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Abstract:

The Internet of Things paradigm promises to connect billions of objects in an Internet-like struc-

ture. Applications composed from connected objects in the Internet of Things are expected to

have a huge impact in the transportation and logistics, healthcare, smart environments, and

personal and social domains. The world of things is much more complex, dynamic, mobile, and

failure prone than the world of computers, with contexts changing rapidly and in unpredictable

ways. The growing complexity of Internet of Things applications will be unmanageable, and

will hamper the creation of new services and applications, unless the systems will show “self-*”

functionality such as self-management, self-healing and self-configuration. The Web of Things

builds on top of the Internet of Things to create applications composed of smart things relying

on standard and well-known Web technologies. In this paper, we present a new agent architec-

ture to enable self-healing and context-aware Web of Things applications. Our agents are the

representation of physical objects, Web services, or humans in the Web.

1 INTRODUCTION

The Internet of Things paradigm has gained

ground, both in the industry and in research

worlds (Atzori et al., 2010). It was also in-

cluded by the US National Intelligence Coun-

cil in the “Disruptive Civil Technologies - Six

Technologies With Potential Impacts on US In-

terests Out to 2025” conference report (Na-

tional Intelligence Council, 2008). The Euro-

pean Union has invested more than 100 mil-

lion euros in projects related to the Internet of

Things, and the government of China released

the 12th Five-Year Plan for Internet of Things

development (Chen et al., 2014). Failures in

Internet of Things applications may lead to

loss of production time, equipment damage,

environmental catastrophes, or loss of human

life (Alho and Mattila, 2015).

The world of things is much more dy-

namic, mobile, and failure prone than the

world of computers, with contexts changing

rapidly and in unpredictable ways (Mattern

and Floerkemeier, 2010). In the Internet of

Things Strategic Research Roadmap (Verme-

san et al., 2011), Vermesan and his coauthors

place autonomous and responsible behavior of

resources as one of the fourth macro trends

that will shape the future of the Internet of

Things in the years to come. We extract the

following paragraph:

“ ... the trend is towards the au-

tonomous and responsible behaviour of

resources. The ever growing complex-

ity of systems, possibly including mo-

bile devices, will be unmanageable, and

will hamper the creation of new services

and applications, unless the systems

will show “self-*” functionality such as

self-management, self-healing and self-

configuration.”

In another Internet of Things research di-



rections paper, Stankovic stated that the ar-

eas of distributed and adaptive control are

not developed well enough to support the

open, dynamic environment of the Internet of

Things (Stankovic, 2014). Petersen and his

coauthors argue that fault-tolerance and sur-

vivability play a key role in the designing of In-

ternet of Things applications (Petersen et al.,

2015). They propose a mandatory “disas-

ter mode” for Internet of Things devices, al-

lowing applications to continue working only

with vital functionalities even in the presence

of failures. Athreya and his coauthors sug-

gest that the natural direction for Internet

of Things devices is to manage themselves

in terms of software, hardware, and resource

consumption (Athreya et al., 2013). Cher-

rier and his coauthors also underline the im-

portance of fault tolerance, recovery, and co-

herence mechanism in the Internet of Things

applications (Cherrier et al., 2014). Cirani

and his coauthors present a self-configuring

architecture for service discovery in the In-

ternet of Things where they identify the re-

silience to changes as a crucial issue to be ad-

dressed (Cirani et al., 2014).

It is clear that fault-tolerance, resilience,

self-healing, and other self-* research are very

active areas since they face new challenges

in the Internet of Things context due to its

promise of connecting billions of devices in an

Internet-like structure.

The Web of Things (WoT) (Guinard et al.,

2011) builds on top of the Internet of Things to

create applications composed of smart things

using standard and well-known Web technolo-

gies. In this paper, we present an agent ar-

chitecture to enable self-healing and context-

aware WoT applications. Our agents are the

representation of physical objects, Web ser-

vices, or humans in the Web, and they may

be hosted and run inside physical objects or

in a cloud infrastructure. In our architecture,

an agent may also be responsible of manag-

ing and monitoring WoT applications, which in-

cludes the communication with other partici-

pant agents.

The rest of this paper is organized as fol-

lows. We provide an overview of our proposed

architecture in Section 2. We present a case

study to illustrate our proposal in Section 3.

This is followed by related work, and conclu-

sions and future work directions in Sections 4

and 5, respectively.

