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Representation of chance-constraints with strong asymptotic guarantees

Jean B. Lasserre1

Abstract— Given ǫ ∈ (0, 1), a probability measure µ on Ω ⊂
R

p and a semi-algebraic set K ⊂ X × Ω, we consider the
feasible set

X
∗

ǫ = {x ∈ X : Prob[(x, ω) ∈ K] ≥ 1− ǫ }

associated with a chance-constraint. We provide a sequence
outer approximations X

d
ǫ = {x ∈ X : hd(x) ≥ 0}, d ∈ N,

where hd is a polynomial of degree d whose vector of coefficients

is an optimal solution of a semidefinite program. The size of
the latter increases with the degree d. We also obtain the strong
and highly desirable asymptotic guarantee that λ(Xd

ǫ \X
∗

ǫ ) → 0
as d increases, where λ is the Lebesgue measure on X.

I. INTRODUCTION

We consider the following general framework for decision

under uncertainty : Let x ∈ X ⊂ R
n be a decision variable

while ω ∈ R
p is a disturbance (or noise) parameter whose

distribution µ (with support Ω ⊂ R
p) is known, i.e., its list

of moments µβ :=
∫

Ω
ωβ dµ(ω), β ∈ N

p, is available in

closed form or numerically.

Both x and ω are linked by constraints of the form

(x, ω) ∈ K ⊂ X×Ω, where

K = { (x, ω) : gj(x, ω) ≥ 0, j = 1, . . . ,m}, (1)

for some polynomials (gj) ⊂ R[x, ω], that is, K is a basic

semi-algebraic set.

Next, for each fixed x ∈ X, let Kx ⊂ Ω be the (possibly

empty) set defined by:

Kx := {ω ∈ Ω : (x, ω) ∈ K}, x ∈ X. (2)

Let ǫ ∈ (0, 1) be fixed. The goal of this paper is to provide

tight approximations of the set

X∗
ǫ := {x ∈ X : µ(Kx) ≥ 1− ǫ } (3)

= {x ∈ X : Prob((x, ω) ∈ K) ≥ 1− ǫ }

in the form:

Xd
ǫ := {x ∈ X : hd(x) ≥ 0 }, d ∈ N, (4)

where hd is a polynomial of degree at most d.

Such approximations are particularly useful for optimiza-

tion and control problems with chance-constraints; for in-

stance problems of the form:

min { f(x) : x ∈ C; Prob((x, ω) ∈ K) ≥ 1− ǫ }. (5)

Indeed one then replaces problem (5) with

min { f(x) : x ∈ C; hd(x) ≥ 0 }, (6)
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where the uncertain parameter ω has disappeared. So if

C is a basic semi-algebraic set then (6) is a standard

polynomial optimization problem. Of course the resulting

decision problem (6) may still be hard to solve because the

sets X∗
ǫ and Xd

ǫ are not convex in general. But this may be

the price to pay for avoiding a too conservative formulation

of the problem.

However, in the formulation (6) one has got rid of the

disturbance parameter ω, and so one may apply the arsenal of

Non Linear Programming algorithms to get a local minimizer

of (6). If n is not too large or if some sparsity is present in

problem (6) one may even run a hierarchy of semidefinite

relaxations to approximate its global optimal value. For the

latter approach the interested reader is referred to [7] and for

a discussion on approaches to various control problems with

chance constraints we refer to the recent paper of Jasour et

al. [4] and the references therein.

In Jasour et al. [4] the authors have considered some con-

trol problems with chance constraints. They have provided

an elegant formulation and a numerical scheme for solving

the related problem of computing

x∗ = argmax {µ(Kx) : x ∈ X }.

This problem is posed as an infinite-dimensional LP problem

in an appropriate space of measures, that is, a Generalized

Moment Problem (GMP) as described in Lasserre [7]. Then

to obtain x∗ they solve a hierarchy of semidefinite relax-

ations, which is the moment-SOS approach for solving the

GMP. This GMP formulation has the particular and typical

feature of including a constraint of domination φ ≤ ψ
between two measures φ and ψ. Such domination constraints

are particularly powerful and have been already used in a

variety of different contexts. See for instance Henrion et al.

