Rafael Angarita
email: rafael.angarita@lamsade.dauphine.fr

Maude Manouvrier
email: manouvrier@lamsade.dauphine.fr

Marta Rukoz
email: marta.rukoz@lamsade.dauphine.fr

An Agent Architecture to Enable Self-healing and Context-aware Web of Things Applications

Keywords: Internet of Things, Web of Things, Self-healing, Fault-tolerance, Application-context-aware

The Internet of Things paradigm promises to connect billions of objects in an Internet-like structure. Applications composed from connected objects in the Internet of Things are expected to have a huge impact in the transportation and logistics, healthcare, smart environments, and personal and social domains. The world of things is much more complex, dynamic, mobile, and failure prone than the world of computers, with contexts changing rapidly and in unpredictable ways. The growing complexity of Internet of Things applications will be unmanageable, and will hamper the creation of new services and applications, unless the systems will show "self-*" functionality such as self-management, self-healing and self-configuration. The Web of Things builds on top of the Internet of Things to create applications composed of smart things relying on standard and well-known Web technologies. In this paper, we present a new agent architecture to enable self-healing and context-aware Web of Things applications. Our agents are the representation of physical objects, Web services, or humans in the Web.

INTRODUCTION

The Internet of Things paradigm has gained ground, both in the industry and in research worlds [START_REF] Atzori | The Internet of Things: A survey[END_REF]. It was also included by the US National Intelligence Council in the "Disruptive Civil Technologies -Six Technologies With Potential Impacts on US Interests Out to 2025" conference report (National Intelligence Council, 2008). The European Union has invested more than 100 million euros in projects related to the Internet of Things, and the government of China released the 12th Five-Year Plan for Internet of Things development [START_REF] Chen | A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective[END_REF]. Failures in Internet of Things applications may lead to loss of production time, equipment damage, environmental catastrophes, or loss of human life [START_REF] Alho | Service-oriented Approach to Fault Tolerance in CPSs[END_REF].

The world of things is much more dynamic, mobile, and failure prone than the world of computers, with contexts changing rapidly and in unpredictable ways [START_REF] Mattern | From the Internet of Computers to the Internet of Things[END_REF]. In the Internet of Things Strategic Research Roadmap (Verme- san et al., 2011), Vermesan and his coauthors place autonomous and responsible behavior of resources as one of the fourth macro trends that will shape the future of the Internet of Things in the years to come. We extract the following paragraph: " ... the trend is towards the autonomous and responsible behaviour of resources. The ever growing complexity of systems, possibly including mobile devices, will be unmanageable, and will hamper the creation of new services and applications, unless the systems will show "self-*" functionality such as self-management, self-healing and selfconfiguration."

In another Internet of Things research di-rections paper, Stankovic stated that the areas of distributed and adaptive control are not developed well enough to support the open, dynamic environment of the Internet of Things [START_REF] Stankovic | Research Directions for the Internet of Things[END_REF]. Petersen and his coauthors argue that fault-tolerance and survivability play a key role in the designing of Internet of Things applications [START_REF] Petersen | The Role of the Internet of Things in Network Resilience[END_REF].

They propose a mandatory "disaster mode" for Internet of Things devices, allowing applications to continue working only with vital functionalities even in the presence of failures. Athreya and his coauthors suggest that the natural direction for Internet of Things devices is to manage themselves in terms of software, hardware, and resource consumption [START_REF] Athreya | Designing for self-configuration and selfadaptation in the Internet of Things[END_REF]. Cherrier and his coauthors also underline the importance of fault tolerance, recovery, and coherence mechanism in the Internet of Things applications [START_REF] Cherrier | Fault-recovery and coherence in Internet of Things choreographies[END_REF]. Cirani and his coauthors present a self-configuring architecture for service discovery in the Internet of Things where they identify the resilience to changes as a crucial issue to be addressed [START_REF] Cirani | A Scalable and Self-Configuring Architecture for Service Discovery in the Internet of Things. Internet of Things Journal[END_REF].

It is clear that fault-tolerance, resilience, self-healing, and other self-* research are very active areas since they face new challenges in the Internet of Things context due to its promise of connecting billions of devices in an Internet-like structure.

