
HAL Id: hal-01487055
https://hal.science/hal-01487055v1

Submitted on 10 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Requirements Engineering Using Model
Federation

Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin,
Christophe Guychard

To cite this version:
Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, Christophe Guychard. Con-
tinuous Requirements Engineering Using Model Federation. RE 2016 : 24th IEEE International Re-
quirements Engineering Conference, Sep 2016, Beijing, China. pp.347 - 352, �10.1109/RE.2016.42�.
�hal-01487055�

https://hal.science/hal-01487055v1
https://hal.archives-ouvertes.fr


Continuous Requirements Engineering using
Model Federation

Fahad R. Golra, Antoine Beugnard, Fabien Dagnat
IRISA / Télécom Bretagne

Brest, France
Email: first.last@telecom-bretagne.eu

Sylvain Guerin, Christophe Guychard
Openflexo

Brest, France
Email: first.last@openflexo.org

Abstract—Researchers in software engineering have been striv-
ing to produce new methods to improve the quality of devel-
opment methodologies to consequently produce quality prod-
ucts. Proposition of iterative and evolutionary approaches was
triggered by the realization that requirements engineering is
not confined to the initial phases of software development
only. With this shift of perspective, requirements engineering
has become more or less a continuous process in software
development lifecycles. We believe that existing requirements
engineering approaches and associated tooling leave a room
for improvement in putting ’continuity’ into practice. A con-
tinuous requirements engineering methodology needs to take
into account different concerns of all the stakeholders involved
in the process. Approaches like KAOS bring the multi-view
nature of requirements modeling in focus by using different
views for goal, responsibility, object and operation modeling.
We argue that a multi-view approach, maintaining a dynamic
link between the requirement models and multiple sources
of requirements, can offer a better support for continuous
requirements engineering methodology. In this paper, we ex-
pand on this argument and present the early findings with the
associated in progress tooling support.

1. Introduction

Information systems are increasingly becoming com-
plex, consequently the requirements engineering method-
ologies need to be more systematic and efficient. In order
to deal with these complexities, requirements engineering
methodologies exploit the concept of abstraction. Early sys-
tem requirements specify the objectives of stakeholders at a
high level of abstraction, which are then refined to a desired
level of detail. Use of goal models for the elicitation and
analysis of early requirements has been studied in detail
e.g. KAOS [1] or Tropos/i* [2]. These approaches refine
the requirements to a fine-grained level and map them to
system models. Different approaches map these require-
ments to different artifacts of the system under development
or its environment through traceability links [3]. These
used or produced artifacts adhere to different paradigms.
For example, models of human behavior, system models,
hardware models, etc. do not follow OMG’s MetaObject

Facility (MOF) paradigm like most other software models.
Furthermore, requirements engineering is a complex pro-
cess dealing with different views for various stakeholders.
For example KAOS specifications are presented using four
models i.e. goal, responsibility, object and operation mod-
els [1]. This calls for a requirements modeling approach
that can handle different paradigms and multiple views of a
requirements management system.

The development of an embedded system like train door
operations is a good example where requirements need to
take hardware-driven software synthesis into account. Apart
from hardware models like electric circuits, sensor models,
etc., requirements need to deal with other models like system
of systems model, human behavior models, etc. Another
important concern for software development is to manage
the development costs of a product. Different approaches try
to relate implementation costs to requirements, quite early
in the software development process. This might be done,
for example to prioritize requirements according to a cost-
value approach [4]. For such techniques, they need to have
continuous synchronization between the requirements and a
cost analysis document (e.g. an excel spreadsheet). Contrary
to the models usually developed by software engineers,
these models do not conform to MOF and thus it is hard
to map their features to the requirement models used for
software development. Many other examples (e.g. planning,
configuration management, etc.) exist where software devel-
opment teams come across the need of a multi paradigm
and multi-view requirements modeling methodology that
can continuously synchronize these different models.

