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DIMENSION PRESERVING RESOLUTIONS OF SINGULARITIES

OF POISSON STRUCTURES

HICHEM LASSOUED

Abstract. Some Poisson structures do admit resolutions by symplectic man-
ifolds of the same dimension. We give examples and simple conditions under
which such resolutions can not exist.
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Introduction

Poisson manifolds of dimension n are known to admit symplectic realizations of
dimension 2n (see [5] or [3] for the holomorphic case). Recall that a symplectic
realization of a Poisson manifold (M,πM ) is a triple of (Σ,ΠΣ, ϕ) where (Σ,ΠΣ)
is a symplectic1 manifold and ϕ : Σ → M is a surjective submersion on (M,πM )
which is also a Poisson morphism.

It is obviously impossible to find a symplectic realization of a Poisson mani-
fold of dimension n = dimM , unless M is itself symplectic. But it is possible to
modify the concept of realization by imposing only that ϕ is a surjective map, but
not necessarily a submersion. More precisely, we define symplectic resolutions as
follows:

Definition 1. Let (M,πM ) be a real or complex Poisson manifold of dimension
n. We call symplectic resolution a triple (Σ, πΣ, ϕ) where (Σ,ΠΣ) is a symplectic
manifold of dimension n and ϕ : Σ →M is a surjective Poisson morphism.

The term ”symplectic resolution” has been used by Arnaud Beauville in the con-
text of the algebraic geometry [1] and BaoHua Fu [6] for instance - see for instance
[2] for lists of examples of those. The concept that we have introduced in above is
consistent with this previously given meaning. It can not be really compared, be-
cause we work with in differential geometry, while they work in algebraic geometry,
and singular points are for these authors points where the variety is singular, while
for us singular points are those where the Poisson structure is singular. But the

Date: March 10th, 2017.
1For us, a symplectic manifold is a Poisson manifold with an invertible bivector field.
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2 HICHEM LASSOUED

Poisson structures they resolve are symplectic at regular points, and their resolu-
tions are birational at these points. Something similar happens here: we are going
to see that the necessary condition for the existence of a symplectic resolution is
that the bivector π should be invertible (i.e. symplectic) on an open dense subset
of M (see Proposition 1) and our resolutions are local diffeomorphisms at these
points. As a consequence, it makes sense to use the same name.

Many examples of symplectic resolutions exist (see Section 1). But we give in
this article a simple example of Poisson structure of dimension 2 which does not
have reasonable symplectic resolutions. We use this result to exclude a large class
of symplectic Poisson manifold which, although there are symplectic on a dense
open subset, do not admit reasonable symplectic resolutions. In particular, in the
holomorphic setting, we prove that such connected resolutions do not exist for
non-symplectic Poisson manifolds.

Conventions: Throughout this article, we denote the Poisson structures by π or
{·, ·} indifferently. We write π when we see it as a section of ∧2TM and by {·, ·}
the associated skew-symmetric biderivation of the algebra of smooth or holomorphic
functions on M . Also, we shall denote by πX or {·, ·}X a Poisson structure defined
on the manifold X . As we shall in general not consider two Poisson structures on
the same manifold, this notation is not ambiguous. When the Poisson structure
is invertible, that is, a symplectic Poisson structure, we shall use a capital letter
instead, e.g. ΠX .

1. Examples of symplectic resolutions of the same dimension in

dimension 2

In this section, we give examples of manifolds of dimension 2 that do admit
symplectic resolutions. Consider the Poisson structure on M := R

2 (or an open
subset of R2) given by:

(1.1) {x, y}M = f(x, y)

where x, y are the canonical coordinates toM , and f(x, y) is a smooth function. We
suppose that the Poisson manifold (M,πM ) described by (1.1) admits a symplectic
resolution (Σ,ΠΣ, ϕ). With ΠΣ the symplectic Poisson structure on Σ. Since
M = R2, the map ϕ is of the form ϕ = (u, v), where u and v are two smooth
functions on Σ with values in R. For any choice (p, q) of local coordinates on
(Σ,ΠΣ), the functions u and v are functions of the variables p and q.

