ΣS with the direct product of
the symplectic structure ΠΣS of the symplectic leaf S with the canonical symplectic
structure on the vector space of even dimension K2(d−s). This Poisson structure
is symplectic by construction. The natural map ϕS obtained by, first, projecting
S ×K2d−2s onto S, then by including S into M , is a Poisson map.

Now, let S be the set of all symplectic leaves. Let Σ be the disjoint union
Σ :=

∐
S∈S ΣS . All connected components of this manifold have dimension 2d and

are symplectic manifolds. This implies that Σ has dimension 2d and is symplectic.
The map ϕ : Σ →M , whose restriction to S ∈ S is ϕS , is surjective. It is a Poisson
map because its restriction to each connected component ΣS is a Poisson map.
Hence, (Σ,ΠΣ, ϕ) defines a symplectic resolution.

Using this construction, we see that any Poisson manifold of even dimension
admits a symplectic resolution. However, this construction is not satisfactory. In
general, the symplectic leaves form a non-countable family that has the cardinality
of R. Hence Σ may not admit a dense countable subset, i.e. be second countable.
Even when there are finitely many symplectic leaves, the resolution described in
this example is not semi-connected (see Definition 2.4). This example, therefore, is
not convincing. Also, it is in general not proper.
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2. Of Poisson structures that do not admit proper or connected

symplectic resolutions

We describe in this section broad classes of Poisson manifolds that do not admit
reasonable symplectic resolutions. As shown in Example 1.14, it is reasonable to
assume that the symplectic resolutions are second countable, since without such a
condition symplectic resolutions always exist, but they are not second countable. In
this section, as in the previous one, some of the statements are about holomorphic
and real analytic Poisson manifolds, some are about the smooth case. The context
will be stated clearly where relevant.

Several proofs shall require Sard’s theorem (see e.g. [16]). Let us state the
version of this theorem which is required here. For Σ,M smooth real analytic
or holomorphic manifolds and ϕ : Σ → M a surjective smooth, real analytic or
holomorphic map, a point m ∈ M is said to be a regular value if Tσϕ is surjective
for all σ ∈ Σ with ϕ(σ) = m. A critical value of a map ϕ : Σ → M is a point
m ∈ M for which there exists σ ∈ Σ such that ϕ(σ) = m and Tσϕ : TσΣ → TmM

is not surjective. For a surjective map ϕ : Σ →M , the set of critical values and the
set of regular values form a partition of M .

Theorem 2.1. [16] [Sard’s theorem.] Let P,N be second countable smooth, real
analytic or complex manifolds and ϕ : P → N a surjective smooth, real analytic
or holomorphic map. The set of all critical values has Lebesgue measure zero. In
particular, the set of regular values is dense in N .

Let us now find conditions that Poisson manifolds need to satisfy in order to
admit a second countable symplectic resolution. Recall that a point m in a Poisson
manifold (M,πM ) is said to be symplectic when πM |m is invertible. It will be said
non-symplectic if πM |m is not invertible

Proposition 2.2. Let (Σ,ΠΣ, ϕ) be a smooth, real analytic or complex symplectic
resolution of the smooth, real analytic or complex Poisson manifold (M,πM ). A
point m ∈M is a symplectic point of πM if and only if it is a regular value of ϕ.

Proof. The map ϕ is a Poisson map if and only if the following diagram is commu-
tative for all m ∈M and all σ ∈ Σ with ϕ(σ) = m:

T ∗
σΣ

Π#
Σ|σ // TσΣ

Tσϕ

��
T ∗
mM

T∗
σϕ

OO

π
#
M

|m // TmM.

Since all vector spaces in this diagram have the same dimension and since Π#
Σ|σ

is invertible, the commutativity of this diagram implies that π#
M |m is invertible if

and only if vertical arrows are invertible, i.e. if and only if Tσϕ is invertible. This
proves the result. �

Proposition 2.3. A Poisson manifold (M,πM ) that admits a second countable
symplectic resolution is symplectic on an open dense subset.

Proof. By the theorem of Sard (Theorem 2.1), regular values are dense in M . By
Proposition 2.2, regular values of ϕ are symplectic points of πM . This proves the
claim. �
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It follows from Proposition 2.2 that a point m ∈M is

(1) a symplectic point for the Poisson structure πM if and only if Tσϕ is bijective
for every point σ ∈ ϕ−1(m),

(2) a non-symplectic point for the Poisson structure πM if and only if Tσϕ is
non-bijective for every point σ ∈ ϕ−1(m).