Requirements engineering is not an initial phase of
system development anymore, it continues all along the
development lifecycle. So requirement models need to be
connected to different artifacts, even if they are produced
late in the development lifecycle to allow their continuous
improvement. In this article we propose an approach that
links together models from different paradigms to produce
new views of the system. These dynamic links between
models are maintained, so that requirements remain con-
nected to these models (information resources). Whenever
an information resource updates, the requirements of the
system can be updated (manually or automatically) accord-
ingly. We call this continuous requirements engineering,



because our methodology enables the continuous update
of requirements using all the linked models throughout the
system development lifecycle. The contribution of this paper
is the use of model federation as a technical basis for re-
quirements management. Model federation is a methodology
that allows connecting models of different paradigms [5].
In the context of requirements engineering, it furnishes the
possibility to create and maintain dynamic links between the
requirement models and other artifacts (models of varying
paradigms), used all along the development process.

The rest of this paper is organized as follows. First, we
present model federation in Section 2. Then, in Section 3,
we explain the proposed approach for requirements engi-
neering using model federation. Then, Section 4 discusses
the literature review for different approaches that are used
for linking requirements to the information resources and
the system. Finally, we conclude this paper in Section 5.

2. Model Federation

Requirements engineering serves as an interface between
a system and its environment. It focuses on gathering the in-
formation (domain models) from the environment by collect-
ing the requirements for the system to be developed. In such
a scenario, the artifacts and processes of requirements engi-
neering are tightly related to both the system under devel-
opment and its environment. In the context of requirements
engineering, sharing information between these processes
and artifacts is handled through different activities, ranging
from manual (e.g. feasibility study, requirements elicitation
techniques, etc.) to semi-automatic (e.g. requirements vali-
dation, requirements management, etc.). These artifacts and
other information resources used or produced by these activ-
ities often share cross-cutting concerns. These cross-cutting
concerns are captured through traceability links between
them, which allow to traverse from initial phase artifacts to
later ones (forward traceability) or from later phase artifacts
to initial ones (backward traceability) [3]. In this article we
propose to use model federation to connect these artifacts
and information resources to allow continuous and unin-
terrupted requirements engineering process that offers the
technical basis to implement constant improvement method-
ologies. But before going into the details of our proposal,
we describe the main concepts of model federation.

Model federation is an approach that provides the
means to integrate multiple models conforming to different
paradigms [5]. A lot of work has been carried out to
integrate models from the same paradigm to get a differ-
ent views for each stakeholder. This can be accomplished
through approaches like model merging, profiling or ex-
tension mechanisms provided by UML [6], model weaving
with KerMeta [7], or other model composition approaches.
However, it becomes difficult, when models are conforming
to different paradigms [8]. Model federation approach is
developed as a possible response to a request for proposal
(RFP) by OMG [9]. This RFP requests submissions for
a standard addressing, ”federation of information across
different representations, levels of abstraction, communities,

Conceptual Space Technological Space A

B

A

Legend:

Model Model element
(technological space)

Technological connector

Model slot Flexo concept (remote)

Flexo concept (local)

Design Space

Diagram 1

A

B

Design

Technological Space B

Dynamic link

Figure 1. Mapping between concepts in modeling spaces

organizations, viewpoints, and authorities”. Thus model
federation allows the integration of heterogeneous models
to develop new cross-concern viewpoints/models or to syn-
chronize the models used for designing a system. Contrary
to other techniques that transform, merge or compose the
models in a common paradigm, we propose to keep models
in their respective paradigms to avoid redundancies. Hence,
we introduce multiple modeling spaces i.e. conceptual, tech-
nological and design space, as shown in Figure 1.

The different modeling spaces of our approach serve
together for the development of a complex system. The
conceptual space is where new models or views are de-
veloped by federating the concepts from already existing
models. These federated models are called virtual models.
As virtual models reuse the concepts from various models
conforming to different paradigms, the conceptual space is
surrounded by multiple technological spaces. Each of these
technological spaces is a collection of models adhering to a
common paradigm which gives a common ground for their
interpretation. Usually, the technological models are already
developed to serve some specific concerns. They might even
belong to some different system. Finally, a design space
is a specific kind of technological space that serves for
diagrammatic representations of the virtual models, using
the same interaction mechanism.