Proposition 1. Let Σ be a manifold, ΠΣ a symplectic Poisson structure on Σ, and
ϕ : Σ →M = R2 a surjective map, the pair (Σ,ΠΣ, ϕ) is a symplectic resolution of
the Poisson manifold (M,πM ) which is given by (1.1) if and only if

(1.2) {p, q}Σ

(
∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p

)
= f(u, v)

where p, q are local coordinates on (Σ,ΠΣ) and ϕ = (u, v).

Proof. The map ϕ is Poisson if and only if {ϕ∗x, ϕ∗y}Σ = ϕ∗{x, y} = ϕ∗f(x, y),
with (x, y) the coordinates on M = R2. As u = ϕ∗x et v = ϕ∗y, this condition is
equivalent to {u, v}Σ = f(u, v), the result is obtained by writing in the coordinates
(p, q) the bracket {u, v}Σ. �



DIMENSION PRESERVING RESOLUTIONS OF SINGULARITIES OF POISSON STRUCTURES3

Example 1. This example has appeared in [7], Section 6. We construct a sym-
plectic resolution of the Poisson structure on M := R2 given by :

(1.3) {x, y}M = x2 + y2,

where x, y denote the canonical coordinates ofM = R
2. Our candidate of symplec-

tic resolution is given by Σ := R2 equipped with the canonical symplectic Poisson
bracket {q, p}Σ = 1, with (p, q) the coordinates on Σ := R2 (we use different let-
ters for coordinates on M and Σ which by accident, in our example, happen to be
isomorphic). We define a map ϕ from Σ to M by:

ϕ : Σ → M

(p, q) 7→ (q sin(pq), q cos(pq)).

It is easy to check that ϕ is surjective. We are left with the task of showing
that this map ϕ is a Poisson morphism, for which it suffices to check that the
condition given by Equation (1.2) is satisfied. This is done by direct computation:
as u(p, q) = q sin(pq) and v(p, q) = q cos(pq), we have on the one hand f(u, v) =
(q sin(pq))2 + (q cos(pq))2 = q2, and on the other hand:

∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p
=

∂q sin(pq)

∂p

∂q cos(pq)

∂q
−
∂q sin(pq)

∂q

∂q cos(pq)

∂p

= q2(sin2(pq) + cos2(pq)) = q2.

Since {p, q}Σ = 1 and f(u, v) = q2. This proves the claim.

We can also construct a symplectic resolution of a Poisson structure more general
than (1.3).

Example 2. We equip R2 :=M with the Poisson structure defined by

{x, y}M = x2n + y2m, with n ≥ m > 1

where the couple (x, y) stands for the canonical coordinates ofM , and n and m are
integers with n ≥ m. Our candidate of symplectic resolution is given by Σ := R2

with the Poisson bracket {p, q}Σ = q2n−2m sin2(pq2m−1)+cos2(pq2m−1), with (p, q)
being the canonical coordinates of Σ. This Poisson bracket is symplectic, because
q2n−2m sin2(pq2m−1) + cos2(pq2m−1) is strictly positive an for all p, q ∈ R. We
define a map ϕ from Σ to M by:

ϕ : Σ → M

(p, q) 7→ (q sin(pq2m−1), q cos(pq2m−1)).

To show that (Σ, ϕ) is a symplectic resolution of M , it is sufficient to check that
the condition given by Equation (1.2) is satisfied. As u(p, q) = q sin(pq2m−1)
and v(p, q) = q cos(pq2m−1), we have on the one hand, f(u, v) = (q sin(pq))2n +
(q cos(pq))2m, and on the other hand, by direct computation:

∂u

∂p

∂v

∂q
−
∂u

∂q

∂v

∂p
=

∂q sin(pq2m−1)

∂p

∂q cos(pq2m−1)

∂q

−
∂q sin(pq2m−1)

∂q

∂q cos(pq2m−1)

∂p

= q2m(sin2(pq2m−1) + cos2(pq2m−1)) = q2m.
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This proves the claim. Since p, qΣ = 1 and F (u, v) = q2m, this implies that any
Poisson structure of the form

{x, y}M = κ(x, y)(x2n + y2m),

admits a resolution, provided that the function κ(x, y) is strictly positive on M : it
suffices to consider the triple (Σ, (ϕ∗κ)ΠΣ, ϕ).