[2] for approximating the Lebesgue volume of a compact

semi-algebraic set, Lasserre [9] for computing Gaussian mea-

sures of semi-algebraic set, Lasserre [8] for “approximating”

the Lebesgue decomposition of a measure with respect to

another one. It has been used by Henrion and Korda [3] for

approximating regions of attraction, by Korda et al. [6] for

approximating maximum controlled invariant sets, and more

recently in Jasour and Lagoa [5] for a unifying treatment of

some control problems.

Contribution

The approach that we propose for determining the set Xd
ǫ

defined in (4) is very similar in spirit to that in [2] and [4] and

can be viewed as an additional illustration of the versatility

of the GMP and the moment-SOS approach in control related

problems. Indeed we also define an infinite-dimensional



LP problem P in an appropriate space of measures and a

sequence of semidefinite relaxations (Pd)d∈N of P, whose

associated monotone sequence of optimal values (ρd)d∈N

converges to the optimal value ρ of P. An optimal solution

of the dual of (Pd) allows to obtain a polynomial hd of

degree 2d whose super-level set {x : hd(x) ≥ 0} is precisely

the desired approximation Xd
ǫ of X∗

ǫ in (4); in fact the sets

(Xd
ǫ )d∈N provide a sequence of outer approximations of X∗

ǫ .

We also provide the strong asymptotic guarantee that

lim
d→∞

λ(Xd
ǫ \X

∗
ǫ ) = 0,

where λ is the Lebesgue measure on X, which to the best of

our knowledge is the first result of this kind at this level

of generality. (The same methodology applied to chance-

constraints of the form Prob((x, ω) ∈ K) < ǫ would provide

a sequence of inner approximations of the set {x ∈ X :
Prob((x, ω) ∈ K) < ǫ}.)

Another contribution is to include a technique to accelerate

the convergence ρd → ρ which otherwise can be too slow.

This technique is different from the one used in [2] for the

related problem of computing the volume of a semi-algebraic

set, and has the nice feature or preserving the monotonicity

of the convergence of ρd → ρ. It can be applied whenever

dµ is the Lebesgue measure dω on Ω or dµ = q(ω) dω or

dµ = exp(−q(ω))dω for some homogeneous nonnegative

polynomial q.

At last but not least, in principle we can also treat the case

where the support Ω of µ and the set K are not compact,

which includes the important case where µ is the normal

distribution. We briefly explain what are the (technical)

arguments which allow to extend the method to the non

compact case.

Of course this methodology is computationally expensive

and so far limited to relatively small size problems (but

after all the problem is very hard). An interesting issue not

discussed here is to investigate whether sparsity patterns can

be exploited to handle problems with larger size.

II. NOTATION, DEFINITIONS AND PRELIMINARY RESULTS

A. Notation and definitions

Let R[x] be the ring of polynomials in the variables

x = (x1, . . . , xn) and let R[x]d be the vector space of

polynomials of degree at most d (whose dimension is s(d) :=
(
n+d
n

)
). For every d ∈ N, let N

n
d := {α ∈ N

n : |α| (=
∑

i αi) ≤ d}, and let vd(x) = (xα), α ∈ N
n, be the

vector of monomials of the canonical basis (xα) of R[x]d.

A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα xα,

for some vector of coefficients f = (fα) ∈ R
s(d).

Given a closed set X ⊂ R
n, denote by M(X ) the space

of finite Borel measures on X and by P(X ) the convex cone

of polynomials that are nonnegative on X .

Moment matrix. Given a sequence y = (yα)α∈Nn , let Ly :
R[x] → R be the linear (Riesz) functional

f (=
∑

α

fα xα) 7→ Ly(f) :=
∑

α

fα yα.

Given y and d ∈ N, the moment matrix associated with y,

is the real symmetric s(d) × s(d) matrix Md(y) with rows

and columns indexed in N
n
d and with entries

Md(y)(α, β) := Ly(x
α+β) = yα+β , α, β ∈ N

n
d .

Localizing matrix. Given a sequence y = (yα)α∈Nn , and

a polynomial g ∈ R[x], the localizing moment matrix

associated with y and g, is the real symmetric s(d) × s(d)
matrix Md(g y) with rows and columns indexed in N

n
d and

with entries

Md(g y)(α, β) := Ly(g(x)x
α+β)

=
∑

γ

gγ yα+β+γ , α, β ∈ N
n
d .