Model federation is realized through virtual models to
develop new concepts. We have developed a generic mod-
eling language to define virtual models in the conceptual
space. They are developed using features that can either
be specifically defined for virtual models or by reusing
elements of models from any of the existing technological
spaces. Each of these features, serving as a building block
for a virtual model, is called a flexo concept. A virtual



model is responsible for managing the lifecycle of all the
flexo concepts that it contains. While virtual models follow
the formalisms defined by our methodology, technological
models follow their own paradigm depending on their spe-
cific technological space. A virtual model can not access the
elements of a technological model, unless it can interpret
the formalisms used in its technical space. This is done
using a connection between the technological space and
the conceptual space, realized as technological connectors.
These connectors allow access for reading, writing and syn-
chronizing the information between the virtual models and
the technological models. Once developed, a virtual model
can be serialized back into a new or existing technological
space for further development.

A virtual model is composed of flexo concepts. Some of
these flexo concepts are defined specifically for the develop-
ment of a virtual model, we call them local flexo concepts.
Virtual models can also use certain elements from connected
technological models. One way is to create a dynamic
link between these local flexo concepts and the modeling
elements of technological models. Virtual model A
shown in Figure 1 uses two dynamic links; one to the model
in technological space A and the other to the one
in technological space B. The second way of using
model elements from technological spaces is to translate
them into flexo concepts. A remote flexo concept of a
virtual model is a translated modeling element from a linked
technological space, serving as a ’local proxy’. Virtual
model B shown in Figure 1 contains a remote flexo con-
cept, which is a local ’proxy’ of a model element from
technological space B. In both these techniques,
the link between the flexo concept and the technological
model is bi-directional and is maintained to synchronize any
changes. A virtual model in the conceptual space can be
updated when a corresponding technological model evolves
and conversely, a technological model can also be updated,
once the corresponding virtual model is modified. As the
information is shared between multiple models, it might be
accessed and modified by multiple stakeholders at the same
time. We do not enforce any specific consistency model in
this case, we rather give this flexibility to the designers to
implement any consistency model that suits their specific
application. We provide a notification system that notifies
the designer/stakeholder whenever a corresponding model
is updated. One can choose for automatic synchronization
of models, but then human intervention would be needed for
resolving conflicts. Design space is a specific technological
space provided by our methodology for diagrammatic repre-
sentations of the virtual models. A technological connector
between conceptual space and design space allows linking
the flexo concepts to their graphic representations. These
bi-directional links are maintained, so a virtual model can
be edited either from design space or the conceptual space.

The technological connectors allow models in concep-
tual space to access the models of technological spaces,
however the actual dynamic link between these models is re-
alized using model slots. Our approach of model federation
can be explained through the analogy of components based

design, where models serve as components, model slots
as component interfaces and technological connectors as
connectors. Technological connectors allow the creation of
a dynamic link between a virtual model and a technological
model using model slots. A model slot defines an access
point both for a virtual model and a technological model to
link them together. It exposes a view on the structural and
behavioral contents of the technological model to the virtual
model and vice-versa. Once linked to a technological model,
a virtual model can read/write to its attributes using roles
and execute the actions using edition actions. Roles and
editionActions are to a flexo concept, what attributes and
methods are to a class, except that roles and editionActions
are associated to attributes and methods of a model adhering
to an entirely different paradigm.

Taking the example of the requirements specification
model for an embedded system, as explained in the intro-
duction section, we can connect it to cost analysis spread-
sheet1 to prioritize requirements according to a cost-value
approach. In order to realize a cost-value requirements
priority model, we need to develop it as a virtual model
in the conceptual space. The conceptual space needs to
be connected to two technological spaces i.e. MS Excel
space for cost analysis spreadsheet and MS Word space for
requirements specification document2. Both these techno-
logical connectors are already available through our tool-
ing support. Using these connectors, we can develop our
virtual model with two flexo concepts i.e. Requirement
and Priority. Requirement can be implemented as
a remote flexo concept, thus making a ’proxy’ for each re-
quirements in the virtual model that is dynamically linked to
the requirements of the specification document. Priority
concept can directly be linked to the cost analysis document
to assign a priority value to each requirement. Model slots
for these links need to be developed by the modeler to
connect these concepts. Even though it is not a good idea
to update cost analysis document from this model, for the
purpose of explanation we assume that the designer has the
possibility to update/modify the cost of each requirement in
the cost analysis document from the virtual model, using the
edition action setCellValue(). Furthermore, any other com-
mon piece of information can be synchronized among cost-
value requirements priority model, requirements specifica-
tion document and cost analysis document. The cost-value
requirements priority model can be developed using a graph-
ical editor of design space, hence editing/synchronizing the
flexo concepts in the virtual model.