Example 3. Examples 1 and 2 are Poisson structures with isolated singularities.
We want to introduce an example with non-isolated singularities. We equip M :=
R2 with the bracket given in the canonical coordinates by {x, y}M = x. We define
Σ := R

2
∐

R
2
∐

R
2 to be the disjoint union of three copies of R2. There is a natural

symplectic structure on Σ obtained by restricting each of the three copies canonical
symplectic Poisson structure. Consider the map ϕ : Σ →M defined by :

ϕ :=





(exp(p), q) on the first copy
(− exp(p), q) on the second copy

(0, q) on the third copy

A direct computation using Condition (1.2) implies that the restriction on all three
copies is a Poisson morphism, which is sufficient to make ϕ a Poisson morphism.
The map ϕ is surjective, making the couple (Σ, ϕ) a symplectic resolution of (M,π).
Note that Σ is not connected.

Example 4. There is a general but non-satisfying construction for making a sym-
plectic resolution of any Poisson manifold of even dimension. Let (M,πM ) be a
Poisson manifold of dimension 2d. For all symplectic leaf S of πM , consider the
direct product ΣS := S × R2d−2s where 2s is the dimension of S. Equip ΣS with
the direct product Poisson symplectic structure ΠΣS

, with the understanding that
S, the symplectic leaf, comes equipped with its induced symplectic structure, and
the vector space of even dimension R2d−2s comes equipped with any symplectic
Poisson structure. The natural map ϕS obtained by projecting S ×R2d−2s onto S,
then by including S into M is a Poisson map.

Now, let S be the set of all symplectic leaves. Let Σ :=
∐

S∈S ΣS . All connected
components of this manifold have dimension 2d and are symplectic manifolds, hence
Σ is symplectic, with respect to a symplectic Poisson structure ΠΣ whose restriction
to ΣS is ΠΣS

. The map ϕ : Σ → M whose restriction to S ∈ S is ϕS is a
surjective Poisson map. Hence, (Σ,ΠΣ, ϕ) defines a Poisson resolution. In general,
the symplectic leaves form a non-countable family hence Σ may not be separable
(i.e. does not admit a dense countable subset).

2. Of Poisson structures that do not admit symplectic resolutions

of the same dimension

We describe in this section broad classes of Poisson manifolds that can not admit
reasonable symplectic resolutions. As shown in Example 4, it is very reasonable to
assume that the symplectic resolutions are separable, since without such a condition
they always exists, but they are not very interesting. The first result is the following.

Proposition 2. A Poisson manifold (M,π) that admits a separable symplectic
resolution is symplectic on an open dense subset.
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Proof. For all σ ∈ Σ such that dσϕ is surjective, hence invertible, ϕ is a local
diffeomorphism from a neighborhood of σ in Σ to a neighborhood of ϕ(σ) in M .
Hence, the bivector field πM is symplectic at the point ϕ(σ).

Now, since ϕ is surjective, it follows from Sard’s Theorem (which is precisely
valid for smooth maps between separable manifolds) that the image through ϕ of
the set of points in Σ where the differential of ϕ is surjective (and therefore is a
local diffeomorphism) is an open dense subset of M . This completes the proof. �

For Poisson manifolds that are symplectic on an open dense subset, the singular
points of the Poisson structures are exactly the points where the bivector field is
not invertible. The following proposition will be used several times. A critical value
of ϕ is a point m ∈ M where σ ∈ Σ with ϕ(σ) = m and dσϕ is not surjective. A
singular point of a Poisson structure is point m where π#

m : T ∗
mM → TmM is not

of maximal rank.

