
HAL Id: hal-01486804
https://hal.science/hal-01486804v3

Preprint submitted on 3 Jul 2012 (v3), last revised 10 Mar 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduction Method For Graph Cut Optimization
Nicolas Lermé, François Malgouyres

To cite this version:
Nicolas Lermé, François Malgouyres. A Reduction Method For Graph Cut Optimization. 2011. �hal-
01486804v3�

https://hal.science/hal-01486804v3
https://hal.archives-ouvertes.fr

PATTERN ANALYSIS AND APPLICATIONS 1

A Reduction Method For Graph Cut

Optimization

N. Lermé, F. Malgouyres

M. Lermé is with the Laboratoire d’Informatique de Paris Nord, University Paris 13, 99 avenue Jean-Baptiste Clément, 93430

Villetaneuse, France. Phone: +33 (0)1-49-40-32-13. Fax: +33 (0)1-48-26-07-12. E-mail: nicolas.lerme@lipn.univ-paris13.fr

M. Malgouyres is with the Institut Mathématiques de Toulouse, University Paul Sabatier, 118 route de Narbonne, F-31062

Toulouse Cedex 9, France. Phone: +33 (0)5-61-55-85-83. Fax: +33 (0)5-61-55-75-99. E-mail: francois.malgouyres@math.univ-

toulouse.fr

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 2

Abstract

In a couple of years, graph cuts methods appeared as a leading method in computer vision and

graphics due to their efficiency in computing globally optimal solutions. Such an approach remains

however impractical for large-scale problems due to the memory requirements for storing the graphs.

Among strategies to overcome this situation, an existing strategy consists in reducing the size of these

graphs by only adding the nodes which satisfy a local condition. In the image segmentation context, this

means for instance that when unary terms are locally strong, the remaining nodes are typically located

in a thin band around the object of interest to segment. In this paper, we empirically prove on a large

number of experiments that the distance between the global minimizer and the minimizer obtained with

an heuristic test, remains very low. In addition to this preliminary work, we detail existing strategies to

reduce the memory footprint of graph cuts and provide extra parameters for further reducing the graphs

and removing isolated speckles and islands due to noise in the segmentation.

Index Terms

reduction, graph cuts, segmentation, filtering.

I. INTRODUCTION

Graph cuts are a discrete optimization method based on maximum-flow / minimum-cut (max-

flow / min-cut) computations in graphs for minimizing energies frequently arising in computer

vision and graphics. Since last decades, this technique is become a cornerstone beside these

communities for solving a wide range of problems such as denoising, segmentation, registration,

stereo, scene reconstruction, optical flow, etc. We refer the reader to [1] for typical applications

of graph cuts. Since seminal work of [2] for denoising binary images, graph cuts have known

a quick development (after a 10 year silence) mainly due to the introduction of a fast max-flow

algorithm [1] and efficient heuristics for solving multi-labels tasks [3].

In parallel, technological advances in image acquisition have both increased the amount and the

diversity of data to process. As an illustration, in the satellite SPOT-5 launched by Arianespace in

2002, the high geometric resolution sensors can capture multispectral and panchromatic images

with an imaging swath of 60 km × 60 km. Each image has a size of 12000 × 12000 which

amounts to about 1GB of data. Similarly, latest medical imaging systems are able to acquire 3D

and 3D+t volume data with several billions of voxels.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 3

Although graph cuts can efficiently solve a wide range of problems, their huge memory

consumption remains a drawback. To obtain high-resolution output, graph cuts usually build

massive multidimensional grid-like graphs containing billions of nodes and even more edges.

These graphs do not fit in memory. Currently, most of the max-flow algorithms are totally

impracticable to solve such large scale optimization problems. To overcome this situation, some

amount of work has recently been done in this direction and a number of heuristics [4], [5],

[6], [7], [8], [9] and exact 1 methods [10], [11], [12], [13] have been proposed. However, the

heuristics generally either fail to fully capture shape complexities [4], [5], [6] or strongly depend

on a low-level segmentation tool [7], [8], [9].

In this paper, we give a simple condition for testing if a node in a graph is really useful

to the max-flow computation [14]. The reduced graph is progressively built by only adding

the nodes which satisfy this condition. This leads to a straightforward algorithm with a worst-

case additional complexity similar to a convolution. Thus, in the manner of [4], [5], [6], [13],

the remaining nodes are typically located in a narrow band surrounding the object edges to

segment. However, unlike [4], [5], [7], [8], [9], the proposed method can accurately segment thin

structures without requiring any other low-level segmentation tool. Experiments clearly show that

the solutions obtained on the reduced graphs are identical to the solutions obtained on the whole

graphs. Furthermore, the time required by the reduction algorithm is sometimes compensated

by the time for computing the max-flow on the reduced graph. This paper complements the

preliminary work of [14] by giving algorithmic details, a detailed bibliography on the subject

and a large number of experiments for segmenting multidimensional grayscale and color images.

Also, two extra parameters are introduced for both further reducing the size of the graphs and

removing small segments in the segmentation due to noise. We want also to mention that the

method described in this paper is protected by a patent [15] and has already been applied to

minimize an energy designed for interactive lung tumor segmentation [16].

The rest of this document is organized as follows. In Section II, we present the state-of-the-art

of methods to overcome the memory problem of graph cuts. We review in Section III the graph

cuts framework in the image segmentation context. Then, we detail our strategy for reducing

graphs in Section IV and present a large number of experiments for segmenting 2D, 2D+t and

1By exact, we mean that the maximum flow value remains unchanged and any solution is guaranteed to be a global minimizer.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 4

3D grayscale/color images using two different energy models. We finally provide an in-depth

look for measuring the influence of the reduction parameters in Section IV.

II. STATE-OF-THE-ART

The methods present in the literature for getting round the well known memory problem

of graph cuts can be divided into two main categories: single-machine algorithms and paral-

lelized/distributed algorithms. Let us now review these algorithms in this order.

A. Sequential strategies

To our best knowledge, Li et al. seem to be the first ones to tackle the problem of memory

consumption of graph cuts [7]. Their algorithm works as follows. First, the image is partitioned

into small and numerous homogeneous regions thanks to a low-level segmentation algorithm

such as watershed [7], [8] or mean shift [9]. A region adjacency graph is produced where each

region corresponds to a node in the graph. Then, the max-flow is computed on this graph for

getting the segmentation. The underlying assumption is that the final contours are embedded

into the pre-segmentation. While this observation is generally not theoretically guaranteed, it is

often verified when working on natural images not corrupted by noise. Although this approach

drastically reduce the computational burden of graph cuts (about 6x faster according to [7]), the

results strongly depend on the low-level segmentation algorithm used and its noise-sensitivity.

Moreover, as fairly observed in [8], this approach generally gives better results when over-

segmentation occurs, losing the main benefit of such a reduction.

Others have also reported band-based heuristics using a multi-resolution scheme [5], [4]. The

principle is to segment a low-resolution image/volume and propagate the solution to the finer level

by only building the graph in a narrow band surrounding the interpolated foreground/background

interface at that resolution. More specifically, the acceleration strategy consists of three stages:

first, a pyramid of images is built with a coarsening operator (coarsening). Next, the coarsest

image is segmented and its contours are extracted (segmentation at coarsest level). Finally, the

contours are dilated and interpolated at the next higher resolution for building a new reduced

graph (uncoarsening). This process continues until the bottom of the pyramid is reached. Such an

approach greatly reduces time and memory consumption of standard graph cuts (about 8x faster

and 4x less memory according to [5]). Nevertheless, it generally fails to recover thin structures

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 5

and is limited to the segmentation of roundish objects. In medical imaging, this is a real drawback

since elongated structures like blood vessels are ubiquitous. Moreover, the parameter controlling

the band dilation during the projection, plays an important role. Indeed, one usually needs this

parameter to be large enough to fully capture details of various shapes complexities. On the other

side, wider bands reduce the computational benefits and may also introduce potential outliers

far away from the desired object contours.