B. The volume of a compact semi-algebraic set

In this section we recall how to approximate as closely as

desired the Lebesgue volume of a compact semi-algebraic set

K ⊂ R
n. It will be the building block of the methodology

to approximate the set X∗
ǫ in (3).

Let X ⊂ R
n be a box and let λ ∈M(X) be the Lebesgue

measure on X. Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m},

assumed to be compact. For convenience and with no loss of

generality we may and will assume that g1(x) =M −‖x‖2

for some M > 0.

Theorem 2.1 ([2], [4]): Let K ⊂ X and with nonempty

interior. Then

λ(K) = sup
φ∈M(K)

{φ(K) : φ ≤ λ}, (7)

and dφ∗ = 1K(x)dλ is the unique optimal solution.

Problem (7) is an infinite-dimensional LP with dual

ρ = inf
p∈R[x]

{

∫

X

p dλ : p ≥ 0 on X; p ≥ 1 on K }. (8)

and there is no duality gap, i.e., ρ = λ(K).
Let dj = ⌈deg(gj)/2⌉, j = 1, . . . ,m. To approximate

λ(K) one solves the hierarchy of semidefinite programs,

indexed by d ∈ N:

ρd = sup
y,z

{Ly(1) : yα + zα = λα, ∀α ∈ N
n
2d

Md(y),Md(z) � 0
Md−dj

(gj y) � 0, j = 1, . . . ,m}.

(9)

The sequence (ρd)d∈N is monotone non increasing and ρd →
λ(K) as d → ∞. However the convergence is rather slow

and in [2] the authors have proposed to replace the criterion

Ly(1) by Ly(h) where h ∈ R[x] is a polynomial that is

nonnegative on K and vanishes on the boundary of K. If one

denotes by yd an optimal solution of (9) then ρd →
∫

K
hdλ

and yd0 → λ(K) as d → ∞. The convergence yd0 → λ(K)
is much faster but is not monotone anymore, which can be

annoying because we do not obtain a decreasing sequence of

upper bounds on λ(K) as was the case with (9). For more

details the interested reader is referred to [2].



C. Stokes can help

This is why we propose another technique to accelerate

the convergence ρd → λ(K) in (9) while maintaining its

monotonicity. So let h ∈ R[x] be such that h(x) = 0 for

all x ∈ ∂K (but h is not required to be nonnegative on K.

Then by Stokes’ theorem, for each α ∈ N
n:

∫

K

((n+ |α|)h+ 〈x,∇h〉) xα

︸ ︷︷ ︸

x 7→θα(x)

dλ(x) = 0,

and so the optimal solution φ∗ of Theorem 2.1 must satisfy
∫

K

θα(x) dφ
∗(x) = 0, ∀α ∈ N

n.

Therefore in (9) we may impose the additional moment

constraints

Ly(θα) = 0, ∀α ∈ N
n
2d−deg(h). (10)

To appreciate the impact of such additional constraints on

the convergence ρd → λ(K), consider first the toy problem

where X = [−1, 1] and K = [−1/2, 1/2] with λ(K) = 1.

Let ρd (resp. ρ′d) be the optimal value of (9) without (resp.

with) the Stokes constraints. Results are displayed in Table

I. Similarly, with n = 2 and X = [−a, a]2, let K := {x :

TABLE I

THE EFFECT OF STOKES CONSTRAINTS; n = 1

d=4 d=6 d=8 d=10 d=12

ρd 1.689 1.463 1.423 1.382 1.305

ρ
′

d
1.156 1.069 1.025 1.010 1.003

‖x‖2 ≤ 1} so that λ(K) = π. For different values of a and

d = 3, 4, results are displayed in Table II.