The Web of Things (WoT) [START_REF] Guinard | Architecting the Internet of Things, chapter From the Internet of Things to the Web of Things: Resource-oriented Architecture and Best Practices[END_REF] builds on top of the Internet of Things to create applications composed of smart things using standard and well-known Web technologies. In this paper, we present an agent architecture to enable self-healing and contextaware WoT applications. Our agents are the representation of physical objects, Web services, or humans in the Web, and they may be hosted and run inside physical objects or in a cloud infrastructure. In our architecture, an agent may also be responsible of managing and monitoring WoT applications, which includes the communication with other participant agents.

The rest of this paper is organized as follows. We provide an overview of our proposed architecture in Section 2. We present a case study to illustrate our proposal in Section 3. This is followed by related work, and conclu-sions and future work directions in Sections 4 and 5, respectively.

OUR AGENT ARCHITECTURE

In this section, we present the main aspects of our agent architecture for self-healing and context-aware WoT applications. First, we describe the building block of our approach: the WoT Agent. Then, we present the WoT Application Manager, which is in charge of WoT applications. Before going into further detail, we present our definition of a WoT application. Definition 1. WoT Application. A WoT application is a composition of things linked by data or control dependency, where things may be physical objects, Web services, or human beings. A WoT application has an associated QoS (e.g., execution time) which is the aggregation of the participating things QoS.

In our approach, all things participating in a WoT application, independently of their nature, are represented virtually by a WoT agent, which we define in the following paragraphs.

WoT Agent. Inspired from our previous work [START_REF] Angarita | Modeling dynamic recovery strategy for composite web services execution[END_REF], we introduce the WoT application component agent depicted in Fig. 1. It is in charge of executing an operation in a WoT application, communicating with peers, and applying fault-tolerance mechanisms if necessary. It may be implemented using Node.js, and its main components are the following:

• API : an interface to communicate with the WoT agent via JSON objects indicating the id of the WoT application, the sender, and data types and their corresponding values.

In case the id of the WoT application is empty, the WoT agent acts in a context-free way.

• Core: it contains the basic execution control elements of WoT application component agents; that is, waiting for inputs, invoking its corresponding operation, and sending produced outputs, if any.

• Autonomic Component : it represents the control loop of the autonomic computing [START_REF] Psaier | A Survey on Selfhealing Systems: Approaches and Systems[END_REF], and it de-tects local or global degradations on the application behavior, selects an appropriate action, and applies it.

• Context Manager and Knowledge Base: It handles information regarding the WoT applications the WoT agents is participating in. Its main components are:

-Knowledge Base: it contains information described in RDF regarding WoT applications: rules indicating normal behavior and collaborators, requirement verification, self-healing actions, replacement operations, and replacement WoT agents.

-Inference Engine: it infers logical consequences from a set of asserted facts in the knowledge base. The Apache Jena framework may be used to reason over a RDF graph and query them using SPARQL.

• WoT Application Manager: stores and monitors WoT applications.

• Object Interface: it is the module in charge of the communication with its corresponding object.

Figure 1: WoT Agent Architecture

We present in detail the autonomic component of the WoT agent architecture in Figure 2.

The detection component (Figure 2 (a)) takes into account one external and two internal data sources. The external information regards the expected QoS; for example, the WoT application manager may allow a certain QoS degradation. The internal information refers to the QoS degradation of its corresponding operation (e.g., it is taking more time than expected), and to operation failure.

The diagnosis component (Figure 2 (b)) analyzes the current degradation and computes a solution. The three possible diagnosis correspond to the three states of a self-healing system: normal; degraded; and broken. The choice of the recovery mechanism is influenced by available options (e.g., retry or replacement), and constraints imposed by the WoT application manager (e.g., expected QoS).

The recovery component (Figure 2 (c)) is in charge of applying the selected fault tolerance mechanisms: retry and replacement. A WoT agent may retry or replace its own operation, retry the communication with another WoT agent, or replace another WoT agent in the current WoT application.

Figure 2: Autonomic Component

WoT Application Manager. We present an overview of the WoT Application Manager in Figure 3. Besides performing its corresponding operation, a WoT agent may manage a set of WoT applications consisting of its participants components and their data relationship, a set rules and requirements of the WoT application, a triggering event indicating when the WoT application starts its execution, a disaster mode specifying what to do in case of irrepara- ble failures, its historical executions, and a deployment protocol.