To avoid the loss of details, Lombaert et al. [4] used the information from a Laplacian

pyramid. At each level, the bands are extended by including pixels whose value significantly

differs between the image and the "coarsened-uncoarsened image". The idea is to capture thin

structures which are not visible in the coarse image. This inclusion is controlled by a thresholding

parameter which provides a smooth transition between [4] and traditional graph cuts. Although

the previous problem is notably reduced, it is still present for low-contrasted details.

Kohli et al. recently proposed a finer band-based technique. In contrast to [5], [4], they first

define an energy from the full resolution image instead of the low resolution image. Experi-

ments show that this strategy results in significant improvements in both time and segmentation

accuracy. But mostly, they compute uncertainty estimates using min-marginals 2 and use them

to determine which regions belong to the reduced graph. Such an approach allows to compute

solutions very close to the global optimum.

In words, the motivation of [6] is clearly similar to [5], [4], but the strategy used is slightly

different since the pyramid of images is restricted to a single one. Although this heuristic cannot

ensure the retrieval of thin structures and details, their experiments indicate they are properly

recovered for a wide range of parameters, and more robustly than [5], [4].

Lempitsky and Boykov presented more recently an interesting touch-expand algorithm that

is able to minimize binary energy functions with graph cuts in a narrow band, while ensuring

the global optimality on the solution [13]. The principle is to make a band evolve around the

object to segment by expanding the band when the min-cut touches its boundary. This process is

iterated until the band no longer evolves. Although the algorithm quickly converges toward the

global optimal solution, it strongly depends on the initialization and no bound on the band size

2The min-marginal encodes the confidence associated with a variable being assigned the label in the optimal solution. The min-

marginal of a variable x corresponds to the energy obtained by fixing it to a particular label and minimizing over all remaining

variables. The exact min-marginals can be determined exactly and efficiently by reusing previous max-flow computations.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 6

is given. Thus, the band can progressively increase to encompass the whole volume in the worst

case. However, depending on the initialization, the bands are reasonably small in the context

of [13] (volume reconstruction). As far as we know, this strategy has not yet been adapted to

image segmentation. In particular, the benefit of this strategy strongly depends on the design of

an initial band.

Finally, the approach described in [12] is interesting and complements our work. They simplify

the graphs by identifying simple edges. An edge (a, b) is said to be simple if its weight is either

greater than the sum of all edge weights adjacent to a (except b) or greater than the sum of all

edge weights adjacent to b (except a). This test indeed ensures that these edges are not part of the

minimum cut since they cannot be saturated by any flow. Once identified, two nodes connected

by a simple edge are merged together with their common edges. This process is repeated until no

such edge is found. Experiments reveal that most simple edges lie between terminal nodes and

pixel nodes, leading to better sparsification when unary terms are locally strong. Even with weak

unary terms (strong regularization) and poor initializations 3, the algorithm performed always

faster than graph cuts.

B. Parallelized/distributed strategies

In a recent paper, Delong and Boykov design a method for solving the max-flow problem

for graphs which do not fit in memory. They propose a new parallelized max-flow algorithm

yielding near-linear speedup with the number of processors [10]. As an illustration, on a standard

computer, segmenting a volume of size 512× 512× 256 takes about 100 secs on a single core

against less than 20 secs on eight cores. However, numerical experiments also show that the

acceleration of this scheme is very limited since it needs a large number of processors to reach

the near-linear speedup and is sensitive to the amount of physical memory. Furthermore, the

proposed algorithm clearly remains less efficient on small graphs than standard graph cuts and

can only be applied to grid-like graphs.

More recently, Strandmark and Kahl in [11] introduced an original approach for minimizing

binary energy functions in a parallelized/distributed fashion using the max-flow algorithm of [1].

The idea is to decompose the original problem into optimizable sub-problems, solve them

3The energy model used is the one proposed by Boykov and Jolly in [17] (see Section III-C).

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 7

independently and update them according to the results of the adjacent problems. This process is

iterated until convergence. The key point is that optimality is guaranteed by dual decomposition.

More precisely, the solutions to the sub-problems are constrained to be equal on an overlap.

They solve the original problem by finding a saddle point of the Lagrangian of the constrained

problem. This min-max problem is solved by alternating minimization over its primal variables

and maximization over its dual variables. The minimizations are done independently of each other

on the processing elements. The maximization combines the results obtained on the overlapping

bands. It consists in an update of the dual variables. To reflect this change, the weights in

the graphs corresponding to the sub-problems are modified and the corresponding solutions are

recomputed. This scheme is repeated until the solutions of the variables on the overlap are equal.

This iterative scheme is efficient since only a few edge costs change between iterations and then

search trees can be efficiently reused [18]. Moreover, the number of edge costs which change

decrease as the number of iterations increase.

Experiments in [11] for image segmentation and stereo clearly demonstrate that both faster

processing on multi-core computers and the ability to solve large scale problems over a distributed

network. As an illustration, such an approach is able to segment a graph requiring 131GB of

memory in 38 secs. To our best knowledge, the proposed work is the first to segment 4D volume

data of moderate size using graph cuts while keeping optimality on the solution. Furthermore,

in the image segmentation context, the algorithm is stable over a large range of values of the

regularization parameter. Nevertheless, the algorithm is slower for solving some instances where

the object to segment is not uniformly spread over the image. Also, notice that the proposed

strategy is only effective for graphs for which the max-flow algorithm of [1] is. In particular,

the latter becomes less effective than a push-relabel algorithm for dense graphs.

III. GRAPH CUTS FRAMEWORK

A. Energy minimization via graph cuts

Consider an image I : P ⊂ Zd → [0, 1]c (d > 0, c > 0) as a function, mapping each point

(called pixel) p ∈ P to a value Ip ∈ [0, 1]c. We define a binary segmentation as a mapping

u assigning each element of P with the value 0 for the background and 1 for the object and

we write u ∈ {0, 1}P . In the energy minimization approach, a popular strategy consists in

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 8

minimizing a Markov Random Field of the form [17]:

E(u) = β ·
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for a fixed β ∈ R+. The neighborhood system N ⊂ P2 is a subset of

all pixel pairs (p, q) ∈ P2. In this context, we will use the following standard neighborhoods:

N0 = {(p, q) ∈ P2 |
∑d

i=1 |qi − pi| = 1} or,

N1 = {(p, q) ∈ P2 | |qi − pi| ≤ 1 ∀1 ≤ i ≤ d},

where pi denotes the ith coordinate of p. In what follows, "connectivity 0" and "connectivity 1"

respectively refer to the use of N0 and N1 neighborhoods 4.

In equation (1), the data term Ep(·) is the cost for assigning the label up to the pixel p

without regards to its neighbors. On the other hand, the smoothness term Ep,q(·) assumes that

the boundaries of the segmentations are smooth. More precisely, it penalizes pixel pairs (p, q)

having different labels. It can also be used to better align boundaries of the segmentation on

the image edges having a strong gradient. Notice that we only consider pairwise interactions

between pixels and do not consider models using higher order terms.