The existence of the symplectic resolution given in Example 1.12 of the Poisson
structure on R2 given by {x, y} = xmeans that we shoud impose more conditions on
symplectic resolutions to obtain an interesting theory. Even if it is second countable,
we feel that having singular and regular parts that have distinct inverse images is
not acceptable, and would give symplectic resolutions which are useless. Also, it
does not match resolutions of singularities as they appear in algebraic geometry.

There are two manners to avoid symplectic resolutions as described in Example
1.12: we can impose that the map ϕ : Σ →M is a proper map, i.e. the inverse image
under ϕ of a compact subset of M is a compact subset of Σ. A second manner to
avoid such resolutions is to impose Σ to be a connected manifold, at least when M
is itself connected. More precisely:

Definition 2.4. A symplectic resolution (Σ,ΠΣ, ϕ) of a Poisson manifold (M,πM )
is said to be

(1) proper when the map φ is a proper map,
(2) semi-connected if the image of a connected component of Σ by a map ϕ can

not be included in the singular locus of πM .

Remark 2.5. A symplectic resolution (Σ,ΠΣ, ϕ) with Σ connected is also semi-
connected.

Imposing symplectic resolutions to be proper is the relevant assumption for the
smooth case, and semi-connected is relevant in the real analytic and holomorphic
cases, as we shall see.

In order not to confuse the smooth case with the holomorphic (or real analytic)
case, we will distinguish them by giving two theorems. We will start with the
smooth case.

Theorem 2.6. A smooth Poisson structure on M := R2 given by

(2.7) {x, y}M = f(x, y),

with f(x, y) a smooth function that vanishes if x = 0 does not admit a proper smooth
symplectic resolution.

Remark 2.8. The following problem is still open: In the smooth case, does the
Poisson manifold (M,π) described by (2.7) admit a connected symplectic resolu-
tion?

Let us prove Theorem 2.6.

Proof. Let (Σ,ΠΣ, ϕ) be a proper symplectic resolution of (M,πM ). SinceM = R2,
we have ϕ = (u, v) with u, v smooth real valued functions on Σ. The theorem of
Sard (Theorem 2.1) implies that the complement of the set of critical values of the
differentiable function v : Σ → R, which is surjective since ϕ is surjective, is dense
in R.

Let v0 ∈ R be a regular value of v. Since the dimension of Σ is 2 the inverse
image v−1(v0) by v : Σ → R of v0 is a union (Ci)i∈I of smooth curves.
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Consider the point (0, v0) ∈ M = R2. This point is a singular point of πM by
the definition (2.7) thereof. Consider a point σ ∈ ϕ−1(0, v0). This point σ belongs
to a curve Ci0 for a certain i0 ∈ I. We are going to show that the image of Ci0 by
ϕ is reduced to the point (0, v0), or, equivalently, that u identically vanishes along
the curve Ci0 .

Since the function v has a differential that does not vanish at the point σ, there
exists another local function p, defined on a neighborhood of σ, such that the pair
(p, v) form local Darboux coordinates on a open neighborhood Uσ ⊂ Σ. On Uσ ⊂ Σ
the map ϕ reads ϕ : (p, v) → (u(p, v), v). Also, upon shrink Uσ if necessary, the
restriction to Uσ ⊂ Σ of the curve Ci0 is given by v = v0. By Proposition 1.2, since
the map ϕ is a Poisson morphism, the following differential equation in the variable
p holds:

(2.9)
∂u

∂p
(p, v) = f(u(p, v), v).

In particular, for v = v0, we obtain the differential equation:

(2.10)

{
∂u
∂p

(p, v0) = f(u(p, v0), v0)

and u(p0, v0) = 0.

where (p0, v0) are the coordinates of the point σ. Since f(0, v) = 0 and in particular
f(0, v0) = 0, the Cauchy-Lipschitz theorem implies that the differential equation
(2.10) admits for unique solution the zero function, i.e. u(p, v0) = 0 for all p in a
neighborhood of p0. As a consequence, the restriction of u to Ci0 is a function which
is zero in a neighborhood of any point where it is zero. Since Ci0 is connected, the
function u vanishes identically on the whole curve Ci0 if and only if it vanishes at
some point of Ci0 .