2 OUR AGENT

ARCHITECTURE

In this section, we present the main aspects

of our agent architecture for self-healing and

context-aware WoT applications. First, we de-

scribe the building block of our approach: the

WoT Agent. Then, we present the WoT Appli-

cation Manager, which is in charge of WoT ap-

plications. Before going into further detail, we

present our definition of a WoT application.

Definition 1. WoT Application. A WoT appli-

cation is a composition of things linked by data

or control dependency, where things may be

physical objects, Web services, or human be-

ings. A WoT application has an associated QoS

(e.g., execution time) which is the aggregation

of the participating things QoS.

In our approach, all things participating in

a WoT application, independently of their na-

ture, are represented virtually by a WoT agent,

which we define in the following paragraphs.

WoT Agent. Inspired from our previous

work (Angarita et al., 2015), we introduce the

WoT application component agent depicted in

Fig. 1. It is in charge of executing an op-

eration in a WoT application, communicating

with peers, and applying fault-tolerance mech-

anisms if necessary. It may be implemented us-

ing Node.js, and its main components are the

following:

• API : an interface to communicate with the

WoT agent via JSON objects indicating the

id of the WoT application, the sender, and

data types and their corresponding values.

In case the id of the WoT application is

empty, the WoT agent acts in a context-free

way.

• Core: it contains the basic execution con-

trol elements of WoT application compo-

nent agents; that is, waiting for inputs,

invoking its corresponding operation, and

sending produced outputs, if any.

• Autonomic Component : it represents the

control loop of the autonomic comput-

ing (Psaier and Dustdar, 2011), and it de-



tects local or global degradations on the

application behavior, selects an appropriate

action, and applies it.

• Context Manager and Knowledge Base: It

handles information regarding the WoT ap-

plications the WoT agents is participating

in. Its main components are:

– Knowledge Base: it contains information

described in RDF regarding WoT appli-

cations: rules indicating normal behav-

ior and collaborators, requirement verifi-

cation, self-healing actions, replacement

operations, and replacement WoT agents.

– Inference Engine: it infers logical con-

sequences from a set of asserted facts

in the knowledge base. The Apache

Jena framework may be used to reason

over a RDF graph and query them using

SPARQL.

• WoT Application Manager: stores and mon-

itors WoT applications.

• Object Interface: it is the module in charge

of the communication with its correspond-

ing object.

Figure 1: WoT Agent Architecture

We present in detail the autonomic compo-

nent of the WoT agent architecture in Figure 2.

The detection component (Figure 2 (a))

takes into account one external and two inter-

nal data sources. The external information re-

gards the expected QoS; for example, the WoT

application manager may allow a certain QoS

degradation. The internal information refers to

the QoS degradation of its corresponding op-

eration (e.g., it is taking more time than ex-

pected), and to operation failure.

The diagnosis component (Figure 2 (b)) an-

alyzes the current degradation and computes

a solution. The three possible diagnosis cor-

respond to the three states of a self-healing

system: normal; degraded; and broken. The

choice of the recovery mechanism is influenced

by available options (e.g., retry or replace-

ment), and constraints imposed by the WoT ap-

plication manager (e.g., expected QoS).

The recovery component (Figure 2 (c)) is

in charge of applying the selected fault toler-

ance mechanisms: retry and replacement. A

WoT agent may retry or replace its own op-

eration, retry the communication with another

WoT agent, or replace another WoT agent in

the current WoT application.

Figure 2: Autonomic Component

WoT Application Manager. We present

an overview of the WoT ApplicationManager in

Figure 3. Besides performing its correspond-

ing operation, a WoT agent may manage a set

of WoT applications consisting of its partici-

pants components and their data relationship,

a set rules and requirements of the WoT appli-

cation, a triggering event indicating when the

WoT application starts its execution, a disaster

mode specifying what to do in case of irrepara-

ble failures, its historical executions, and a de-

ployment protocol.

The deployment protocol analyzes partici-

pating components, defines the WoT applica-

tion execution mode, creates the necessary

components, and sends them the required in-

formation. A WoT application manager may

need to create agents to control participating

components or communicate with existing WoT

agents. The deployment protocol contacts par-

ticipating components and verifies their capac-

ity to manage application context. A WoT ap-

plication has the following execution modes:



• Locally-hosted: the WoT application compo-

nent agents in charge of the operations of

the WoT application are hosted and run in

the component managing the WoT applica-

tion. This may happen when dealing with

agentless components of a WoT application

such as resourcesless objects or RESTful

services, in the absence of a cloud infras-

tructure, and when the host component has

enough resources to manage the WoT appli-

cation.