TABLE II

THE EFFECT OF STOKES CONSTRAINTS.n = 2

ρ3 ρ
′

3
ρ4 ρ

′

4

a =1.4 5.71 3.55 5.38 3.27

a= 1.3 5.38 3.41 5.04 3.21

a= 1.2 5.02 3.31 4.70 3.17

a= 1.1 4.56 3.36 4.32 3.15

a= 1.2 3.91 3.20 3.85 3.144

Remark 2.2: Theorem 2.1 is valid for any measure µ ∈
M(X) and not only the Lebesgue measure λ. On the

other hand, the additional Stokes constraints (10) are valid

provided that dµ = f dλ or dµ = exp(f) dλ for some

homogeneous polynomial f ∈ R[x]. Then with df = deg(f),

θα(x) =

{
(n+ df )x

α h+ 〈x,∇(xα h)〉 for fdλ
xα h(n+ dff) + 〈x,∇(xα h)〉 for exp(f)dλ

III. MAIN RESULT

After the preliminary results of Section §II, we are now

in position to state our main result. Let µ be the distribution

of the noise parameter ω ∈ Ω, and let λ be the Lebesgue

measure on X. The notation λ⊗µ denotes the product measre

on X×Ω, that is,

λ⊗ µ(A×B) = λ(A)µ(B), ∀A ∈ B(X), B ∈ B(Ω).

With K ⊂ X×Ω as in (1), and for every x ∈ X, let Kx be

as in (2) (possibly empty). Consider the infinite dimensional

LP:

ρ = sup
φ∈M(K)

{φ(K) : φ ≤ λ⊗ µ}. (11)

Theorem 3.1: The unique optimal solution of (11) is

dφ∗((x, ω)) = 1K((x, ω)) dλ ⊗ µ((x, ω)),

and the optimal value ρ of (11) satisfies

ρ =

∫

X×Ω

1K((x, ω))λ ⊗ µ(d(x, ω))

=

∫

X

µ(Kx)λ(dx). (12)

Proof: That ρ =

∫

X×Ω

1K((x, ω))λ ⊗ µ(d(x, ω))

follows from Theorem 2.1 (with λ ⊗ µ instead of λ in

Theorem 2.1). By Tonelli’s Theorem
∫

X×Ω

1K((x, ω))λ ⊗ µ(d(x, ω)) =

∫

X

(∫

Ω

1K((x, ω))µ(dω)

)

︸ ︷︷ ︸

µ(Kx)

λ(dx) =

∫

X

µ(Kx)λ(dx)

Semidefinite relaxations

Let dj = ⌈deg(gj)/2⌉ for all j. As we did for (9) in §II, let

y = (yα,β) and z = (yα,β), (α, β) ∈ N
n+p, and relax (11)

to the following hierarchy of semidefinite programs, indexed

by d ∈ N:

ρd = sup
y,z

{ y0 :

s.t. yα,β + zα,β = λα · µβ , (α, β) ∈ N
n+p
2d

Md(y), Md(z) � 0
Md−dj

(gj y) � 0, j = 1, . . . ,m},
(13)

and of course ρd ≥ ρd+1 ≥ ρ for all d. The dual of (13) is

the semidefinite program:

ρ∗d = inf
p∈R[x,ω]2d

{

∫

X×Ω

p(x, ω)λ⊗ µ(d(x, ω))

s.t. p(x, ω) ≥ 1, ∀(x, ω) ∈ K

p is SOS }.

(14)

Again as K is compact, for technical reasons (but with

no loss of generality) we may and will assume that in the

definition (1) of K, g1(x) =M − ‖x‖2 for some M > 0.

Theorem 3.2: Let K and (X×Ω) \K be with nonempty

interior. There is no duality gap between (13) and its dual

(14), i.e., ρd = ρ∗d for all d. In addition (14) has an optimal

solution p∗d ∈ R[x, ω]2d such that

ρd = ρ∗d =

∫

X×Ω

p∗d(x, ω)λ⊗ µ(d(x, ω)).



Define h∗d ∈ R[x]2d to be:

x 7→ h∗d(x) :=

∫

Ω

p∗d(x, ω)µ(dω), x ∈ R
n.

Then h∗d(x) ≥ µ(Kx) for all x ∈ X and

ρd =

∫

X

h∗d(x)λ(dx) → ρ =

∫

X

µ(Kx)λ(dx)

as d→ ∞.