Proposition 3. Let (Σ, πΣ, ϕ) be a symplectic resolution of the Poisson manifold
(M,πM ).

(1) Singular points of πM coincides with the set of critical values of ϕ.
(2) The differential Tσϕ of ϕ at a point σ ∈ Σ is invertible if and only if ϕ(σ)

is a regular point of πM .

Proofs. The map ϕ is a Poisson map if and only if the following diagram is com-
mutative for all m ∈M and all σ ∈ Σ with ϕ(σ) = m:

T ∗
σΣ

Π#
σ // TσΣ

Tσϕ

��
T ∗
mM

T∗

σ
ϕ

OO

π#
m // TmM.

The commutativity of this diagram implies that π#
m is invertible if and only if

vertical arrows are invertible, i.e. if and only if Tσϕ is invertible for all σ in the
inverse image of m through ϕ. This proves the result. �

Consider the Poisson structure given by:

(2.1) {x, y}M = f(x, y) = xg(x, y),

where x, y are local coordinates on M := R2 and g(x, y) is a smooth function that
does not vanish unless x = 0. We saw in Section 1 that, for g = 1, this Poisson
structure admits a symplectic resolution for which Σ is a disjoint union of three
copies of R2. But we now show that (M,πM ) admits no symplectic resolution when
we impose additional conditions. A resolution is said type proper when ϕ is a proper
map, i.e. the inverse image though ϕ of a compact subset ofM is a compact subset.

Theorem 2. The Poisson manifold (M,π) described in (2.1) admits no proper
symplectic resolution. It does not admit connected real analytic or holomorphic
symplectic resolution.

Of course, when we say ”It does not admit real analytic or holomorphic sym-
plectic resolution”, we mean that we consider the case where f(x, y) is real analytic
or holomorphic, and in the holomorphic case, we place ourselves on an open sub-
set of M ⊂ C

2 a open subset that contains (0, 0). We define resolutions in this
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context as being resolutions in the previous sense, with (Σ,ΠΣ, ϕ) real analytic or
holomorphic.

Remark 1. The following problem is still open: in the smooth case, does the
Poisson manifold (M,π) described by (2.1) admit a connected symplectic resolution?

Let us prove Theorem 2.

Proof. Let (Σ,ΠΣ, ϕ) be a symplectic resolution of (M,πM ). Since M ≃ R2, we
write ϕ = (u, v) with u, v smooth real valued functions on Σ. According to Sard’s
theorem [12], applied to the differentiable function v : Σ → R, function which
is surjective since ϕ is surjective, the set of critical values of v admits a dense
complement in R.

Let v0 ∈ R be outside the set of all critical values of v. Since v0 is not a critical
value, the inverse image by v : Σ → R of q0 is an union (Ci)i∈I of curves. Since v
is a submersion in a neighborhood of all point in v−1(v0), the curves (Ci)i∈I whose
union form v−1(v0)) can be separated: that is to say there are open sets (Ui)i∈I ,
with Ui containing Ci for all indice i ∈ I, such that Ui ∩ Uj = ∅ for all distinct
i, j ∈ I.

Let us now call curves of good type curves in the previous set on there exists at
least one point σ with u(σ) ∈ [−1, 1]. We claim that there are only finitely many
curves of the good type. LetK be the inverse image through ϕ of [−1, 1]×{v0} ⊂M .
Curves of the good type are those that intersect K. Since ϕ is proper, this inverse
image K is compact. But the open subsets (Ui ∩K)i∈I form a partition of K by
open subsets. Now, in a partition of a compact set by open subset, only finitely
many can be non-empty. Said otherwise, there is a finite subset j ∈ J such that
∪j∈JCJ contains the inverse image of [−1, 1]×{v0} ⊂M through ϕ. Said otherwise,
there are finitely many curves of the good type.