Consider now a weighted directed graph G = (V , E , c) where V = P∪{s, t} is the set of nodes,

E ⊂ V2 is the set of edges and c : E → R+ is a weighting function defining the edge capacities.

The terminal nodes s and t are respectively called the source and the sink. Additionally, we split

the set of edges E into two disjoint sets En and Et denoting respectively n-links (neighborhood

links) and t-links (terminal links):

En = {(p, q) ∈ E | (p, q) ∈ P2},

Et = {(s, p) ∈ E | p ∈ P}
⋃
{(p, t) ∈ E | p ∈ P}.

(2)

We denote by C = (S, T) a s-t cut which is a partition of V such that s ∈ S and t ∈ T . For

any s-t cut C in G, we define the value of C by:

v(C) =
∑

(p,q)∈E
p∈S,q∈T

c(p, q).

4As an illustration, each pixel has respectively 4 and 8 neighbors in 2D, 6 and 26 neighbors in 3D and finally 8 and 80

neighbors in 4D, for N0 and N1 neighborhoods.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 9

We also define uC ∈ {0, 1}P as the underlying segmentation of C in G:

uCp =

 0 if p ∈ T

1 if p ∈ S
, ∀p ∈ P .

In other words, pixels in S belong to the object and those in T to the background.

Notice first that C → uC makes a one-to-one correspondence between s-t cuts in G and the

segmentations of the image. Then, the key idea of graph cuts is to build a graph G such that for

any s-t cut C in G, we have:

v(C) = E(uC) +K, (3)

for some additional constant K ∈ R independent of C. When pairwise terms are submodular,

i.e. when they satisfy

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0), ∀(p, q) ∈ N ,

G can be constructed as described in [19]. Then, (3) guarantees that the min-cut in G corresponds

to a minimizer of (1). Moreover, as it is well known, the min-cut can be efficiently computed

using a max-flow algorithm such as [1]. Again, once the min-cut C∗ is computed in G with a

max-flow algorithm, uC∗ minimizes (1). In the next sections, we review two classical energy

models for segmenting images with graph cuts.

B. TV+L2 energy model

Initially introduced by Rudin, Osher and Fatemi [20], the TV+L2 (ROF) model and its variants

have been a very active research topic in image restoration. This model has also successfully

demonstrated his efficiency for segmenting cars in video [21]. It is only defined on grayscale

images but can of course be applied to a grayscale image resulting from a multichannel image.

In the image segmentation context, the solution is taken as a level-set 5 of the minimizer u∗ of
L−2∑
µ=0

∑
(p,q)∈N

wp,q|uµp − uµq |︸ ︷︷ ︸
TV (u)

+β‖u− I‖22, β ∈ R+, (4)

where L denotes the maximum intensity of I , ‖.‖2 denotes the Euclidean distance in R]P , I ∈ RP

is initial data TV (u) denotes the Total Variation of u ∈ RP and wp,q is a weight proportional

5In this setting, we denote by uµ = {p ∈ P | uµp = 1} the µ level-set of u at the level µ where uµp = 1{up≥µ}.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 10

to the distance between p and q. While the second term maintains a proximity to a level-set

of I , the solution is regularized by the first one. Expressing the two terms of (4) in terms of

level-sets, we observe that the µ level-set of u∗ is a minimizer of the binary energy∑
(p,q)∈N

wp,q|uµp − uµq |︸ ︷︷ ︸
TV (uµ)

+2β
∑
p∈P

uµp [(µ−
1

2
)− Ip] + Ip, (5)

among uµ ∈ {0, 1}P (see [22]). The latter problem has the form described in (1) and can be

minimized by a graph cut. We remind that this formulation cannot handle color images. In

practice, color images need to be converted into grayscale images before they are segmented.

C. Boykov-Jolly energy model

In [17], authors introduced an energy model for segmenting images using graph cuts. Unlike

the previous model, the user can provide object (O ⊂ P) and background seeds (B ⊂ P) in an

interactive fashion. The role of these seeds is twofold: reducing the cuts space and computing

probability distributions of the intensity for the object and the background. Formally, we have: Ep(1) = − log P(Ip|p ∈ O)

Ep(0) = − log P(Ip|p ∈ B)
and Ep,q(up, uq) = Bp,q · |up − uq|, (6)

where P(.) is a probability density function, Ip ∈ [0, 1]c denotes the intensity at voxel p and Bp,q

is a weighting function used to map similarity between voxels to graph weights. The distribution

of the object and the background are generally estimated either using normalized histograms or

Gaussian mixture models. As usual, the data term favors the belonging of each pixel p ∈ P to

the object or the background class while the smoothness term penalizes neighboring pixels p

and q having different labels. In its simplest form, the weight of this penalization only depends

on the gradient and favors boundaries with a strong gradient. Notice that the weight can also

embed more complex features such as textures or gradient direction. The most common choices

for these weighting functions come from the influential work of Perona and Malik on anisotropic

diffusion [23] and are used by almost every graph-based segmentation algorithms:

Gaussian: Bp,q = 1
‖p−q‖2 exp

(
− ‖Ip−Iq‖

2
2

2σ2

)
, (7)

Reciprocal: Bp,q = 1
‖p−q‖2

1
1+‖Ip−Iq‖ωω

, (8)

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 11

where σ ∈ R+, ω > 1 represent free parameters, ‖.‖2 is the Euclidean norm (either in Rd

or Rc) and ‖.‖ω is the `ω norm. Notice that some work has been recently done to study the

difference between the Gaussian and the Reciprocal weightings in a medical context (see [24]).

The experimental results in [24] show that the Reciprocal weighting (8) outperforms the Gaussian

weighting (7) in terms of both absolute performance achieved on segmentation differences and

stability over β values. In this paper, all experiments use the Gaussian weighting.

IV. REDUCING GRAPHS

A. Principle

As we have seen before, the memory usage for segmenting high-resolution data by graph

cuts can be prohibitive. As an illustration, the max-flow algorithm of [1] (version 3.0) allocates

28]P+16]En bytes 6, where the operator ’]’ stands for cardinality of a set. One can easily observe

that for a fixed amount of RAM, the maximum volume size decreases quickly as the dimension

d increases. Nevertheless, as showed in [14], most of the nodes in the graph are useless during

the max-flow computation since they are not traversed by any flow (see Figure 1). Ideally, one

would like to extract the smallest possible graph G ′ = (V ′, E ′) from G = (V , E) while keeping

the max-flow value f ′∗ in G ′ identical or very close to the max-flow value f ∗ in G. In words,

we want to minimize the relative size of the reduced graph defined as

ρ =
]V ′

]V
, (9)

under the constraint that f ∗ ' f ′∗. In fact, this is an ideal optimization problem which we will

not try to solve since the method for determining G ′ also needs to be (very) fast. In order to

represent the potential of this idea, we represent on the middle image of Figure 1, the flow only

passing through the t-links when computing the segmentation of the image of Figure 1 with

the TV+L2 model (see Section III-B). Light gray pixels (resp. dark gray pixels) indicates that a

positive amount of flow passed from the source s to a node p (resp. from a node p to the sink

t), for any pixel p ∈ P . Similarly, we represent on the right image of Figure 1 the outflow only

passing n-links using the same model and parameters. This time, the gray is proportional to the

sum of the flow leaving any node p. For the middle and the right images, gray (resp. black)

6We remind that P is the set of pixels/voxels and En denotes the set of n-links (see (2)).