3. Requirements engineering through model
federation

Each stakeholders involved in the requirements engineer-
ing process can have a different view about the system. Each

1. .xlsx files are XML based spreadsheets. We consider all artifacts in
software development as models.

2. Different tools like IBM Rational RequisitePro, CaseComplete, Visure
requirements etc. share requirements based on MS Word format.



Conceptual Space

Technological Space MS Word

Design Space

MS	Word

KAOS

Design

Technological Space KAOS

Goal Diagram

Requirement

Agent

Requirements Model

Goal VM

Identified Req.

Requirements VM

Identified Fragment
*

Element
- goal	diagram

Formose VM

*
Requirement

- Specified	requirement

*

Technological Space B Method

B-Method

Figure 2. Model Federation for Requirements Engineering

view caters a subset of concerns related to the complete
software development process. Many of these views are
created as different models like requirements specification
document, goal models, system models, etc. Requirement
model itself has conceptual links (at times expressed as
traceability links) to different artifacts produced during the
development process (like feasibility reports, minutes of the
meetings, design models, code, etc.) and to other informa-
tion resources like organizational norms, quality standards,
government policies, etc. Different artifacts and processes
used or produced during the software development lifecycle
reinforce the need of a multi-view approach for requirements
engineering. Popular requirements engineering approaches,
like KAOS, are presented through multiple views i.e. goal,
responsibility, object and operation models [1].

As already said, we propose to use model federation as
an approach for modeling the requirements, where multiple
views/models of the system might not adhere to a single
paradigm. In case of KAOS models, their metamodel is
defined using MOF. However, other domain models used in
software development may not belong to the same paradigm
e.g. legacy systems, databases, reports, spreadsheets and
other specific domain models like building architecture mod-
els, electric circuit diagrams, CAD models, etc. Many of
these models might be needed as information resources to
update software requirements. A multi-paradigm modeling
approach becomes necessary to cater these needs. Model
federation approach, described in Section 2, offers the pos-
sibility to integrate models from different paradigms and
to create new concepts using virtual models that can use
information from them.

Apart from linking the concepts of different models,
model federation allows to maintain those dynamic links.
This means that all these models used in the requirements
engineering process remain connected to the requirements
model, hence updating of the specified requirements as
soon as the information resources are modified. Model
federation is a modular approach that treats each model

as a ’component’ and connects to them using specified
interfaces, the model slots. This allows adding new models
to the system without the need of re-designing the com-
plete system. This modular approach permits connecting
more information resources to the requirement specification
model even during late stages of software development. So
artifacts developed at later phases of the process or in future
iterations in case of agile development, can easily be linked
with existing requirements. This support for linking new
information resources to the requirements and maintaining
them for synchronization allows a continuous requirements
engineering process all along the software development
lifecycle, regardless of its phase and iteration.

Apart from using model federation for continuous elici-
tation of requirements through synchronization of informa-
tion resources, we propose it for developing new views by
federating different models that might not follow the same
paradigm. As a proof of concept we have federated the
goal-oriented requirements engineering model, KAOS in our
methodology. However, we are looking forward to integrate
other methodologies in different technological spaces, so
that a requirements engineer can use multiple approaches for
the requirements engineering process. This is implemented
through an abstract model of requirements engineering,
Formose virtual model in the conceptual space, as
shown in Figure 2. This virtual model is made up of two
concepts; element refers to the decomposition of project
elements and requirement, which are collected and re-
fined for each of those elements. Note that for us, a project
element does not mean an element of the system to be
developed only, but it can also be a part of the development
process, context of the process or the context of the software
system. In the current implementation, both Element and
Requirement are refined using the KAOS methodology,
whose model is available in the technological space KAOS.