Proof: That ρd = ρ∗d is because Slater’s condition holds

for (13). Indeed let y∗ be the moments of φ∗ in Theorem 3.1

and z∗ be the moments of λ⊗µ−φ∗ (on (X×Ω)\K). Then

as K has nonempty interior, Md(y
∗) ≻ 0 and Md(gj y

∗) ≻
0 for all d. Similarly as (X×Ω) \K has nonempty interior,

Md(z
∗)) ≻ 0. Moreover since the optimal value ρd is finite

for all d this implies that (14) has an optimal solution p∗d ∈
R[x, ω]2d. Therefore:

ρd =

∫

X×Ω

p∗d(x, ω)λ⊗ µ(d(x, ω))

=

∫

X

(

∫

Ω

p∗d(x, ω)µ(dω)

︸ ︷︷ ︸

h∗

d
(x)≥µ(Kx)

)λ(dx) =

∫

X

h∗d(x)λ(dx)

where h∗d(x) ≥ µ(Kx) follows from p∗d ≥ 1 on K. Finally

the convergence limd→∞ ρd = ρ follows from Theorem 2.1.

Then as h∗(x) ≥ µ(Kx) on X, the sets Xd
ǫ = {x ∈

X : h∗d(x) > 1 − ǫ}, d ∈ N, form a sequence of outer

approximations of the set X∗
ǫ . In fact more can be said.

Corollary 3.3: Let h∗d ∈ R[x, ω]2d be as in Theorem

3.2. Then the function x 7→ ψ∗
d(x) := h∗d(x) − µ(Kx)

is nonnegative on X and converges to 0 in L1(X, λ). In

particular ψ∗
d → 0 in λ-measure, and λ-almost uniformly for

some subsequence (ψ∗
dk
)k∈N.

Proof: As ρd → ρ as d→ ∞,

lim
d→∞

∫

X

(h∗d(x) − µ(Kx)
︸ ︷︷ ︸

≥0

)λ(dx) = 0,

whence the convergence to 0 in L1(X, λ). Then convergence

ψ∗
d → 0 in λ-measure, and λ-almost sure convergence

for a subsequence follow from standard results from Real

Analysis. See e.g. Ash [1, Theorem 2.5.1].

As we next see, the convergence h∗d(x) → µ(Kx) in λ-

measure established in Corollary 3.3 will be useful to obtain

strong asymptotic guarantees.

A. Strong asymptotic guarantees

We here investigate asymptotic properties of the sequence

of sets (Xd
ǫ )d∈N, as d→ ∞.

Corollary 3.4: With X∗
ǫ as in (3), let Xd

ǫ := {x ∈ X :
h∗d(x) ≥ 1−ǫ} where h∗d is as in Theorem 3.2, d ∈ N. Then:

lim
d→∞

λ(Xd
ǫ ) = λ(X∗

ǫ ). (15)

Proof: Observe that

X \X∗
ǫ =

∞⋃

ℓ=1

{x ∈ X : µ(Kx) < 1− ǫ− 1/ℓ},

and therefore

λ(X \X∗
ǫ ) = lim

ℓ→∞
λ({x ∈ X : µ(Kx) < 1− ǫ− 1/ℓ}
︸ ︷︷ ︸

Rℓ

).

Next, for each ℓ = 1, . . ., write

λ(Rℓ) = λ(Rℓ ∩ {x ∈ X : h∗d(x) < 1− ǫ}) + λ(Rℓ ∩Xd
ǫ ).

By the convergence h∗d → µ(Kx) in λ-measure as d → ∞,

limd→∞ λ(Rℓ ∩Xd
ǫ ) = 0 and so

λ(Rℓ) = lim
d→∞

λ(Rℓ ∩ {x ∈ X : h∗d(x) < 1− ǫ})

≤ lim
d→∞

λ({x ∈ X : h∗d(x) < 1− ǫ})

≤ λ(X \X∗
ǫ ).

This implies

lim
d→∞

λ({x ∈ X : h∗d(x) < 1− ǫ}) = λ(X \X∗
ǫ ),

which in turn yields the desired result (15).

Inner Approximations

In the previous section we have provided a converging

sequence (Xd
ǫ )d∈N of outer approximations of X∗

ǫ . Clearly,

the same methodology now applied to a chance constraint of

the form

Prob((x, ω) ∈ K) < ǫ

would provide a converging sequence of inner approxima-

tions of the set X̃∗
ǫ := {x ∈ X : Prob((x, ω) ∈ K) < ǫ}.