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 12

Fig. 1: Illustration of the flow passing through t-links (middle) and n-links (right) for segmenting

a synthetic 2D image (left) using a TV+L2 model. On the middle image, light gray pixels (resp.

dark gray pixels) indicates that a positive amount of flow passed from s to p (resp. from p to

t). On the right image, the gray is proportional to the sum of the flow leaving any node p. On

the middle and the right images, gray (resp. black) areas correspond respectively to the nodes

not traversed by any flow in the graph.
figure

areas correspond respectively to the nodes not traversed by any flow in the graph. Clearly, only

a small part of the nodes is used during the max-flow computation.

First, let us introduce some terminology before describing our method for building G ′. In

accordance with the graph construction given in [19], we consider (without loss of generality)

that a node is linked to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P .

We also summarize the t-links capacities for any node p ∈ P by:

c(p) = c(s, p)− c(p, t).

For any B ⊂ Zd (in practice, B will be a square centered at the origin) and p ∈ P , we denote

by Bp the set translation of B by the point p:

Bp = {q + p | q ∈ B}.

For Z ⊂ P and B ⊂ Zd, we denote by ZB the dilation of Z by the structuring element B as:

ZB = {p+ q | q ∈ B, p ∈ Z} =
⋃
p∈Z

Bp.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 13

Fig. 2: Principle of the reduction. Red area and arrows (resp. green area arrows) denote the flow

which get in (resp. out of) ZB. The nodes from Z are removed since Z satisfies (10). Remaining

nodes are typically located in the narrow band ZB \ Z.
figure

We also define, for any Z ⊂ P , the maximal amount of flow that might get in and out through

the n-links by

Pin(Z) =
∑

p 6∈Z,q∈Z
(p,q)∈N

c(p, q), Pout(Z) =
∑

p∈Z,q 6∈Z
(p,q)∈N

c(p, q).

Finally, we define the maximum amount of flow passing through the t-links and the flow

orientation by

A(Z) =
∑
p∈Z

|c(p)|, O(Z) =
∑
p∈Z

sign(c(p)),

where the function sign(·) is defined as:

sign(t) =

1 if t > 0,

0 if t = 0,

−1 otherwise.

The intuitive idea for building G ′ is to remove from the nodes of G any Z ⊂ P such that either
(
O(ZB) = +]ZB and A(ZB \ Z) ≥ Pout(ZB)

)
,

or
(
O(ZB) = −]ZB and A(ZB \ Z) ≥ Pin(ZB)

)
.

(10)

As an illustration of these conditions, the last (resp. first) condition of the test (10) implies that

all the flow that might get in (resp. out of) the region ZB does so by traversing its boundary

and can be absorbed (resp. provided) by the band ZB \ Z (see Figure 2).

Building such sets Z is done by testing each individual pixel p ∈ Z. In order to do so, we

know that the conjunction of conditions (10) for every set {p}, where p ∈ Z, implies (10) for

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 14

Z. Considering B, a square window of size (2r + 1) (r > 0) centered at the origin, an even

more conservative test for p ∈ Z is: either
(
∀q ∈ Bp, c(q) ≥ +δ

)
,

or
(
∀q ∈ Bp, c(q) ≤ −δ

)
.

(11)

where δ = P (B)
(2r+1)2−1

. Here, P (B) denotes the perimeter of B, i.e:

P (B) = max(]{(p, q) : p ∈ B, q 6∈ B and (p, q) ∈ N},

]{(q, p) : p ∈ B, q 6∈ B and (q, p) ∈ N}).

The main advantage of (11) is that it can be easily computed. If moreover

c(p, q) ≤ 1 (p, q) ∈ E ,

(which is true for the energies described in Section III-B and III-C 7) and (11) holds, one can

easily checks that the condition (10) holds for Z = {p}. For instance, the first condition of (11)

implies:
A(Bp \ {p}) =

∑
q∈Bp\{p} |c(q)|,

≥ [(2r + 1)2 − 1] · δ,

≥ P (B),

≥ Pout(Bp).

In words, for any node p ∈ Z satisfying the first (resp. second) condition of (11), all its neighbors

q ∈ Bp are only linked to s (resp. t) and the flow that might get in (resp. out) through t-links in

Bp \ {p} suffices to saturate the n-links going out of (resp. in) Bp. The node p is useless and

can be removed from G. Therefore, we consider G ′ a subgraph of G such that V ′ = P ′ ∪ {s, t},

where:

P ′ = {p ∈ P | (11) does not hold for p}.

The experiments presented in Section IV-C.3 confirm the dependence between the size of the

reduced graph and the model parameters (see Figure 3). Indeed, when minimizing (1) via graph

cuts as described in Section III-A, the t-links capacities are all multiplied by β. Thus, it is

straightforward to observe that the condition (11) is more difficult to satisfy as β decreases. In

such a situation, we need a larger window radius for decreasing δ in order to diminish the size

7If the condition (11) does not hold, δ can for instance be multiplied by max(p,q)∈N c(p, q).

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 15

(a) ρ = 5.75% (b) ρ = 32.58% (c) ρ = 50.24% (d) ρ = 64.77%

Fig. 3: Tuning of the window radius for segmenting a synthetic 2D image with a TV+L2 model

in connectivity 1. From left to right: reduced graphs are superimposed in yellow on the original

image for the window radius r = 1, 8, 15, 22. The relative size of the reduced graph is indicated

below each image.
figure

of the reduced graph. This results in wider bands around the object contours. Notice that when

β is small, the role of the regularization term Ep,q(·) is increased. Notice also that when the

window radius is increased, there is generally less chance that the test is satisfied for the entire

window. Conversely, we can afford large δ and therefore small window radius when β is large.

Thus, the reduced graph consists of narrow bands around the object edges.

Additionally, we investigate some ways to relax the condition (11) for further reducing the size

of the reduced graph. A simple way is to multiply δ by a factor γ ∈ [0, 1]. Then, as γ decreases

to 0, the condition (11) can be satisfied for a larger number of nodes. Typically, when γ = 0,

we only test the sign of contracted capacities (see (11)). Another way is to allow some nodes in

Bp to fail complying with the test. The proportion of nodes satisfying the test is controlled by a

parameter called η ∈ [0, 1]. Then, as η decreases, the condition (11) can be satisfied more easily

since a larger proportion of nodes can be connected to opposite terminals. Embedding these two

extra parameters leads to the following condition: either
(
]{q ∈ Bp | c(q) ≥ +δ · γ} ≥ η ·]Bp

)
,

or
(
]{q ∈ Bp | c(q) ≤ −δ · γ} ≥ η ·]Bp

)
.

(12)

Unlike the window radius parameter, γ and η parameters can further decrease the graph size

but do not offer any guarantee on the final segmentation. However, for time-critical applications,

this can be particularly useful when optimality does not represent a major constraint. As regard

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 16

to the parameter η, it can also be used to remove noise in the segmentation.

In contrast to the test described in [25], we do not have any theoretical guarantees about the

nature of the minimizer found with the proposed test. Nevertheless, the numerical experiments

presented in Section IV-C.3 exhibit important reduction rates while keeping a low pixel error on

segmentations. But most importantly, these experiments show that the relative max-flow error

between f ∗ and f ′∗ (see Appendix I) is generally null. This tendency is also confirmed by the

experiments of [25] where both tests are compared and depict similar performance. In the next

section, we detail a fast algorithm for building G ′.