For the elicitation of requirements from multiple mod-
els, those models can be connected through their respec-
tive technological spaces. Technological space MS Word
allows to connect the Requirements virtual model
(VM) to different word documents like feasibility reports,
project proposals, minutes of the meetings, etc. for require-
ments elicitation. Requirements VM allows the identifi-
cation of the fragments from the model (word file in this
case) that can serve as a source for requirements. These
fragments are used to identify the requirements of the
system under development. These identified requirements
are mapped to the Formose VM for their specification.
They are further linked to Goal Virtual Model (VM)
for the development of goal oriented requirements model.
Finally this goal model is mapped to the design space for
its diagrammatic representation. Once all these models are
dynamically linked with each other for carrying out the
requirements engineering process, they are synchronized
between themselves. Resultantly, we are able to modify
the requirements model by 1) adding new models to the
technological spaces and identifying new requirements from
them, 2) modifying the models in the technological spaces
and updating the requirements across the system (which



Gather
information
resources

1 Federate
information
resources

2

Decompose
project elements

6 Define goals for
project elements

from requirements

7
Refine goals to
requirements

8
Identify / Elicit
Requirements

3

Map
requirements to
project elements

5
Specify

requirements

4

Fig. 3. Requirements engineering process with model federation

In order to understand how model federation can be used
in the context of requirements engineering, we need to under-
stand how it changes the requirements engineering methodol-
ogy. Figure 3 explains the activities involved in the proposed
methodology. It needs to be noted here that this is a work in
progress, so we have not yet covered requirements validation
activities in this process. However, adding a technological
space for formal validation of requirements is one of the future
goals of our methodology (see Technological Space B Method
in Figure 2). For now, our methodology is explained through
the following activities:

1) Gather information resources: This activity involves the
identification of possible information resources that can
be used to elicit requirements. They can vary from early
information resources like feasibility reports, standards
and minutes of the meetings to late informations sources
like deployment models, test plans, etc.

2) Federate information resources: Once the information
resources are collected they need to be linked with
the requirements. This is handled through the model
federation approach where requirement models are de-
veloped as virtual models in the conceptual space and
other models (information resources) are placed in their
respective technological spaces.

3) Identify/Elicit requirements: Once the information re-
sources are linked with the requirements model, we
can identify the requirements from those information
resources. For the moment, we have used the techno-
logical space for Microsoft word documents to identify
multiple fragments for possible requirements. Different
documents are used for this purpose like project propos-
als, interview transcripts, feasibility reports, etc.

4) Specify requirements: Once the requirements are iden-
tified from multiple information resources, they are
specified in the requirements model. In case the require-
ments are already specified, they are linked with the
information resources for synchronization.

5) Map requirements to project elements: In this activity,
the specified requirements are mapped to the project
elements. Multiple requirements can be mapped to a

single project element.
6) Decompose project elements: Multiple requirements

mapped to a project element describe the expected
functionality from that element. This allows the decom-
position of the element into sub elements, such that each
sub element takes care of a subset of the requirements
mapped to its parent element.

7) Define goals for project elements from requirements: All
the requirements associated with a project element are
considered as goals in this activity. A goal model is
developed for each of these goals.

8) Refine goals to requirements: All the goal models are
refined to get requirements at the leaves of the goal mod-
els. These requirements can be specified in activity 4.

These activities are performed according to the control flow
described by Figure 3. This is an iterative flow of activities
where we see two sub-cycles in the complete iteration; one
corresponds to the decomposition of project elements and the
other to the refinement of requirements. A single activity, Map
requirements to project elements, serves as the entry point for
both these cycles. These cycles are often alternating, which
describes that the system decomposition occurs in parallel to
the refinement of requirements.

Tooling support for our methodology is provided through
our open source project initiative, Openflexo [12]. This tool
has been developed as a generic collaborative platform for
multifaceted modeling using model federation. We have de-
veloped technological connectors for different technological
spaces like EMF, OWL ontologies, XML/XSD, pdf files, MS
office documents for Word, Excel, PowerPoint, etc. These
technological connectors allow the use of different models as
information resources and can be federated to the requirements
model for our continuous requirements engineering approach.