Consider the point (0, v0) ∈ M := R
2. This point is a singular point of πM by

the definition thereof. Consider a point σ ∈ Σ in its inverse image. This point σ
belongs to a curve Cj0 for a certain j0 ∈ I. We are going to show that the image of
Cj0 by ϕ is reduced to the point (0, v0), or, equivalently, that u identically vanishes
on this curve Cj0 .

Since the function v has a differential that does not vanish at the point σ, there
exists another local function p, defined on a neighborhood of σ, such that the pair
(p, v) form local Darboux coordinates on an open subset Uσ ⊂ Σ. On Uσ ⊂ Σ the
map ϕ reads ϕ : (p, q) → (u(p, v), v) while the restriction Uσ ⊂ Σ of the curve Ci0
is given by v = v0. By Proposition 1, since the map ϕ is a Poisson morphism,
the following differential equation in the variable p holds for all value of v in a
neighborhood of v0:

(2.3)
∂u

∂p
(p, v) = f(u(p, v), v).

In particular, for v = v0, we obtain the differential equation:

(2.4)

{
∂u
∂p

(p, v0) = f(u(p, v0), v0)

and u(p0, v0) = 0.

where (p0, v0) are coordinates of the point σ. Since f(0, v) = 0 for all value of v and
in particular f(0, v0) = 0, the Cauchy-Lipschitz theorem imply that the differential
equation (2.3) admits for solution the zero function, i.e. u(p, v0) = 0 for all p close
to zero. In particular, the function u vanishes on the restriction of the curve Cj0 to
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a neighborhood of σ ∈ Σ. One can repeat the above deduction in a neighborhood
of every point in Cj0 , which proves that the function u vanishes identically on the
whole curve Cj0 .

As previously stated, the inverse image by v : Σ → R of v0 is a union of curves.
The conclusion of the previous lines is that there are two types of such curves, those
on which the restriction of the function u is never equal to 0 (curves that we call
curves of the first type) and those where u vanishes identically, (curves that we call
curves of the second type). Since the map ϕ is a surjection, there is necessarily at
least one curve of the first type is of the good type. Also all curves of the second
type are of the good type.

Since there are only finitely many curves of the good type, those which are both
of the good type and of the first type and those the second type can be separated
by two open subsets V and W of Σ. We now consider a sequence (yn)n∈N ∈ Σ
such that ϕ(yn) = ( 1

n
, v0). For all n ≥ 1 Since the map ϕ is proper, out of the

sequence yn, we can extract a convergent subsequence. Let ỹ ∈ Σ be its limit. By
construction, ϕ(ỹ) = (0, v0). For any n ∈ N, the element yn belongs to a curve
of the first type and of the good type, and therefore is in V , but its limit has to
belong to a curve of the good type and of the second type, and is therefore in W .
This contradicts the assumption that V ∩W = ∅, this completes the proof. �

We now look at the real analytic or holomorphic case (i.e, the case where the
function f in (2.1) is a real analytic or holomorphic function, and we impose that
so are Σ,ΠΣ and ϕ. We will start with a lemma:

Lemma 1. Let (Σ,Π, ϕ) be a connected symplectic resolution of the Poisson struc-
ture in (2.1). For any point σ ∈ Σ such as dσv 6= 0 et ϕ(σ) ∈ Msing, there exists
a neighborhood Uσ of σ such as ϕ(Uσ) ∩Msing = {ϕ(σ)} where Msing ⊂M is the
set {x = 0}, i.e. is the singular set of πM .