B. Algorithmic considerations

1) Unoptimized algorithm

From the Section IV-A, an easy-to-implement non-optimized algorithm emerges: for each pixel

p of the input image, we can check if the condition (12) holds by browsing the window of

radius r centered at p. If so, we do not add the node to G ′. Since the neighborhood of each pixel

is visited exactly once, the graph construction resembles a convolution and has a worst-case

complexity of O(]P]B). Notice that δ is computed only once. When a node cannot be removed

from G, we connect it to its constructed neighbors. We keep track of these neighbors with an

array of dimension (d− 1).

2) Incremental algorithm

For large window radii, the unoptimized algorithm becomes inefficient as soon as the image

size and d increase. Nevertheless, one can observe that the condition (12) can be decomposed

as sums along the dimensions d yielding an algorithm with a complexity of O(]P), except for

image borders. We now detail this incremental algorithm in the 2D case with a connectivity 0.

We consider a square window B of size (2r+1), (r > 0). First, for any point p ∈ P and δ′ ≥ 0,

we define

gδ′(p) =

 1 if c(p) ≥ +δ′,

0 otherwise.
(13)

We either denote gδγ(p) or gδγ(i, j) for any pixel p = (i, j) ∈ P (it will never be ambiguous once

in context). In what follows, we only describe the computation of]{q ∈ Bp | c(q) ≥ +δ · γ}.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 17

The other case can easily be deduced by adapting the definition of (13). The key idea is to

decompose]{q ∈ Bp | c(q) ≥ +δ ·γ} as two sums where the first one sums over each row in a

column while the second one sums over all columns. First, we introduce an array M whose size

is the image width, where each element contains the sum of the values of gδγ(·) over a vertical

segment of Bp. More precisely, if we denote Mi0,j0 the state of table M at the beginning of the

computation at the pixel p = (i0, j0) ∈ P , we have:

Mi0,j0 [i] =

∑+r

l=−r gδγ(i, j0 + l) if i ≤ i0 + r,∑+r
l=−r gδγ(i, j0 + l − 1) if i > i0 + r,

(14)

except for image borders. Additionally, we maintain a variable Ni0,j0 summing the elements of

M along an interval of size 2r + 1:

Ni0,j0 =
+r∑
c=−r

Mi0,j0 [i0 + c], ∀(i, j) ∈ P .

We trivially have Ni0,j0 =]{q ∈ Bp | c(q) ≥ δ · γ}, for p = (i0, j0). Then, for ensuring the

property (14) at the next pixel p = (i0 + 1, j0) ∈ P , we update M before N with:

Mi0+1,j0 [i0 + r + 1] ← Mi0,j0 [i0 + r + 1]− gδγ(i0 + r + 1, j0 − r − 1) + gδγ(i0 + r + 1, j0 + r)

Ni0+1,j0 ← Ni0,j0 −Mi0+1,j0 [i0 − r] +Mi0+1,j0 [i0 + r + 1]

The contracted capacities are only evaluated once: when shifting from one position to the next

one. Therefore, the optimized algorithm builds the reduced graph with a complexity of O(]P),

except for image borders. In particular, the complexity becomes independent of the window

radius. Also, one can notice that the cost of such an algorithm is directly proportional to the

cost for evaluating the contracted capacities. However, for the energy models presented in this

document, these capacities can be efficiently pre-computed and stored in lookup tables. The

memory storage required by the incremental graph construction algorithm lies in the table M

which is of dimension d − 1. Thus, the extra memory usage is negligible with respect to both

the image and the graph size.

The unoptimized algorithm remains quite general and can be extended in various ways. For

instance, one can imagine an adaptive version where r varies automatically according to the

image content. This forces us to guess the optimal window radius r∗ for each node. This can be

done by examining all window radii in a fixed range {0, . . . , rmax} (rmax > 1) until r∗ is found.

Unlike the unoptimized algorithm, the worst-case complexity now becomes O(]P · T (rmax))

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 18

i i

M12,2 . . . 2 3 3 2 . . . M13,2 . . . 2 3 3 3 . . .

11 12 13 14 11 12 13 14

0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 0 . . .

j 1 . . . 0 1 1 1 . . . ⇒ 1 . . . 0 1 1 1 . . .

2 . . . 1 1 1 1 . . . 2 . . . 1 1 1 1 . . .

3 . . . 1 1 1 1 . . . 3 . . . 1 1 1 1 . . .

gδγ(·) gδγ(·)

N12,2 = 8

M13,2[14] ← M12,2[14]− gδγ(14, 0) + gδγ(14, 3)

← 2− 0 + 1 = 3

N13,2 ← N12,2 −M13,2[11] +M13,2(14)

← 8− 2 + 3 = 9

Fig. 4: Illustration of the incremental algorithm for a 2D image with r = 1, γ = 1 and η = 1.

In this example, only the node corresponding to the pixel p = (13, 2) is added to G ′ since

|N13,2| = (2r + 1)2 = 9.
figure

where T (rmax) denotes the cost for examining all nodes for an increasing radius up to rmax.

Although this approach permits to build smaller graphs, the construction of the graphs suffers

from a higher computational cost. It becomes also more difficult to avoid repetitive evaluations

of the contracted capacities like in the incremental algorithm.

Notice also that the reduction can easily be parallelized. First, due to the locality of data and

operations, the unoptimized algorithm could also be easily parallelized on GPU since the result

of condition (12) can be independently evaluated on each node. Secondly, when the reduced

graph contains several connected components, we could solve the max-flow on each connected

component independently. In some situations (such as the segmentation of noisy images), this

approach could be very efficient since the max-flow computation would become trivial for a

large amount of connected components whose nodes are all linked to the same terminal 8.

8Indeed, the condition (12) does not imply that both terminals are linked to the non-terminals nodes unless we have γ = 0

and η = 1.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 19

C. Numerical experiments

In the subsequent sections, all experiments are performed on an Athlon Dual Core 6000+

3GHz with 2GB of RAM using the max-flow algorithm 9 of [1] 10. Running times include the

graph construction, the max-flow computation as well as the construction of the solution. Times

are averaged over 10 runs.

1) The window radius parameter

The Figure 5 measures the impact of the window radius with respect to speed and memory usage

and compares these results to standard graph cuts (bottom row) for segmenting 2D and 2D+t

data (top row) in connectivity 1. On the bottom row, the blue curves with squares correspond

to time consumption and the red curves with triangles correspond the memory of the reduced

graphs. Standard graph cuts correspond to r = 0.

First, the segmentations obtained by standard graph cuts and reduced graph cuts are identical.

We also observe that the reduced graph cuts are always faster and requires less memory than the

former except for the image "plane". One can also observe that both curves are approximately

convex and the minimal relative size of the reduced graph (denoted by ρ∗) is reached for

some radius r∗ > 0. Notice that r∗ naturally depends both on the image structure and the

model parameters. The intuitive reason for both curves to be approximately convex is that each

individual test of (12) can be satisfied more easily when r increase, since δ decreases with r.

Nevertheless, when r is larger, the condition becomes more and more difficult to satisfy because

a larger number of individual test must hold. Notice that this experiment is chosen to illustrate

the behavior when r change. However, we generally take r = 1 for most of the images used

(see Tables I and II).