The conclusion of the previous lines is that there are two types of curves in
v−1(v0), those on which the restriction of the function u is never equal to 0 (curves
that we call curves of the first type) and those where u vanishes identically, (curves
that we call curves of the second type). Since the map ϕ is a surjection, there is
necessarily at least one curve of each type.

Since the unions of all curves of the second type is the inverse image ϕ−1(0, v0),
this union is a compact set. (Notice that also, each one of these curves is compact,
and therefore is a circle).

Let K be the inverse image under ϕ of [−1, 1]× {v0} ⊂ M . Since ϕ is proper,
the set K is compact. Let us now say that a curve is good, those that intersect K.
Curves of the second type are also of the good type.

By definition of v0, Tσv : TσΣ → TσR is surjective for every σ ∈ v−1(v0). Hence,
the map v is a submersion in a neighborhood of all point in v−1(v0), and the curves
(Ci)i∈I whose union forms v−1(v0) can be splitted, that is to say there are open sets
(Ui)i∈I , with Ui containing Ci for all indices i ∈ I, such that Ui ∩Uj ∩ v

−1(v0) = ∅
for all distinct i, j ∈ I.

The open subsets (Ui ∩K)i∈I form a partition of K. Now, in a partition of a
compact set by open subsets, only finitely many can be non-empty. Said otherwise,
there are finitely many good curves.

The finite subset of curves of the good type can be splitted in two-subsets: those
which are of the second type and those which are of the first type. Since both
subsets of curves are finite, and since for any curve in the first subset and any curve
in the second subset, there exists non-intersecting open subsets containing them,
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there exists non-intersecting open subsets V and W such that good curves of the
first type are in V and good curve of the second type are in W .

We now consider a sequence (yn)n∈N ∈ Σ such that ϕ(yn) = ( 1
n
, v0). Since the

map ϕ is proper, out of the sequence yn, we can extract a convergent subsequence.
Let ỹ ∈ Σ be its limit. By construction, ϕ(ỹ) = (0, v0). For any n ∈ N, the element
yn belongs to a curve of the first type and of the good type, and therefore is in V ,
but its limit has to belong to a curve of the good type and of the second type, and
is therefore in W . This contradicts the assumption that V ∩W = ∅, and completes
the proof. �

We now look at the real analytic or holomorphic case. As in Equation (2.7), we
consider the real analytic (resp, holomorphic) Poisson structure on an open subset
of R2 (resp, C2) containing at least one point of the vertical axis {x = 0}. Such a
Poisson structure is given by:

(2.11) {x, y}M = f(x, y),

with f(x, y) a real analytic (resp. holomorphic) function that vanishes on the
vertical axis {x = 0}.

Theorem 2.12. The real analytic (resp. holomorphic) Poisson manifold (M,πM )
described in Equation (2.11) does not admit a real analytic (resp. holomorphic)
semi-connected symplectic resolution.

Let (Σ,ΠΣ, ϕ) be a real analytic (resp. holomorphic) semi-connected symplectic
resolution of the Poisson structure in (2.11). We write ϕ = (u, v) with u, v real
analytic (resp. holomorphic) functions from Σ to R or C. Let us consider Γ =
u−1(0) ⊂ Σ. The set Γ is a closed subset of Σ which is the disjoint union of

Γsing = {σ ∈ Σ | u(σ) = 0 and dσv = 0}

and

Γreg = {σ ∈ Σ | u(σ) = 0 and dσv 6= 0} .

We start with a lemma:

Lemma 2.13. Let (Σ,ΠΣ, ϕ) be a real analytic (resp. holomorphic) semi-connected
symplectic resolution of the real analytic (resp. holomorphic) Poisson manifold
(M,πM ) described in Equation (2.11).

For any point σ ∈ Γreg, there exists a neighborhood Uσ of σ in Σ such that
v(Uσ ∩ Γreg) is a point.

We prove the lemma in the holomorphic case (the real analytic case is along the
same lines).

Proof. For any point σ ∈ Γreg, there exists a neighborhood Uσ of σ in Σ and a
function p defined on Uσ such that the pair (p, v) are local Darboux coordinates on
Σ. The map ϕ reads in these coordinates as:

ϕ : Uσ ⊂ Σ → M

(p, v) 7→ (u(p, v), v).