Proofs. For any point σ ∈ Σ such that dσv 6= 0, there exists a neighborhood Uσ of
σ in Σ and a function p defined on Σ such that the pair (p, v) are local Darboux
coordinates on Σ. the map ϕ reads in these coordinates as :

ϕ : Uσ ⊂ Σ → M

(p, q) 7→ (u(p, q), q)

Let (p0, v0) be the coordinates of a point σ ∈ Σ such that ϕ(σ) = (0, v0) ∈ Msing.
Proposition 1 implies that Relations (2.3) are satisfied. Consider the function h :
v → u(p0, v). Since the function h is real analytic or holomorphic, and h has a zero
at v = v0, there are two possibilities : either this function is identically equal to
zero or it has an isolated zero at v0. Equation (2.3) and Cauchy-Lipschitz theorem
give that if h is identically equal to 0 on a neighborhood of v0, the function u

vanishes at all point of Uσ. Since the function u is real analytic or holomorphic,
this implies that u = 0 on the whole connected manifold Σ. But this is impossible
because this contradicts the surjectivity of ϕ. Hence v0 is necessarily an isolated
zero of h and Equation (2.3) and Cauchy-Lipschitz theorem imply that u(p, v) can
not be zero for v 6= v0 while u(p, v0) = 0 for all p close to p0. More precisely, there
exists η′, η′′ ∈ R+ such that the inequalities |v − v0| < η′ and |p− p0| < η′′ give
a neighborhood Uσ of σ such as ϕ(Uσ) ∩Msing is reduced to a point, namely the
point (0, v0) = ϕ(σ). �

We now show Theorem 2 in the real analytic or holomorphic cases.
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Proofs. Let (Σ,ΠΣ, ϕ) be a connected real analytic or holomorphic symplectic res-
olution. By construction ϕ = (u, v) with u, v are two real analytic or holomorphic
functions on Σ with values in R or C. We recall that Msing is the set {x = 0} ⊂ C2.

Let Γ be the set of the points σ ∈ ϕ−1(Msing) where v is regular (i.e. dσv 6= 0).
As ϕ is supposed to be surjective, the union of the set of critical values of v with
v(Γ) is Msing

∼= R or C. By Sard’s Theorem [12], applied to the differentiable
function v, which is surjective because ϕ is surjective, the critical values of v form
a set of measure zero in Msing

∼= R or C.
Moreover, for any σ ∈ Γ, there exists by Lemma 1 a neighborhood Vσ of σ ∈ Σ

such that ϕ(Vσ) ∩Msing is reduced to a point (0, v0) = ϕ(σ). The set Γ being a
closed subset of the open subset of all regular points of v, it is a locally compact set
and we can extract out of any open cover of Γ a finite or countable open cover. In
particular, one can extract from the open sets cover (Vσ)σ∈Γ a finite or countable
family {Vi}i∈N

. This implies that ϕ(Γ), just as v(Γ), is a finite or countable set.
Now, Msing is the union of the set of critical values of v with v(Γ). But the first

set is a set of measure zero (by Sard’s Theorem [12]) while the second is finite or a
countable set. This is impossible. This completes the proof. �

We now enlarge the class of Poisson manifolds that do not admit symplectic
resolutions, although they are symplectic on a dense open subset. We refer to [8]
Chapter 5 for the definition of Poisson-Dirac submanifolds of Poisson manifolds and
recall that any submanifold N of a Poisson manifold (M,π) whose tangent space
TnN is in direct sum with the tangent space of the symplectic leaf Sn through
n, namely such that TnN ⊕ TnSn = TnM , is Poisson-Dirac in a neighborhood
of n. we also recall that any submanifold N of a Poisson manifold M such that
TnN⊕π#(TnN

⊥) = TnM is Poisson-Dirac. Recall also that any Poisson-Dirac sub-
manifold admits an unique induce Poisson structure called reduced Poisson struc-
ture.

Lemma 2. Let (M,π) be a Poisson manifold, S be a symplectic leaf and N ⊂ M

a submanifold transversal at a point n ∈ S ∩ N . For every symplectic resolution
(Σ,ΠΣ, ϕ) of (M,π), there exists a neighborhood N ′ of n in N such that:

(1) ϕ−1(N ′) is a submanifold of Σ,
(2) this submanifold is PoissonDirac,
(3) the restriction ϕN ′ : ϕ−1(N ′) → N ′ is a symplectic resolution for the re-

duced Poisson structures of ϕ−1(N ′) and N ′ respectively.