9Since the reduction algorithm takes advantage of grid graphs, we want to point out that any max-flow algorithm implementation

can easily be specialized on grid graphs to use less memory. A straightforward specialization of [1] v3.0 with integer/float

capacities on 32-bit targets can be reduced to 24 bytes per node and 4 per edge. This reduces the amount of memory needed

of 2/3 in 2D and 3/4 in 3D.
10The code is freely available at http://pub.ist.ac.at/~vnk/software.html

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 20

plane – 1443× 963 cells – 1536× 1536 lena – 2048× 2048 woman – 211× 172× 92

Image "plane" Image "cells" Image "lena" Image "woman"

Fig. 5: Influence of window radius (bottom row) for segmenting 2D and 2D+t images (top row)

with a TV+L2 model in connectivity 1. On the bottom row, blue curve with squares and red curve

with triangles correspond respectively to execution time and the amount of memory allocated

for the graph. Standard graph cuts correspond to a window radius equal to 0.
figure

2) Estimation of the distributions

Before presenting numerical experiments, we detail how P(Ip|p ∈ O) and P(Ip|p ∈ B) are

estimated in (6) using Normalized Histograms (NH). Since we use the same strategy for the

object and the background, we only describe it for B. Let Nb ∈ N∗ denotes the number of bins.

We call, for q ∈ {0, . . . , Nb − 1}c,

Hk =
]{p ∈ B | qi

Nb
≤ (Ip)i <

qi+1

Nb
,∀1 ≤ i ≤ c}

]B

where we remind that Ip ∈ [0, 1]c and (Ip)i is the ith channel of Ip. We then approximate

P(Ip|p ∈ B) by

(Gσ′ ∗H)Ip

where Gσ′ is a Gaussian kernel of standard deviation σ′. In what follows, we always take σ′ = 1.

In practice, we use the same number of bins Nb for the object and the background.

Notice that, as it is well known, when the number of bins Nb is too large, Hq is null for most

q ∈ {0, . . . , Nb−1}c. Such observation grows as the number of channels c increases. As a result,

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 21

Fig. 6: Evolution of the relative size of the reduced graph (blue curve) and the distance between

a ground truth image obtained from Table II with the number of bins Nb. The distance between

both segmentations is measured with the DSC (red curve) and the SRMSSD (green curve). Seeds

and parameters are the same as those used in Table II.
figure

P(Ip|p ∈ B) is not accurately estimated and (the learned distribution law overfits the samples)

most contracted capacities of the graph are set to 0. In practice, the model behaves as if we

had β = 0. On the other hand, when Nb is too small, the best possible estimate approximates

P(Ip|p ∈ B) by a piecewise constant function made of large square pieces. This time, Hq is

not null for a larger part of q ∈ {0, . . . , Nb − 1}c but P(Ip|p ∈ B) is roughly approximated.

Therefore, the number of bins Nb should be a trade-off between these two situations. In practice,

we adapt the number of bins to the number of channels. Following results of the Figure 6, we

empirically choose a number of cells Nb = 256 and Nb = 50 for grayscale and color images,

respectively. Smoothing distributions allows to further increase the number of cells where Hq is

not null and can further reduce the size of the graph.

3) Numerical experiments on 2D, 2D+t and 3D images

For segmenting 2D, 2D+t and 3D grayscale/color images in connectivity 1, we compare the

performance of standard graph cuts against reduced graph cuts in terms of speed, memory

consumption and provide measures for assessing the differences between the segmentations

obtained with standard graph cuts and reduced graph cuts.

Let us now describe our experimental procedure. For each image, the seeds and the model

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 22

"white-buttons" (6.91%) "rice" (21.77%) "zen-garden" (94.72%) "sweets" (83.97%)

"ct-thorax" (7.87%) "cells" (17.46%) "circles+N (0, 20)" (94.85%)

Fig. 7: Segmentation results using a TV+L2 model in connectivity 1. The segmentation is

superimposed on the original image by transparency. The minimal relative size of the reduced

graph is indicated in parenthesis below each image.
figure

parameters are manually optimized for getting the best segmentation. Using these seeds and

parameters, a reference segmentation is computed with standard graph cuts: the same seeds and

parameters are then used for the reduced graph cuts. The differences between the segmentations

are estimated using three evaluation measures (DSC, MSASD and VO, see Appendix I) as well

as on the value of the flow in the graphs (see Appendix I). Also, the window radius r∗ for which

the relative size of the graph ρ∗ is minimum, is estimated. For both tables, notice that some 2D

images comes from the popular Berkeley segmentation dataset 11.

The results obtained using a TV+L2 model (see Section III-B) are summarized in Table I.

Similarly, the results obtained using a Boykov-Jolly model (see Section III-C) are summarized

in Table II. Segmentation results are also illustrated using a TV+L2 and a Boykov-Jolly model

in Figure 7 and 8, respectively.

For both models, we observe that our algorithm generally outperforms standard graph cuts in

11The dataset is freely available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 23

terms of memory while the differences between both segmentations is generally null (or remain

extremely small). For some of the 2D+t and 3D images, standard graph cuts fail to compute the

segmentation while our algorithm is able to segment them in a reasonable time. Nevertheless, the

relative size of the reduced graphs of some noisy images like "circles+N (0, 20)", "zen-garden"

or "cells" is particularly large. This result reflects the fact that a lot of neighboring nodes are

linked to opposite terminals. The density of nodes linked to s and t is directly correlated to the

amount of noise in the image. Thus, an ideal situation consists of large area of nodes linked to

the same terminal separated by smooth borders. Notice that when these areas contain few nodes

linked to wrong terminals, we can obtain good reduction performances by relaxing (11) with

the parameter η (see (12)).

For some instances, the reduced graph cuts are even faster than standard graph cuts. In words,

it means that the time required by the reduction is compensated by the time for allocating the

useless nodes and the computation of the max-flow on the reduced graph. However, the difference

is generally small and becomes smaller as r∗ increases. In that case, most of the time of the

reduction is indeed spent on the borders. This drawback increases with the number of channels.

As an illustration, the time spent on the borders for segmenting a color image of size 481× 321

can represent more than 50% of the time for reducing the graph with r = 5. This percentage

can rise to 80% for r = 10. Although it significantly reduces performances, this also confirms

that the reduction is fast almost everywhere. Therefore, a better management of borders would

lead to a substantial increase of speed of the proposed algorithm. However, this situation does

not occurs often since we generally have r∗ = 1.

Another important point is that our algorithm can allocate a larger amount of memory. This

situation typically occurs when β is too small, leading to a very large relative size of the reduced

graph (see image "circles+N (0, 20)"). Since we do not know the size of G ′ before running our

algorithm, we sometimes need to reallocate an extra memory space for storing the following

nodes and edges. In practice, the max-flow algorithm of [1] reallocates memory by adding the half

of the size of the memory storage used by nodes and edges. In order to avoid reallocations, we

can adapt simple strategies to get an upper bound on the number of nodes and edges belonging

to G ′. For instance, we can use (12) by testing individually each pixel p ∈ P with δ1 or by

randomly polling some amount of pixels in the image.

Let us now describe the results obtained in Tables I and II. For the TV+L2 model, the average

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 24

"red-starfish" (13.95%) "horses" (5.60%) "snow-and-clouds" (15.24%) "text1" (50.18%)

"interview-man1" (6.91%) "fluorescent-cell" (5.88%) "ct-thorax" (17.30%) "circles+N (0, 20)" (94.57%)

Fig. 8: Segmentation results using a Boykov-Jolly model in connectivity 1. The segmentation

(bottom row) as well as seeds (top row) are superimposed on the original image by transparency.