Proposition 1.2 implies that

(2.14)
∂u

∂p
(p, v) = f(u(p, v), v).
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Let (p0, v0) be the coordinates of σ ∈ Σ and consider the function h : v → u(p0, v).
Since the function h is holomorphic, and h has a zero at v = v0, there are two
possibilities: either this function is identically equal to zero or it has an isolated
zero at v0.

Cauchy-Lipschitz theorem and the assumption f(0, v) = 0 imply that solutions
p→ u(p, v) of (2.14) are identically zero if h(v) = 0. Hence if h is identically equal
to 0 on a neighborhood of v0, the function u vanishes at all points of Uσ. Since
the function u is holomorphic, this implies that u = 0 on the whole connected
component Σσ of σ in the manifold Σ. But this is impossible because (Σ,ΠΣ, ϕ) is
semi-connected: ϕ(Σσ) can not be included in the singular locus of πM . Hence v0
is necessarily an isolated zero of h. Upon shrinking Uσ if necessary, we can assume
it is the only zero of the function h. Cauchy-Lipschitz theorem and the assumptiol
f(0, v) = 0 imply then that u(p, v) 6= 0 for all (p, v) ∈ Uσ that satisfy v 6= v0. Hence
Uσ ∩ Γreg is given in the coordinates (p, v) by v = v0 and its image through ϕ is
reduced to the point (0, v0). This completes the proof. �

We now prove Theorem 2.12 for the holomorphic case. The real analytic case is
similar.

We prove the lemma in the holomorphic case (the real analytic case is along the
same lines).

Proof. Assume a semi-connected holomorphic symplectic resolution (Σ,ΠΣ, ϕ) of
(M,πM ) exists, with ϕ = (u, v), where u, v are holomorphic functions on Σ with
values in C.

Let Γ = u−1(0), Γsing and Γreg be as defined above. As ϕ is surjective by
assumption, v(Γ) ⊆ C in the intersection of M with the axis {x = 0}.

By Theorem 2.1 [Sard’s theorem], applied to the differentiable function v, the
critical values of v form a set of measure zero in C. By construction, v(Γsing) is
included in that subset and is therefore of measure 0 in C.

Let us show that v(Γreg) is a countable or finite subset of C. For any σ ∈ Γ,
there exists by Lemma 2.13 a neighborhood Uσ of σ ∈ Σ such that v(Γreg ∩ Uσ)
is reduced to a point. The set Γreg is an open subset of the closed subset Γ. It is
therefore a locally compact subset and we can extract out of any open cover of Γreg

a finite or countable open cover. This implies that v(Γreg) is a finite or countable
subset of C. Hence v(Γreg) is of measure 0, since v(Γsing) is also of measure zero,
then so is v(Γ). This contradicts the surjectivity of ϕ, which imposes that v(Γ) is
an open subset of C.

Therefore, no semi-connected symplectic resolution exist. �

We now use Theorems 2.6 and 2.12 to give a class of Poisson manifolds that
do not admit reasonable symplectic resolutions, although they are symplectic on a
dense open subset.

We say that a submanifold N of a Poisson manifold (M,πM ) which can be
smooth, real analytic or holomorphic, such that

(2.15) TnN ⊕ π
#
M |n (TnN

⊥) = TnM, ∀n ∈ N

is Poisson-Dirac. The usual definition is more general (see [12], Chapter 5) but we
do need to use it here. Recall that any Poisson-Dirac submanifold admits a unique
induced Poisson structure called reduced Poisson structure and denoted by {·, ·}N
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which satisfies for all local functions F,G on N

{F,G}N = i∗N

{
F̃ , G̃

}

M
,

where F̃ and G̃ are local extensions of F and G to M whose hamiltonian vector
fields are tangent to N and i∗N : N →֒ M is the inclusion map. Equation (2.15)
implies that a such extensions always exist, see [12], chapter 5.

Remark 2.16. (see [18], corollary 2.11) Poisson-Dirac submanifolds of symplec-
tic manifolds are exactly symplectic submanifolds, i.e, submanifolds on which the
symplectic 2-form restricts to a non degenerate 2-form.

We now give a characterization of the Poisson-Dirac submanifolds, for more
details see [12], page 163.