Proofs. There exists, in a neighborhood U of n, Weinstein coordinates (p, q, z)
such that the submanifold N ′ := N ∩ U is given by the equations: p1 = · · · =
pr = q1 = · · · = qr = 0 (see[8] Chapter 1 for the definition of Weinstein’s co-
ordinate). The functions p1, ..., pr, q1, ..., qr having independent Hamiltonian vec-
tor fields at all points of U , their pull-back ϕ∗p1, ..., ϕ

∗pr, ϕ
∗q1, ..., ϕ

∗qr also have
independent Hamiltonians vector fields at all point in ϕ−1(U). Therefore, their
pull-backs through ϕ are independent functions. The zero locus that they define is
ϕ−1(N ′) by construction, which is therefore a submanifold that we call ΣN . This
proves the first item.

A function f on M such that the hamiltonian vector field Xf tangent to N

satisfies that the hamiltonian vector field Xϕ∗f is tangent to ΣN . This is because
if {F, qi}|N = 0 = {F, pi}|N then {ϕ∗F, ϕ∗qi}|ΣN

= 0 = {ϕ∗F, ϕ∗pi}|ΣN

, since ϕ

is a Poisson morphism. Yet, N and ΣN are sub-manifolds of Poisson-Dirac, because
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they are defined by the functions (p1, ..., pr, q1, ..., qr) and (ϕ∗p1, ..., ϕ
∗pr, ϕ

∗q1, ..., ϕ
∗qr)

respectively, whose Poisson matrix is invertible. This proves the second item.

Now, for all F,G ∈ C∞(N), we have {ϕ∗F, ϕ∗G}ΣN
=

{
ϕ∗F̃ , ϕ∗G̃

}

|ΣN

=

ϕ∗(
{
F̃ , G̃

}

|N
) where F̃ and G̃ are local extensions of F and G. This proves that ϕ

is a Poisson morphism from ΣN to N . A Poisson-Direc sub-manifold of a symplectic
manifold being itself symplectic, this proves third item.

�

Corollary 1. A Poisson manifold (M,π) of dimension 2r+2 symplectic on a dense
open subset

(1) admits a submanifold P of codimension 1 which included in to the singular
locus of πM ,

(2) has at least one point n ∈ P where the rank of π is 2r,

does not admit a proper symplectic resolution. In the real analytic or holomor-
phic cases, under the same assumptions it does not admit a symplectic connected
resolution.

Proofs. Let F be a local function in a neighborhood of n. Let us prove that the
Hamiltonian vector field XF of F is tangent to P . Since P has codimension 1,
if there exists a point n′ ∈ P where XF is not tangent to P , every point in a
neighborhood of n′ in M is obtained from a point of P by following the flow of
XF . But since every point in P is a singular point for πM , and since the flow of
XF is made of Poisson diffeomorphisms, this would imply that every point in a
neighborhood of n′ in M is a singular point, which contradicts the assumption on
πM .

Let N be any submanifold of dimension 2 transversal to the symplectic leaf Sn

through n where n ∈ P is a point where the rank of πM is 2r. By the previous
point S is a submanifold of P . Since N is transversal to Sn, P ∩ N is a curve in
N , at least in a neighborhood of n ∈ N . We denote by PN this curve.

Suppose that (M,πM ) admits a proper symplectic resolution. Then, by Lemma
2, there is a neighborhood N ′ of n in N that does admit a proper symplectic
resolution.

But upon shrinking N ′ if necessary, we can assume that N ′ is diffeomorphic to an
open subset of R2, isomorphism under which the curve PN is given by the equation
x = 0, with x, y being the canonical coordinates on R2. The Poisson structure on
N ′ being now of the form (2.1), it does not admit proper symplectic resolutions
by Theorem 2, which contradicts the previous statement. Hence (M,πM ) does not
admit proper symplectic resolutions. The real analytic or holomorphic cases are
similar. �

Lemma 3. Let (M,π) be a Poisson manifold of dimension n ≥ 4, such that the
singular locus of π contains a submanifold P ⊂M of codimension 1. If a symplectic
resolution exists, then the bivector π can not be zero at all points in P .

