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Abstract—Dictionary learning is a powerful approach for sparse
representation. However, the numerical complexity of classical dictionary
learning methods restricts their use to atoms with small supports such
as patches. In a previous work, we introduced a model based on a
composition of convolutions with sparse kernels to build large dictionary
atoms with a low computational cost. The subject of this work is to
consider this model at the next level, i.e., to build a full dictionary of
atoms from convolutions of sparse kernels. Moreover, we further reduce
the size of the representation space by organizing the convolution kernels
used to build atoms into a tree structure. The performance of the method
is tested for the construction of a curvelet dictionary with a known code.

I. INTRODUCTION

The dictionary learning (DL) problem has received increasing
attention since the pioneer works of Lewicki, Sejnowski and Ol-
shausen [7], [8]. The principle behind DL is to find an adapted data
representation promoting improved sparsity properties. The archetype
of the DL strategy is to look for a dictionary as the solution of the
following optimization problem

argminD,(xi)1≤i≤I

I∑
i=1

‖Dxi − yi‖22 + g(xi)

where yi constitute the learning database, D is the dictionary matrix
(whose columns are the atoms), (xi)1≤i≤I are the codes and g is
a sparsity-inducing function. Many methods including MOD [6] and
K-SVD [1] have been proposed to solve this problem. DL is usually
applied to small patches because of the computational cost induced
by successive computations of matrix-vector products Dxi, which is
at least O(N2), where N is the sample size. Moreover, the cost of
the dictionary update is usually at least O(N3).1

We introduced in [4] a DL model which assumes that the learned
atoms are compositions of convolutions with kernels whose supports
each have a maximum of S elements. The interest of this S-sparse
constraint was to design a fast algorithm to compute the forward
transform Dx (and its transpose DTy), allowing larger atoms living
in a small search space to be considered. Despite its non-convexity,
the associated optimization problem was shown to converge to a
global optimum for a large class of initializations. Moreover, the
complexity of the proposed algorithm is linear with respect to N .

The present work focuses on the dictionary update step associated
with a convolutional tree structure. In this context, we assume that
the code is known and our goal is to approximate a full dictionary D
of atoms, supposed to be curvelets here without loss of generality.

II. TREE MODEL

Consider a rooted tree TN ,E composed of nodes n ∈ N and edges
e ∈ E . Following [4], we assume that each edge e ∈ E from TN ,E is
the convolution with a kernel he ∈ RN . Nodes that do not have any
children are called leaves and are denoted as f ∈ L. Note that the

1We invite the reader to consult [5] for more details about sparse represen-
tations and DL.

number of atoms in the dictionary is equal to N |L|, where |L| is the
number of leaves in the tree. We propose an image formation model
where Dx is the sum of convolutions between codes (xf )f∈L ∈
RN×|L| and atoms (Hf )f∈L ∈ RN×|L| leading to

Dx =
∑
f∈L

xf ∗Hf

where for all f ∈ L, each atom Hf is computed as

Hf = ∗e∈C(f) he = hr ∗ · · · ∗ hf︸ ︷︷ ︸
from root r to leaff

where C(f) denotes the path going from the root of the tree to the leaf
f . Kernels (he)e∈E have restricted, known supports which contain
only S elements (or pixels) in Se ⊂ {1, . . . , N}.

From the above model, we build the following minimization
problem

(FTL) : argmin
(he)e∈E∈RP×|N|

‖
∑
f∈L

xf ∗ (∗e∈C(f) he)− y‖22

subject to, ∀e ∈ E , supp (he) ⊂ Se , ‖he‖2 ≤ 1 .

III. RESOLUTION WITH THE PALM ALGORITHM

The proximal alternating linearized minimization (PALM) algo-
rithm [2] has been designed to solve non-convex optimization prob-
lems with block-variables. It can be viewed as alternating the steps of
a proximal forward-backward scheme with respect to several block-
variables. Since the (FTL) problem is non-convex and the dictionary
is composed of many convolution kernels, the PALM algorithm seems
very relevant to solve this problem. Moreover, according to [2], the
PALM algorithm offers convergence guarantees to a critical point of
the cost function to be optimized.

IV. CURVELET DICTIONARY APPROXIMATION

In order to illustrate the performance of the proposed method for
fast transform learning, we build a tree based on a curvelet frequency
tiling. This experiment synthesizes target atoms using a fast discrete
curvelet transform [3], and solves the (FTL) problem to estimate
these curvelet atoms.

Figure 1 shows the compositions of convolutions obtained along
branches of the proposed tree whose leaves are the learned atoms,
illustrating the dictionary structure considered in this paper. We
observe a good recovery of the target curvelets, both for low and
high frequency atoms.

V. CONCLUSION

This paper introduces a new structure of convolutional trees for
dictionary design. The use of sparse convolution kernels allows larger
images to be considered with a reduced computational cost. Future
work will be devoted to include an additional sparse coding step in
the proposed algorithm for dictionary learning.



Fig. 1. Tree corresponding to a level 3 curvelet tiling. The sequence of convolutions obtained with the estimated kernels is shown at the nodes of the tree,
starting from the root, down to the leaves representing the atoms.

Fig. 2. Ground truth y (left) and estimated data (right).
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