Proposition 2.17. Let (M,πM ) be a smooth, real analytic or holomorphic Poisson
manifold of dimension 2r+ d and N a submanifold of M of dimension d. Then N
is a Poisson-Dirac submanifold if and only if for all n ∈ N , N is locally defined as
the zero set of 2r independent functions p1, . . . , pr, q1, . . . , qr on M satisfying the
following relations:

(2.18) i∗N {pi, qj}M = δ
j
i , i∗N {pi, pj}M = i∗N {qi, qj}M = 0, ∀i, j = 1, . . . , r.

Submanifolds N,S ofM are said to be in direct sum at n ∈ S∩N if TnS⊕TnN =
TnM .

Lemma 2.19. Let (M,π) be a (smooth/real analytic/holomorphic) Poisson man-
ifold of dimension 2r + d, S a symplectic leaf of dimension 2r and N ⊂ M a
submanifold in direct sum with S at a point n ∈ S ∩ N . For every symplectic
resolution (Σ,ΠΣ, ϕ) of (M,π), there exists a neighborhood N ′ of n in N such that:

(1) N ′ is a Poisson-Dirac submanifold of (M,π),
(2) ϕ−1(N ′) is a symplectic submanifold of Σ,
(3) the restriction ϕN ′ : ϕ−1(N ′) → N ′ is a symplectic resolution for the re-

duced Poisson structures of ϕ−1(N ′) and N ′ respectively. Moreover, it is
a proper (resp. semi-connected) symplectic resolution when (Σ,ΠΣ, ϕ) is a
proper (resp. semi-connected) symplectic resolution.

Proof. There exists, in a neighborhood U of n, Weinstein coordinates (p, q, z) such
that the submanifold N ′ := N ∩U is given by the equations: p1 = · · · = pr = q1 =
· · · = qr = 0 and

π =

r∑

i=1

∂

∂pi
∧

∂

∂qi
+
∑

i<j

πij(z)
∂

∂zi
∧

∂

∂zj
,

with

πij(0) = 0 for i, j = 1, . . . , d.

The functions p1, ..., pr, q1, ..., qr having independent Hamiltonian vector fields at
all points of U , their pull-back ϕ∗p1, ..., ϕ

∗pr, ϕ
∗q1, ..., ϕ

∗qr also have independent
Hamiltonian vector fields at all point in ϕ−1(U). Therefore, they are independent
functions. The zero locus that they define is ϕ−1(N ′) by construction, which is
therefore a submanifold of Σ. Proposition 2.17 implies that N ′ and ϕ−1(N ′) are
Poisson-Dirac submanifolds. This proves the first and second item.
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For any function F on M such that {F, qi}|N′
= 0 = {F, pi}|N′

, for all i =

1, . . . , r, the relation {ϕ∗F, ϕ∗qi}|
ϕ−1(N′)

= 0 = {ϕ∗F, ϕ∗pi}|
ϕ−1(N′)

holds for all

i = 1, . . . , r. Hence, a function F on M such that the hamiltonian vector field
XF is tangent to N ′ satisfies that the hamiltonian vector field Xϕ∗F is tangent to
ϕ−1(N ′). Now, for all functions F,G on N ′, we have by definition of the reduced
structure

{F,G}N ′ =
{
F̃ , G̃

}

|N′

,

where F̃ and G̃ are local extensions of F and G to M whose hamiltonian vector
fields are tangents to N ′. Hence

ϕ∗ {F,G}N ′ =
(
ϕ∗ ◦ i∗N ′

{
F̃ , G̃

})
= i∗ϕ−1(N ′)

{
ϕ∗F̃ , ϕ∗G̃

}
= {ϕ∗F, ϕ∗G}ϕ−1(N ′) .

This proves that ϕ restricts to a Poisson morphism from ϕ−1(N ′) to N ′ equipped
with their reduced Poisson structures. This restriction is proper if ϕ is proper
because compacts subsets of N ′ are compacts subsets of M , hence their inverse
image are compact in Σ. Since this inverse image is included in ϕ−1(N ′), it is
compact in ϕ−1(N ′).