The deployment protocol analyzes participating components, defines the WoT application execution mode, creates the necessary components, and sends them the required information. A WoT application manager may need to create agents to control participating components or communicate with existing WoT agents. The deployment protocol contacts participating components and verifies their capacity to manage application context. A WoT application has the following execution modes:

• Locally-hosted: the WoT application component agents in charge of the operations of the WoT application are hosted and run in the component managing the WoT application. This may happen when dealing with agentless components of a WoT application such as resourcesless objects or RESTful services, in the absence of a cloud infrastructure, and when the host component has enough resources to manage the WoT application.

• Cloud-based: the WoT application component agent in charge of the operations of the WoT application are hosted and run in a cloud infrastructure. This also may be the case when dealing with agentless components. Also, WoT agents may be already provided by their corresponding objects but hosted in a a cloud infrastructure.

• Distributed: the WoT agents may be managed and hosted by their respective objects.

• any combination of the previous modes. Figure 4 shows a deployed WoT application. The WoT Application Manager sends the required information to all participant WoT agents, which may then communicate between them during the WoT application execution.

WoT Agent Failure. The corresponding operation of a WoT agent may fail; in this case, the failure may be fixed by operation retry or replacement, similarly as showed in our previous work [START_REF] Angarita | The Semantic Web: ESWC 2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion[END_REF][START_REF] Angarita | Modeling dynamic recovery strategy for composite web services execution[END_REF]. In the WoT application context, WoT agents may fail themselves, specially if they are hosted in mobile physical objects. In this case, the failed agent must be detected and the WoT application must be reconfigured. We propose two WoT agent failure detection mechanisms:

1. Predecessor detection: when a WoT agent sends a message to another WoT agent, it waits for the status code OK. If it receives another status code, or it gives timeout, the WoT agent may retry or replace its successor WoT agent. It may also execute the disaster mode.

2. WoT application timeout: if a WoT agent crashes during the executing of its operation, the WoT application manager eventually gives timeout, check which WoT agents are not alive, and performs retry, replacement, or executes the disaster mode. For further details about application timeout detection see [START_REF] Angarita Arocha | An approach for Self-healing Transactional Composite Services[END_REF].

CASE STUDY

Figure 5 shows a Petri net representing a fictional e-Health application we adapted from [START_REF] Angarita Arocha | An approach for Self-healing Transactional Composite Services[END_REF] to illustrate our proposition.

This application is built from 9 components, and it is installed in the mobile phone of a patient called Jenny; that is, the phone has a WoT agent which also plays the role of the WoT application manager, represented by phone ♦ and phone . The WoT application triggering event specifies that it runs every 30 minutes. Jenny wears the SugarImplant and VitalSignsImplant smarts devices that gather information about her health.

When the WoT application starts, phone ♦ tells both devices to send their data to SugarAnalysis and VitalSignsAnalysis, which send their conclusions to Diagnoser. Diagnoser sends its results to the appropriate components depending on the necessary actions.

Table 1 shows the manager and loca- To understand context-awareness in this WoT application, suppose that the application started its execution, SugarImplant, VitalSignsImplant, SugarAnalysis, and VitalSignsAnalysis analysis were successfully invoked. SugarAnalysis and VitalSignsAnalysis send their messages to Diagnoser. We show these messages in Listings 1 and 2. Note that both messages indicate the id of the WoT application they belong to. In this case, the id is "e427b92cfb07e68215110b6e8f00357b", which refers to Jenny's e-Health application.

Remember that Diagnoser may be receiving also data from other applications it is participating in, or processing context-free requests.

{"wot-app": { "id": "e427b92cfb07e68215110b6e8f0035 7b", "sender": "SugarAnalysis", "data": [{"name": "sugarResult1", "value": " someValue1"}, {"name": "sugarResult2", "value": " someValue2"}] }} Listing 1: SugarAnalysis Message {"wot-app": { "id": "e427b92cfb07e68215110b6e8f0035 7b", "sender": "VitalSignsAnalysis", "data": [{"name": "vitalSignsResult1", " value": "vitalSignsValue"}] }} Listing 2: VitalSignsAnalysis Message When Diagnoser receives Jenny's data from SugarAnalysis and VitalSignsAnalysis, it performs its corresponding operation which may produce the following output: NORMAL, WARNING, or EMERGENCY .