• Cloud-based: the WoT application compo-

nent agent in charge of the operations of

the WoT application are hosted and run in

a cloud infrastructure. This also may be

the case when dealing with agentless com-

ponents. Also, WoT agents may be already

provided by their corresponding objects but

hosted in a a cloud infrastructure.

• Distributed: the WoT agents may be man-

aged and hosted by their respective objects.

• any combination of the previous modes.

Figure 3: WoT Application Manager

Figure 4: WoT Application Deployment

Figure 4 shows a deployed WoT applica-

tion. The WoT Application Manager sends

the required information to all participant WoT

agents, which may then communicate between

them during the WoT application execution.

WoT Agent Failure. The corresponding

operation of a WoT agent may fail; in this case,

the failure may be fixed by operation retry or

replacement, similarly as showed in our previ-

ous work (Angarita et al., 2012; Angarita et al.,

2015). In the WoT application context, WoT

agents may fail themselves, specially if they

are hosted in mobile physical objects. In this

case, the failed agent must be detected and

the WoT application must be reconfigured. We

propose two WoT agent failure detection mech-

anisms:

1. Predecessor detection: when a WoT agent

sends a message to another WoT agent, it

waits for the status code OK. If it receives

another status code, or it gives timeout, the

WoT agent may retry or replace its succes-

sor WoT agent. It may also execute the dis-

aster mode.

2. WoT application timeout: if a WoT agent

crashes during the executing of its opera-

tion, the WoT application manager eventu-

ally gives timeout, check which WoT agents

are not alive, and performs retry, replace-

ment, or executes the disaster mode. For

further details about application timeout

detection see (Angarita Arocha, 2015).

3 CASE STUDY

Figure 5 shows a Petri net representing

a fictional e-Health application we adapted

from (Angarita Arocha, 2015) to illustrate our

proposition. This application is built from

9 components, and it is installed in the mo-

bile phone of a patient called Jenny; that

is, the phone has a WoT agent which also

plays the role of the WoT application man-

ager, represented by phone♦ and phone�. The

WoT application triggering event specifies that

it runs every 30 minutes. Jenny wears the

SugarImplant and VitalSignsImplant smarts de-

vices that gather information about her health.

When the WoT application starts, phone♦ tells

both devices to send their data to SugarAnalysis
and VitalSignsAnalysis, which send their conclu-

sions to Diagnoser. Diagnoser sends its results

to the appropriate components depending on

the necessary actions.

Table 1 shows the manager and loca-



Figure 5: Case Study: the e-Health WoT application

tion of each of the WoT application com-

ponents according to the deployment pro-

tocol described in Section 2. SugarImplant
and VitalSignsImplant are powerful ob-

jects hosting WoT agents. SugarAnalysis,
VitalSignsAnalysis, and Diagnoser are not phys-

ical objects; however, they are provided as

WoT agents hosted in a cloud infrastructure.

CallEmergency, Noti f yContact, Noti f yDoctor,
and DisplayMessage are RESTful services

which do not have WoT agents. Their cor-

responding WoT agents are created, hosted,

and managed by the WoT application manager

which is hosted and runs in Jenny’s mobile

phone (Phone).

Component Manager Host

SugarImplant Itsel f Itsel f
VitalSignsImplant Itsel f Itsel f
SugarAnalysis Itsel f Cloud
VitalSignsAnalysis Itsel f Cloud
Diagnoser Itsel f Cloud
CallEmergency Phone Phone
Noti f yContact Phone Phone
Noti f yDoctor Phone Phone
DisplayMessage Phone Phone

Table 1: WoT agents managers and hosts

To understand context-awareness in this

WoT application, suppose that the appli-

cation started its execution, SugarImplant,
VitalSignsImplant, SugarAnalysis, and

VitalSignsAnalysis analysis were successfully

invoked. SugarAnalysis and VitalSignsAnalysis
send their messages to Diagnoser. We show

these messages in Listings 1 and 2. Note

that both messages indicate the id of the WoT

application they belong to. In this case, the

id is "e427b92cfb07e68215110b6e8f00357b",

which refers to Jenny’s e-Health application.

Remember that Diagnoser may be receiv-

ing also data from other applications it is

participating in, or processing context-free

requests.