IV. RELATED WORKS

In an empirical study conducted on traceability, Ramesh and
Jarke suggest that traceability links should be strongly typed
in order to avoid semantic misinterpretations [13]. They also
proposed a traceability meta-model and reference model in this
context. There work is focused on the rationale and definition

Figure 3. Requirements engineering process with model federation

is the case of requirements evolution in later stages of
the software development lifecycle), 3) modifying the goal
oriented requirements model through its diagram in the
design space, 4) modifying the requirements directly from
the virtual models. In all these cases, the modifications are
reflected in other federated models.

In order to understand how model federation can be
used in the context of requirements engineering, we need
to understand how it changes the requirements engineering
methodology. Figure 3 explains the activities involved in the
proposed methodology. It needs to be noted here that this is
a work in progress, so we have not yet covered requirements
validation activities in this process. However, adding a tech-
nological space for formal validation of requirements is one
of the future goals of our methodology (see Technological
Space B Method in Figure 2). For now, our methodology is
explained through the following activities:

1) Gather information resources: This activity in-
volves the identification of possible information
resources that can be used to elicit requirements.
They can vary from early information resources
like feasibility reports, standards and minutes of the
meetings to late informations sources like deploy-
ment models, test plans, etc.

2) Federate information resources: Once the informa-
tion resources are collected they need to be linked
with the requirements. This is handled through the
model federation approach where requirement mod-
els are developed as virtual models in the concep-
tual space and other models (information resources)
are placed in their respective technological spaces.

3) Identify/Elicit requirements: Once the information
resources are linked with the requirements model,
we can identify the requirements from those infor-
mation resources. For the moment, we have used
the technological space for MS Word documents
to identify multiple fragments for possible require-
ments. Different documents are used for this pur-
pose like project proposals, interview transcripts,
feasibility reports, etc.

4) Specify requirements: Once the requirements are
identified from multiple information resources, they
are specified in the requirements model. In case the
requirements are already specified, they are linked
with the information resources for synchronization.

5) Map requirements to project elements: In this ac-
tivity, the specified requirements are mapped to
the project elements. Multiple requirements can be
mapped to a single project element.

6) Decompose project elements: Multiple require-
ments mapped to a project element describe the ex-
pected functionality from that element. This allows
the decomposition of the element into sub elements,
such that each sub element takes care of a subset
of the requirements mapped to its parent element.

7) Define goals for project elements from require-
ments: All the requirements associated with a
project element are considered as goals in this
activity. A goal model is developed for each of
these goals.

8) Refine goals to requirements: All the goal models
are refined to get requirements at the leaves of the
goal models. These requirements can be specified
in activity 4.

These activities are performed according to the control
flow described by Figure 3. This is an iterative flow of activ-
ities where we see two sub-cycles in the complete iteration;
one corresponds to the decomposition of project elements
and the other to the refinement of requirements. A single
activity, Map requirements to project elements, serves as
the entry point for both these cycles. These cycles are often
alternating, which describes that the system decomposition
occurs in parallel to the refinement of requirements.

Tooling support for our methodology is provided through
our open source project initiative, Openflexo [10]. This tool
has been developed as a generic collaborative platform for
multifaceted modeling using model federation. We have de-
veloped technological connectors for different technological
spaces like EMF, OWL ontologies, XML/XSD, pdf files,
MS office documents for Word, Excel, PowerPoint, etc.
These technological connectors allow the use of different



models as information resources and can be federated to
the requirements model for our continuous requirements
engineering approach.

4. Related Works

In an empirical study conducted on traceability, Ramesh
and Jarke suggest that traceability links should be strongly
typed in order to avoid semantic misinterpretations [11].
They also proposed a traceability meta-model and reference
model in this context. There work is focused on the rationale
and definition of conceptual base for the development of
traceability links. Mader et al. advocate the use of traceabil-
ity information model as a necessary condition to employ
traceability [12]. Dag et al. propose to link requirements to
domain models using linguistic engineering approach [13].
On a conceptual level, all these techniques work well to
identify which requirements need to be linked with customer
wishes (domain problems), however they don’t focus on the
technical aspects of how these links should be created and
maintained. As a complementary approach on the technical
level, we focus on how these links will be maintained
and what happens when the customer wishes evolve over
time. Apart from customer wishes, we focus on linking
requirements to many other models from the domain and
from the system itself.