The minimal relative size of the reduced graph is indicated in parenthesis below each image.
figure

relative size of the reduced graph is 33.5% with a standard deviation of 47.39%. For 21 images

out of 28, reduced graph cuts allocate less memory than standard graph cuts. Similarly, for 11

images out of 28, reduced graph cuts are faster than standard graph cuts. For some instances, the

optimal window radius is far from being equal to one because the boundary of the segmentation

is very rigid for avoiding undesired objects (see image "zen-garden" and "sweets" in Figure 7).

This leads to a small value of β and therefore a large window radius r∗ for lowering δ in order

to obtain a smaller graph.

For the Boykov-Jolly model, the average relative size of the reduced graph is 19.24% with a

July 3, 2012 DRAFT

standard deviation of 31.09%. For 29 images out of 31, reduced graph cuts allocate less memory

than standard graph cuts. Similarly, for 17 images out of 31, reduced graph cuts are faster than

standard graph cuts.

@
@

@ @

Vo
lu

m
e

na
m

e
Si

ze
St

an
da

rd
G

C
R

ed
uc

ed
G

C
ρ
∗

(%
)

r∗
R

M
E

D
SC

(%
)

V
O

(%
)

M
SA

SD
Ti

m
e

M
em

or
y

Ti
m

e
M

em
or

y

2D

pl
an

e
48

1
×

32
1

0.
12

22
.9

0
M

b
0.

42
14

.5
4

M
b

49
.8

9
14

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

ze
n-

ga
rd

en
48

1
×

32
1

0.
12

22
.9

0
M

b
0.

27
22

.9
0

M
b

94
.7

2
10

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

or
ie

nt
al

-m
an

32
1
×

48
1

0.
26

22
.9

0
M

b
0.

48
22

.9
0

M
b

79
.8

5
13

0.
00

01
10

0.
00

00
10

0.
00

00
0.

00
00

ct
-t

ho
ra

x-
z

51
2
×

51
2

0.
18

38
.9

1
M

b
0.

11
2.

05
M

b
5.

74
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

bo
ok

30
12
×

20
48

2.
68

91
7.

26
M

b
1.

67
78

.9
5

M
b

8.
64

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
ce

lls
-z

51
2
×

51
2

0.
20

38
.9

1
M

b
0.

33
35

.0
9

M
b

76
.3

9
6

0.
00

11
10

0.
00

00
10

0.
00

00
0.

00
00

be
an

s
25

6
×

25
6

0.
07

9.
70

M
b

0.
13

9.
70

M
b

99
.8

3
4

0.
00

01
10

0.
00

00
10

0.
00

00
0.

00
00

sw
ee

ts
80

0
×

60
0

0.
81

71
.2

8
M

b
2.

51
71

.2
8

M
b

83
.9

7
22

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

te
xt

1
16

00
×

12
00

0.
82

28
5.

39
M

b
0.

57
25

.7
6

M
b

10
.5

6
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

te
xt

2
10

24
×

76
8

0.
36

11
6.

84
M

b
0.

36
35

.0
9

M
b

28
.7

8
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

ye
as

ts
1

51
2
×

51
2

0.
23

38
.9

1
M

b
0.

34
38

.9
1

M
b

95
.3

2
3

0.
00

16
10

0.
00

00
10

0.
00

00
0.

00
00

ye
as

ts
2

51
2
×

51
2

0.
19

38
.9

1
M

b
0.

15
6.

93
M

b
18

.8
3

1
0.

00
01

99
.9

73
0

99
.9

46
0

0.
00

00
an

gi
og

ra
ph

y1
51

2
×

51
2

0.
18

38
.9

1
M

b
0.

11
3.

08
M

b
7.

97
1

0.
00

01
10

0.
00

00
10

0.
00

00
0.

00
00

an
gi

og
ra

ph
y2

35
0
×

64
3

0.
13

33
.3

9
M

b
0.

09
2.

26
M

b
7.

51
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

f1
17

58
8
×

39
2

0.
12

34
.2

0
M

b
0.

06
62

3.
05

K
b

1.
71

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
bl

ac
k-

ca
t

60
0
×

40
0

0.
12

35
.6

1
M

b
0.

07
41

5.
38

K
b

1.
14

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
vi

ki
ng

-s
ym

bo
l2

66
0
×

74
0

0.
27

72
.5

3
M

b
0.

28
35

.0
9

M
b

37
.0

6
3

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

w
hi

te
-b

ut
to

ns
30

0
×

30
0

0.
06

13
.3

3
M

b
0.

03
93

4.
60

K
b

6.
91

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
ri

ce
25

6
×

25
6

0.
04

9.
70

M
b

0.
04

2.
05

M
b

21
.7

7
1

0.
00

02
10

0.
00

00
10

0.
00

00
0.

00
00

bl
oo

d-
ce

lls
42

5
×

28
0

0.
08

17
.6

4
M

b
0.

05
3.

08
M

b
18

.8
4

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
po

pp
y

40
9
×

61
3

0.
16

37
.2

1
M

b
0.

09
1.

01
M

b
2.

93
1

0.
00

02
10

0.
00

00
10

0.
00

00
0.

00
00

2D
+t

in
te

rv
ie

w
-g

ir
l

32
0
×

24
0
×

15
0

O
M

4.
72

G
b

8.
96

77
1.

00
M

b
15

.0
4

1
N

SR
N

SR
N

SR
N

SR
in

te
rv

ie
w

-o
ld

-m
an

25
6
×

25
6
×

12
8

O
M

3.
43

G
b

8.
50

77
1.

00
M

b
18

.8
3

1
N

SR
N

SR
N

SR
N

SR
in

te
rv

ie
w

-w
om

an
35

2
×

28
8
×

15
4

O
M

6.
40

G
b

10
.4

2
1.

13
G

b
13

.3
6

1
N

SR
N

SR
N

SR
N

SR

3D

ct
-t

ho
ra

x
40

9
×

40
9
×

25
2

O
M

17
.3

3
G

b
21

.4
3

1.
17

G
b

7.
87

1
N

SR
N

SR
N

SR
N

SR
ci

rc
le

s-
py

ra
m

id
+s

ig
m

a2
0

12
8
×

12
8
×

12
8

5.
01

87
4.

57
M

b
7.

16
87

4.
57

M
b

94
.8

5
1

0.
01

38
10

0.
00

00
10

0.
00

00
0.

00
00

ce
lls

40
9
×

40
9
×

10
1

O
M

6.
92

G
b

14
.2

3
1.

13
G

b
17

.4
6

1
N

SR
N

SR
N

SR
N

SR
br

ai
n-

p3
18

1
×

21
7
×

18
1

O
M

2.
91

G
b

6.
00

34
2.

67
M

b
12

.6
3

1
N

SR
N

SR
N

SR
N

SR

TA
B

L
E

I:
St

an
da

rd
gr

ap
h

cu
ts

(G
C

)
ar

e
co

m
pa

re
d

to
ou

r
al

go
ri

th
m

in
te

rm
s

of
sp

ee
d

(i
n

se
cs

)
an

d
m

em
or

y
fo

r
se

gm
en

tin
g

da
ta

us
in

g
a

T
V

+L
2

m
od

el
in

co
nn

ec
tiv

ity
1.