{"wot-app": {

"id": "e427b92cfb07e68215110b6e8f0035

7b",

"sender": "SugarAnalysis",

"data": [

{"name": "sugarResult1", "value": "

someValue1"},

{"name": "sugarResult2", "value": "

someValue2"}

]

}}

Listing 1: SugarAnalysis Message

{"wot-app": {

"id": "e427b92cfb07e68215110b6e8f0035

7b",

"sender": "VitalSignsAnalysis",

"data": [

{"name": "vitalSignsResult1", "

value": "vitalSignsValue"}

]

}}

Listing 2: VitalSignsAnalysis Message

When Diagnoser receives Jenny’s data from

SugarAnalysis and VitalSignsAnalysis, it per-

forms its corresponding operation which may

produce the following output: NORMAL,
WARNING, or EMERGENCY .

Diagnoser also contains the monitoring rules

associated to Jenny’s application showed in



Listing 3. These rules are stored in the knowl-

edge base of Diagnoser and verified by its auto-

nomic component (see the WoT agent architec-

ture depicted in Figure 1). The rules showed in

Listing 3 are all post-condition rules, but other

kind may exist. Also, rules may reflect QoS re-

quirements and self-healing actions. The first

three rules specify which component should

be invoked. The last rule states that the dis-

aster mode must be executed in case of fail-

ure; for example, calling directly Jenny’s doc-

tor. Note that Diagnoser may have different

rules for other WoT applications, or none at all.

WoT agents such as Diagnoser may also func-

tion in a request-response way.

WoT Application Rules

id: "e427b92cfb07e68215110b6e8f0035

7b"

if output = NORMAL, send Jenny’s

information to DisplayMessage;

if output = WARNING, send Jenny’s

information to DisplayMessage, and

NotifyDoctor;

if output = EMERGENCY, send Jenny’s

information to DisplayMessage,

NotifyDoctor, NotifyContact, and

CallEmergency;

if FAILURE, execute DISASTER_MODE;

Listing 3: Jenny’s Rules

At the end of the execution,

CallEmergency, Noti f yContact, Noti f yDoctor,
and DisplayMessage send a message to phone�
indicating they successfully finished their

tasks.

4 RELATED WORK

In 2001, IBM published the Autonomic

Computing (IBM, 2001) manifesto expressing

their concerns about the inevitable increasing

of the size and complexity of computer sys-

tems. For them, it was clear that such com-

plexity of heterogeneous and distributed sys-

tems will minimize the benefits of future tech-

nology; therefore, solving the increasing com-

plexity problem was the “next Grand Chal-

lenge”. Two years later, we had the Vision

of Autonomic Computing (Kephart and Chess,

2003) where the authors reaffirmed that the

only solution to the software complexity cri-

sis was through computing systems that can

manage themselves. They presented the con-

cept of self-management as the building block

of autonomic computing. The self-management

concept includes four main aspects: self-

configuration, self-optimization, self-healing,

and self-protection.

Kephart and Chess described the self-

healing property of autonomic systems as the

system’s ability to automatically detect, di-

agnose, and repair software and hardware

problems. In a survey published in 2007,

Ghosh and his coauthors presented the now

well-known concepts of self-healing states and

properties (Ghosh et al., 2007). They ex-

plained that the vision of large scale systems

was already a reality and that self-healing re-

search was active. In 2011, Psaiser and Dus-

tar published a survey showing the advance-

ments on self-healing research (Psaier and

Dustdar, 2011). The collected self-healing re-

search areas in this survey included embed-

ded systems, operating systems, architecture

based, cross/multi-layer-based, multi agent-

based, reflective-middleware, legacy applica-

tion and Aspect Oriented Programming, dis-

covery systems, and Web services and QoS-

based.

In (Mrissa et al., 2015), the authors pro-

pose a software component called avatar for

the WoT. The idea is to give objects a virtual

representation in the Web so the may rely on

Web languages, protocols, and semantic anno-

tations. These avatars collaborate together in

composed applications; however, they exhibit

neither fault-tolerance nor self-healing proper-

ties. Also, they do not provide mechanisms

to handle application context; that is, avatars

function in a request-response way, and WoT

applications need to be managed by a central

coordinator. Moreover, they are not able to act

differently depending on the application the

are participating in.



5 CONCLUSIONS AND

RESEARCH DIRECTIONS

We have presented a proposal to enable self-

healing and context-aware WoT applications.

The building block of our approach is a soft-

ware component called WoT agent, which

are the representation of physical objects,

Web services, or humans in WoT applications.

These agents may be provided by their respec-

tive components or may be created by our sys-

tem to manage agentless components. They

are also equipped with a knowledge base to

handle application specific information and re-

quirements, and with an autonomic component

to exhibit self-healing properties. Our next

steps are the formal definition of our approach,

the implementation of its main functionalities,

and its experimental evaluation.
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