Also the real analytic or holomorphic resolution (ϕ−1(N ′), πϕ−1(N ′), ϕϕ−1(N ′))
is semi-connected if (Σ,ΠΣ, ϕ) is semi-connected. Let us prove this point by con-
tradiction. Assume there exists a connected component C of ϕ−1(N ′) such that
ϕ(C) is included in the singular locus of πN ′ . A singular point for πN ′ being also
singular for πM , it implies that ϕ(C) ⊆ Msing. Hence every point in Σ which is
the image of a point in C ⊆ Σ through the flow of the hamilthonien vector field
Xϕ∗F , with F a local function onM , is mapped to Msing. Let Σ0 be the set of such
points. Since ϕ−1(N ′) is Poisson-Dirac in Σ, the submanifold C is Poisson-Dirac
in Σ, there exists a neighborhood of C included in Σ0. This implies that an open
subset of Σ containing C is mapped to Msing. Since Σ and ϕ are real analytic or
holomorphic, the whole connected component of C has to be mapped to Msing,
which contradicts the assumption. This proves the third item. �

We recall that Msing is the set of points n ∈ M where the Poisson structure
degenerates.

The following lemma holds in smooth, real analytic and holomorphic contexts:
It mainly uses Sard’s theorem (Theorem 2.1). We prove it only in the smooth case,
but the proof easily adapts.

Lemma 2.20. Let (M,πM ) be a Poisson manifold of dimension 2n ≥ 4, such
that Msing contains a submanifold P ⊂ M of codimension one. If a symplectic
resolution exists, then the bivector πM can not be zero at all points in P .

Proof. Consider a tubular neighborhood U of P in M with projection ψ : U → P .
Assume that (Σ,ΠΣ, ϕ) is a symplectic resolution of (M,πM ). The map ψ ◦ ϕ :
ϕ−1(U) → P is surjective because both ϕ and ψ are surjective. By Sard’s Theorem,
there exists a regular value for ψ ◦ ϕ, i.e. there exists a point p ∈ P such that for
every σ ∈ (ψ ◦ ϕ)−1(U) ⊂ Σ, the composition

dϕ(σ)ψ ◦ dσϕ : TσΣ → TpP

is a surjective linear map. Since ϕ is surjective, there exists σ ∈ Σ such that
ϕ(σ) = p. Such a point belongs to (ψ ◦ ϕ)−1(U) by construction, and satisfies that
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dϕ(σ)ψ ◦ dσϕ is a surjective linear map. In turn, this implies that for any choice
x1, . . . , x2n−1 of local coordinates on P aroundM , the functions (ψ◦ϕ)∗x1, . . . , (ψ◦
ϕ)∗x2n−1 are independent at the point σ.

Let us compute the Poisson brackets of these functions at the point σ. Since the
map ϕ is a Poisson morphism, for all i, j = 1, . . . , 2n− 1, then, if πM |p= 0

{(ψ ◦ ϕ)∗xi, (ψ ◦ ϕ)∗xj}Σ (σ) = {ϕ∗ψ∗xi, ϕ
∗ψ∗xj}Σ (σ)

= {ψ∗xi, ψ
∗xj}M (ϕ(σ)) = 0.

But it is impossible to have 2n− 1 independent functions on a symplectic manifold
whose brackets are equal to zero at a given point. This completes the proof. �

Theorem 2.21. A smooth Poisson manifold (M,πM ) of dimension 2n, which con-
tains a submanifold of codimension one included in Msing, does not admit a proper
symplectic resolution.

Proof. We prove the theorem by induction on 2n = dim(M). If n = 1. In a
neighborhood of a submanifold P ⊂M of dimension 1, the Poisson structure reads
{x, y} = f(x, y) where (x, y) are local coordinates such that P is given, locally, by
x = 0. This means that we are in the situation of Theorem 2.6 and initiates the
recursion. We assume that the theorem is true for all 1, . . . , n and we show it for
n+ 1 = 1

2 dim(M).
We assume that Msing contains a submanifold P of codimension 1. Assume,

for the sake of contradiction that (Σ,ΠΣ, ϕ) is a proper symplectic resolution. By
Lemma 2.20, the rank of πM on P can not be zero at every point of P . Let
m be a point in P where πM |m 6= 0. If a symplectic resolution (Σ,ΠΣ, ϕ) of
(M,πM ) exists, then by Lemma 2.19, any submanifold N in direct sum with the
symplectic leaf through m admits a neighborhood N ′ of m in N such that the map
ϕN ′ : ϕ−1(N ′) → N ′ is a symplectic resolution of dimension 2(n + 1 − r) with 2r
the rank of πM at m. Moreover ϕN ′ is a proper map because ϕ is proper map.
Now P ∩N ′ is a submanifold of codimension one in N ′, at least in a neighborhood
of m in N ′. We get a contradiction with the induction hypothesis. This shows the
result. �

We now give non-trivial example of a Poisson manifold that satisfies the condition
of Theorem 2.21

Example 2.22. We consider the affine Lie algebra, that is to say the semi-direct
product

g = gln(R)⋉R
n,

equipped

[(A, u), (B, v)] = (AB −BA,Av −Bu).