Diagnoser also contains the monitoring rules associated to Jenny's application showed in Listing 3. These rules are stored in the knowledge base of Diagnoser and verified by its autonomic component (see the WoT agent architecture depicted in Figure 1). The rules showed in Listing 3 are all post-condition rules, but other kind may exist. Also, rules may reflect QoS requirements and self-healing actions. The first three rules specify which component should be invoked. The last rule states that the disaster mode must be executed in

RELATED WORK

In 2001, IBM published the Autonomic Computing (IBM, 2001) manifesto expressing their concerns about the inevitable increasing of the size and complexity of computer systems. For them, it was clear that such complexity of heterogeneous and distributed systems will minimize the benefits of future technology; therefore, solving the increasing com-plexity problem was the "next Grand Challenge". Two years later, we had the Vision of Autonomic Computing (Kephart and Chess, 2003) where the authors reaffirmed that the only solution to the software complexity crisis was through computing systems that can manage themselves. They presented the concept of self-management as the building block of autonomic computing. The self-management concept includes four main aspects: selfconfiguration, self-optimization, self-healing, and self-protection.

Kephart and Chess described the selfhealing property of autonomic systems as the system's ability to automatically detect, diagnose, and repair software and hardware problems. In a survey published in 2007, Ghosh and his coauthors presented the now well-known concepts of self-healing states and properties [START_REF] Ghosh | Self-healing Systems -Survey and Synthesis[END_REF].

They explained that the vision of large scale systems was already a reality and that self-healing research was active. In 2011, Psaiser and Dustar published a survey showing the advancements on self-healing research [START_REF] Psaier | A Survey on Selfhealing Systems: Approaches and Systems[END_REF]. The collected self-healing research areas in this survey included embedded systems, operating systems, architecture based, cross/multi-layer-based, multi agentbased, reflective-middleware, legacy application and Aspect Oriented Programming, discovery systems, and Web services and QoSbased.

In [START_REF] Mrissa | An Avatar Architecture for the Web of Things[END_REF], the authors propose a software component called avatar for the WoT. The idea is to give objects a virtual representation in the Web so the may rely on Web languages, protocols, and semantic annotations. These avatars collaborate together in composed applications; however, they exhibit neither fault-tolerance nor self-healing properties. Also, they do not provide mechanisms to handle application context; that is, avatars function in a request-response way, and WoT applications need to be managed by a central coordinator. Moreover, they are not able to act differently depending on the application the are participating in. RESEARCH DIRECTIONS

We have presented a proposal to enable selfhealing and context-aware WoT applications. The building block of our approach is a software component called WoT agent, which are the representation of physical objects, Web services, or humans in WoT applications. These agents may be provided by their respective components or may be created by our system to manage agentless components. They are also equipped with a knowledge base to handle application specific information and requirements, and with an autonomic component to exhibit self-healing properties. Our next steps are the formal definition of our approach, the implementation of its main functionalities, and its experimental evaluation.

Figure

 Figure 3: WoT Application Manager

Table 1 :

 1 WoT agents managers and hosts

		Figure 5: Case Study: the e-Health WoT application
	tion of each of the WoT application com-
	ponents according to the deployment pro-
	tocol described in Section 2. SugarImplant
	and VitalSignsImplant are powerful
	jects hosting WoT agents.	SugarAnalysis,
	VitalSignsAnalysis, and Diagnoser are not phys-
	ical objects; however, they are provided as
	WoT agents hosted in a cloud infrastructure.
	CallEmergency, Noti f yContact, Noti f yDoctor,
	and DisplayMessage are RESTful services
	which do not have WoT agents. Their cor-
	responding WoT agents are created, hosted,
	and managed by the WoT application manager
	which is hosted and runs in Jenny's mobile
	phone (Phone).		
	Component	Manager Host
	SugarImplant	Itsel f	Itsel f
	VitalSignsImplant Itsel f	Itsel f
	SugarAnalysis	Itsel f	Cloud
	VitalSignsAnalysis Itsel f	Cloud
	Diagnoser	Itsel f	Cloud
	CallEmergency	Phone	Phone
	Noti f yContact	Phone	Phone
	Noti f yDoctor	Phone	Phone
	DisplayMessage	Phone	Phone