B. Accelerating convergence

As we already have seen in Section II-C for the semidef-

inite program (9), as d → ∞ the convergence ρd → ρ of

the optimal value of (13) can also be slow due to the Gibb’s

effect that appears in the dual (14) when approximating the

indicator function x 7→ 1K(x) by a polynomial.

So assume that µ is the Lebesgue measure on Ω scaled to

be a probability measure (but the same idea works if dµ =
h(ω)dω, or if dµ = exp(h(ω))dω for some homogeneous

polynomial h). Then again we propose to include additional

constraints on the moments y in (13) coming from additional

properties of the optimal solution φ∗ of (11). Again these

additional properties are coming from Stokes’ formula but

now for integrals on Kx, then integrated over X.

Let f ∈ R[x, ω] be the polynomial (x, ω) 7→ f(x, ω) =
∏

j gj(x, ω). For each fixed x ∈ Kx, the polynomial ω 7→
f(x, ω) vanishes on the boundary ∂Kx of Kx. Therefore for

each β ∈ N
p, Stokes’ Theorem states that

∫

Kx

ωβ [(p+ |β|) f(x, ω) + 〈ω,∇ωf(x, ω)〉] dµ(ω) = 0.

So define the polynomial θ ∈ R[x, ω] of degree dθ, by:

(x, ω) 7→ θ(x, ω) := (p+ |β|)f(x, ω) + 〈ω,∇ωf(x, ω)〉.

Then for each (α, β) ∈ N
n+p

∫

X

∫

Kx

xαωβ θ(x, ω) dµ(ω) dλ(x) = 0.



Equivalently, in view of what is φ∗ in Theorem 3.1,

∫

K

xαωβ θ(x, ω) dφ∗((x, ω)) = 0.

Therefore in (13) we may include the additional moments

constraints Ly(x
α ωβ θ(x, ω)) = 0, for all (α, β) ∈ N

n+p

such that |α+ β| ≤ 2d− dθ .

C. The non-compact case

In some applications the noise ω is assumed to follow

a normal distribution µ on Ω = R
p. Therefore Ω is not

compact anymore and the machinery used in [2] cannot be

applied directly. However the normal distribution satisfies the

important Carleman’s property. That is, let Ly be the Riesz

functional associated with µ, i.e., Ly(f) =
∫
fdµ for all

f ∈ R[ω]. Then

∞∑

k=1

Ly(ω
2k
i )−1/2k = +∞, i = 1, . . . , p. (16)

In particular µ is moment determinate, that is, µ is completely

determined by its moments. These two properties have been

used extensively in e.g. Lasserre [8] and also in [9], precisely

to show that with K ⊂ Ω not necessarily compact, one

may still approximate its Gaussian measure µ(K) as closely

as desired. Again one solves (7) via the same hierarchy of

semidefinite relaxations (9) (but now with µ instead of λ).

For more details the interested reader is referred to Lasserre

[8], [9].

In view of the above (technical) remarks, one may then

extend the machinery described in §III for the case where

Ω = R
p, µ is the Gaussian measure, and Kx (x ∈ X)

is not necessarily compact. A version of Stokes’ Theorem

for non compact sets is even described in [9] to accelerate

the convergence of the semidefinite relaxations (9) (with µ
instead of λ). It can be used to accelerate the convergence of

the semidefinite relaxations (13), exactly as we do in §III-B

for the compact case.

IV. CONCLUSION

We have presented a systematic numerical scheme to

provide an sequence of outer approximations (Xd
ǫ ) of the

feasible set X∗
ǫ associated with chance constraints of the

form Prob((x, ω) ∈ K) > 1 − ǫ. Each outer approximation

Xd
ǫ is the 0-super level set of some polynomial whose

coefficients are computed via solving a certain semidefinite

program. As d increases λ(Xd
ǫ \X

∗
ǫ ) → 0, a nice and highly

desirable asymptotic property. Of course this methodology is

computationally expensive and limited to problems of small

size. But we hope it can pave the way to define more efficient

heuristics (perhaps at the price of loosing the nice asymptotic

properties). Also checking whether this methodology can

accommodate potential sparsity patterns present in larger size

problems, is a topic of further investigation.
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