Most of these techniques use bi-directional model trans-
formations for creating and maintaining such links. How-
ever, these techniques are confined to the MOF paradigm,
specified by OMG. Other techniques like KerMeta using
aspect weaving for multi-paradigm modeling [7] pose the
same problems of conformity to MOF. Most of the existing
techniques that allow the development of new views from
existing models in the context of multiple paradigms are
either bound to MOF or are not modular enough to be
used in requirements engineering where new information
resources can be linked to the requirements model even late
in system development [8]. Model federation is a modular
approach that is not confined to MOF for linking different
kinds of information resources to the requirements models.
As a perspective of this RE Next paper, we are planning
to add a technological space for B method that will serve
for requirements verification. We will also add technological
spaces other than KAOS, so that multiple approaches can
be used coherently for requirements engineering in complex
system development. Lastly, some industrial use cases are
under study to practically validate our claims.

5. Conclusion

Synchronizing the information between different infor-
mation resources in requirements engineering poses a hurdle
for timely update of requirements. Considering all these
information resources as models, we have proposed an ap-
proach of model federation that allows information sharing
by maintaining a dynamic link between different models.
Model federation favors the use of different views of each

stakeholder that can be developed from modeling elements
of different models adhering to different paradigms. Devel-
opment and maintenance of multiple models in requirements
engineering through model federation impacts the require-
ments engineering methodology as well. This methodology
focuses on continuous requirements engineering activities
that are carried out all along the software development
lifecycle. For the moment, we have integrated goal oriented
requirements engineering approach, KAOS with our core
requirements model. But this work in progress is heading
towards the integration of technological spaces for other
requirements modeling approaches and formal verification,
in the context of safety and security.

Acknowledgment

We are thankful to French national agency, Agence Na-
tionale de la Recherche (ANR), for funding this research
under FORMOSE project ANR-14-CE28-0009.

References

[1] A. van Lamsweerde, “Goal-oriented requirements engineering: a
guided tour,” in Fifth IEEE International Symposium on Requirements
Engineering, 2001. Proceedings., 2001, pp. 249–262.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An Agent-Oriented Software Development Methodology,”
Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–
236, 2004.

[3] F. A. C. Pinheiro, “Requirements Traceability,” in Perspectives on
Software Requirements. Boston, MA: Springer, 2004, pp. 91–113.

[4] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67–74, Sep 1997.

[5] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard,
“Addressing modularity for heterogeneous multi-model systems using
model federation,” in Companion Proceedings of the 15th International
Conference on Modularity. ACM, Mar. 2016, pp. 206–211.

[6] B. Selic, “A Systematic Approach to Domain-Specific Language De-
sign Using UML,” in 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing, 2007.
ISORC ’07, May 2007, pp. 2–9.

[7] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fou-
quet, “Mashup of metalanguages and its implementation in the Kermeta
language workbench,” Software & Systems Modeling, vol. 14, no. 2,
pp. 905–920, 2013.

[8] C. Hardebolle and F. Boulanger, “Exploring Multi-Paradigm Modeling
Techniques,” SIMULATION, vol. 85, no. 11-12, pp. 688–708, 2009.

[9] OMG. (2011, November) Semantic Information Modeling for Fed-
eration (SIMF) Request For Proposal. http://www.omg.org/public
schedule. Needham, MA, USA. Online; accessed: 2016-07-01.

[10] Openflexo. (2016) Openflexo project. http://www.openflexo.org. On-
line; accessed: 2016-07-01.

[11] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27,
no. 1, pp. 58–93, Jan 2001.

[12] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics:
Promoting the use of a traceability information model in practice,”
in ICSE Workshop on Traceability in Emerging Forms of Software
Engineering, 2009., May 2009, pp. 21–25.

[13] J. N. o. Dag, B. Regnell, V. Gervasi, and S. Brinkkemper, “A
linguistic-engineering approach to large-scale requirements manage-
ment,” IEEE software, vol. 22, no. 1, pp. 32–39, 2005.