Proofs. Consider a projection ψ : U → P where U is a neighborhood of P in M .
Let (Σ,Π, ϕ) be a symplectic resolution of (M,π). The map ψ ◦ ϕ : ϕ−1(U) → P

is surjective because both ϕ and ψ are surjective. By Sard’s Theorem, there exists
regular value for ψ ◦ ϕ, i.e. there exists point p ∈ P such that for every σ ∈
ϕ−1(U) ⊂ Σ, the composition Tϕ(σ)ψ ◦ Tσϕ is a surjective linear map. Since ϕ is
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surjective, there exists σ ∈ Σ such that ϕ(σ) = p. Such a point belongs to ϕ−1(U)
by construction, and satisfies that Tϕ(σ)ψ ◦Tσϕ is a surjective linear map. In turn,
this implies that for any choice x1, . . . , xn−1 of local coordinates on P around M ,
the functions (ψ ◦ ϕ)∗x1, . . . , (ψ ◦ ϕ)∗xn−1 are linearly independent at the point
σ ∈ ϕ−1(U).

Let us compute the Poisson brackets of these functions at the point σ. Since the
map ϕ is a Poisson morphism, for all i, j = 1, . . . , n− 1:

{(ψ ◦ ϕ)∗xi, (ψ ◦ ϕ)∗xj}Σ (σ) = {ϕ∗ψ∗xi, ϕ
∗ψ∗xj}Σ (σ)

= {ψ∗xi, ψ
∗xj}P (ϕ(σ)) = 0

But it is impossible to have n− 1 independent functions on a symplectic manifold
whose brackets are equal to zero at a given point. This completes the proof. �

Theorem 5. A Poisson manifold (M,π) symplectic on an open dense subset which
contains a submanifold of codimension 1 of singular points for πM , does not admit
a proper symplectic resolution. When (M,πM ) is a holomorphic Poisson manifold
no connected symplectic resolution exists.

Proofs. We prove the theorem by induction on 1
2 dim(M). If 1

2 dim(M) = 1, the
theorem reduces to the statement of Theorem 2 in local coordinates. We assume
that the theorem is true until n = 1

2 dim(M) and we show it for n+1 = 1
2 dim(M).

We assume that the singular locus of π contains a submanifold P of codimension 1.
By Lemma 3, the rank of πM on P can not be zero. Let m be a point where in P
where πm 6= 0. If a symplectic resolution (Σ, πΣ, ϕ) of (M,πM ) exists, by Lemma 2,
the inverse image of any submanifold N transverse to the symplectic leaf through
m by ϕ is a symplectic submanifold of Σ and the restriction ϕN : ϕ−1(N) → N

is a symplectic resolution of dimension 2(n+ 1− r) with 2r the rank of πM at m.
Since the singular locus of π contains a submanifold of codimension 1, we get a
contradiction with the induction hypothesis. This shows the result. �

Corollary 2. A holomorphic Poisson manifold does not admit connected symplectic
resolutions unless it is symplectic.

Proofs. A Poisson manifold (M,πM ) that admits a symplectic realization must be
symplectic on an open dense subset by Proposition 2. For such a manifold, the
multivector field πn = π ∧ · · · ∧ π (n times, where 2n is the dimension of M) is a
section of a vector bundle of rank 1, namely ∧2nTM which vanishes precisely at
critical points. If it vanishes in at least one point, i.e, if (M,πM ) is not symplectic,
there is also a submanifold of codimension 1 where it vanishes (by Weierstrass
preparation theorem - which implies that the zero locus of any holomorphic function
contains regular points, around which it is simply a submanifold of codimenion 1).
Theorem 5 allows to conclude that no symplectic realization exist.

�
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du Saulcy 57010 Metz, France