We identify g and its dual vector space g∗ with the help of the nondegenerate
symmetric bilinear form defined for all A,B ∈ gln(R) and u, v ∈ Rn by

(2.23)
g⊗ g → R

≪ (A, u), (B, v) ≫ 7→ Tr(AB) + 〈u, v〉 .

Under this identification, the coadjoint action becomes an action of g on g given at
a point (B, v) by

(2.24) (A, u) 7→ ad∗(A,u)(B, v) = (AB −BA+ ut ⊗ v,At(v))
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where At stands for the transpose of the matrix A, and

ut ⊗ v :=




u1v1 · · · uiv1 · · · unv1
...

...
...

u1vj · · · uivj · · · unvj
...

...
...

u1vn · · · uivn · · · unvn



.

For B a diagonal matrix with pairwise different diagonal values and for v1, . . . , vn
all different from zero, the linear map (2.24) is injective, and therefore bijective.
Let us check this point. For all (A, u) in the kernel of (2.24), the diagonal terms of
the matrix AB − BA + ut ⊗ v are equal to u1v1, . . . , unvn. If they are zero, then
u = 0. We then have AB − BA = 0, which implies that A is a diagonal matrix.
But, then, the equality At(v) = 0 implies that all diagonal terms of the matrix
A are equal to 0. This proves injectivity. Since there is at least one point (B, v)
where the linear map (2.24) is bijective, and since the determinant of this map
is a polynomial function in the coefficients of B and v, this linear map has to be
bijective on a dense open subset.

Now, at every point α of the dual g∗ of a Lie algebra g, the Lie-Poisson structure
(or Kirillov-Kostant-Souriau structure) on g∗ is given by the coadjoint action. In

our case, the Lie-Poisson is transported on g∗ through (2.23) and the map π
#
g is

given as in (2.24). On the dense open subset of elements (B, v) ∈ g such that (2.24)
is injective, the Lie-Poisson structure πg is symplectic.

It is then natural to ask whether or not g admits proper symplectic resolutions.
The answer is ”no”. Assume B is diagonalizable with pairwise distinct eigenvalues.
Then so is Bt. Let e1, . . . , en be a basis of eigenvectors of Bt. Assume v =

∑n
i=1 λiei

with λ1 = 0. Then (2.24) is not injective because (A, u) with u = 0 and At(e1) = e1,
At(ei) = 0 for i = 2, ..., n is in the kernel of the coadjoint action (2.24).

In neighborhood of (B, v) with B diagonal with distinct eigenvalues and v =
(0, 1, 0, ..., 0), the condition λ1 = 0 defines a submanifold of codimension 1. The
singular locus of πg contains therefore a submanifold of codimension 1, and Theorem
2.21 implies that no proper symplectic resolution exists.

Theorem 2.25. A real analytic Poisson manifold (M,πM ), which contains a sub-
manifold of codimension one of singular points for πM , does not admit a semi-
connected symplectic resolution.

The proof of this result is identical to that of Theorem 2.21. We simply use The-
orem 2.12 instead of Theorem 2.6 in the case where dim(M) = 2 for the recursion
hypothesis in order to say that M , in this case, does not admit a semi-connected
symplectic resolution.

In the holomorphic case, the result is much stronger because the submanifold of
codimension one that appears in both Theorems 2.21 and 2.25 always exist.

Theorem 2.26. A holomorphic Poisson manifold, does not admit a semi-connected
symplectic resolution, unless it is symplectic.

Proof. A Poisson manifold (M,πM ) that admits a symplectic resolution must be
symplectic on an open dense subset by Proposition 2.3. For such a manifold, the
multivector field πn

M = πM ∧ · · · ∧πM (n times, where 2n is the dimension of M) is
a section of a vector bundle of rank 1, namely ∧2nTM which vanishes precisely at
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singular points. If it vanishes at least in one point, i.e, if (M,πM ) is not symplectic,
there is also a submanifold of codimension one where it vanishes (by Weierstrass
preparation theorem). Theorem 2.21 allows to conclude that no semi-connected
symplectic resolution exists.

�
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