L
ab

el
O

M
st

an
ds

fo
r

"O
ut

of
M

em
or

y"
w

hi
le

la
be

l
N

SR
st

an
ds

fo
r

"N
o

Se
gm

en
ta

tio
n

R
ef

er
en

ce
".

ta
bl

e

@
@

@ @

Vo
lu

m
e

na
m

e
Si

ze
St

an
da

rd
G

C
R

ed
uc

ed
G

C
ρ
∗

(%
)

r∗
R

M
E

D
SC

(%
)

V
O

(%
)

M
SA

SD
Ti

m
e

M
em

or
y

Ti
m

e
M

em
or

y

2D

ea
gl

e-
c

48
1
×

32
1

0.
20

22
.9

0
M

b
0.

15
1.

37
M

b
5.

54
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

ze
n-

ga
rd

en
-c

48
1
×

32
1

0.
22

22
.9

0
M

b
0.

34
22

.9
0

M
b

90
.7

5
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

co
lu

m
ns

-c
48

1
×

32
1

0.
22

22
.9

0
M

b
0.

12
27

6.
92

K
b

1.
17

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
re

d-
flo

w
er

s-
c

48
1
×

32
1

0.
19

22
.9

0
M

b
0.

21
6.

93
M

b
23

.3
0

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
sn

ow
-a

nd
-c

lo
ud

s-
c

48
1
×

32
1

0.
19

22
.9

0
M

b
0.

15
4.

62
M

b
15

.2
4

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
m

ar
ke

r-
c

48
1
×

32
1

0.
19

22
.9

0
M

b
0.

13
62

3.
05

K
b

2.
46

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
py

ra
m

id
-c

48
1
×

32
1

0.
18

22
.9

0
M

b
0.

13
30

4.
97

K
b

1.
46

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
re

d-
st

ar
fis

h-
c

48
1
×

32
1

0.
19

22
.9

0
M

b
0.

15
3.

08
M

b
13

.9
5

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
bl

ac
k-

co
w

-c
48

1
×

32
1

0.
21

22
.9

0
M

b
0.

15
30

4.
97

K
b

1.
51

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
ch

ur
ch

2-
c

48
1
×

32
1

0.
20

22
.9

0
M

b
0.

13
1.

37
M

b
5.

07
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

sn
ak

e2
-c

48
1
×

32
1

0.
20

22
.9

0
M

b
0.

15
1.

01
M

b
4.

95
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

bi
rd

s2
-c

32
1
×

48
1

0.
21

22
.9

0
M

b
0.

16
1.

37
M

b
6.

40
1

0.
00

01
10

0.
00

00
10

0.
00

00
0.

00
00

ea
gl

e2
-c

48
1
×

32
1

0.
18

22
.9

0
M

b
0.

13
62

3.
05

K
b

2.
25

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
gr

ee
k-

te
m

pl
e-

c
48

1
×

32
1

0.
20

22
.9

0
M

b
0.

14
2.

05
M

b
8.

03
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

ho
rs

es
4-

c
48

1
×

32
1

0.
20

22
.9

0
M

b
0.

14
1.

37
M

b
5.

60
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

m
ea

do
w

-a
nd

-m
ou

nt
ai

ns
-c

48
1
×

32
1

0.
20

22
.9

0
M

b
0.

25
15

.5
9

M
b

56
.0

0
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

tr
ad

iti
on

al
-h

ou
se

s-
c

48
1
×

32
1

0.
19

22
.9

0
M

b
0.

13
93

4.
60

K
b

4.
30

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
ct

-t
ho

ra
x-

z
51

2
×

51
2

0.
44

38
.9

1
M

b
0.

29
4.

62
M

b
10

.8
5

1
0.

00
00

99
.7

83
2

99
.5

67
4

0.
00

00
bo

ok
30

12
×

20
48

7.
54

91
7.

26
M

b
5.

06
78

.9
5

M
b

8.
18

1
0.

00
00

10
0.

00
00

10
0.

00
00

0.
00

00
ce

lls
-z

51
2
×

51
2

0.
46

38
.9

1
M

b
0.

49
23

.3
9

M
b

48
.9

1
2

0.
00

07
10

0.
00

00
10

0.
00

00
0.

00
00

te
xt

1
16

00
×

12
00

2.
15

28
5.

39
M

b
2.

49
17

7.
63

M
b

50
.1

8
1

0.
00

00
10

0.
00

00
10

0.
00

00
0.

00
00

vi
ki

ng
-s

ym
bo

l2
66

0
×

74
0

0.
59

72
.5

3
M

b
0.

39
3.

39
M

b
5.

13
1

0.
00

23
99

.9
98

1
99

.9
96

2
0.

00
00

2D
+t

in
te

rv
ie

w
-m

an
1-

c
32

0
×

24
0
×

20
3

O
M

6.
40

G
b

18
.7

5
51

4.
00

M
b

6.
91

1
N

SR
N

SR
N

SR
N

SR
in

te
rv

ie
w

-m
an

2-
c

42
6
×

24
0
×

18
0

O
M

7.
55

G
b

19
.8

6
22

8.
44

M
b

3.
21

1
N

SR
N

SR
N

SR
N

SR
pl

an
e-

ta
ke

-o
ff

-c
49

2
×

27
6
×

18
0

O
M

10
.0

3
G

b
28

.9
1

53
2.

00
M

b
6.

20
1

N
SR

N
SR

N
SR

N
SR

ta
lk

-c
37

0
×

27
6
×

19
0

O
M

7.
96

G
b

32
.5

1
1.

13
G

b
15

.4
4

1
N

SR
N

SR
N

SR
N

SR
flu

or
es

ce
nt

-c
el

l-
c

47
8
×

39
6
×

12
1

O
M

9.
39

G
b

30
.0

8
51

4.
00

M
b

5.
88

1
N

SR
N

SR
N

SR
N

SR

3D

ct
-t

ho
ra

x
24

5
×

24
5
×

15
1

O
M

3.
71

G
b

17
.2

5
77

1.
00

M
b

17
.3

0
1

N
SR

N
SR

N
SR

N
SR

ci
rc

le
s-

py
ra

m
id

+s
ig

m
a2

0
12

8
×

12
8
×

12
8

8.
13

87
4.

57
M

b
11

.4
1

87
4.

57
M

b
94

.5
7

1
0.

00
43

10
0.

00
00

10
0.

00
00

0.
00

00
ce

lls
23

0
×

23
0
×

57
9.

27
1.

23
G

b
9.

78
77

1.
00

M
b

51
.3

8
1

0.
00

29
10

0.
00

00
10

0.
00

00
0.

00
00

br
ai

n-
p3

18
1
×

21
7
×

18
1

O
M

2.
91

G
b

14
.4

5
77

1.
00

M
b

24
.3

8
1

N
SR

N
SR

N
SR

N
SR

TA
B

L
E

II
:

St
an

da
rd

gr
ap

h
cu

ts
(G

C
)

ar
e

co
m

pa
re

d
to

ou
r

al
go

ri
th

m
in

te
rm

s
of

sp
ee

d
(i

n
se

cs
)

an
d

m
em

or
y

fo
r

se
gm

en
tin

g
da

ta

us
in

g
a

B
oy

ko
v-

Jo
lly

m
od

el
in

co
nn

ec
tiv

ity
1.

L
ab

el
O

M
st

an
ds

fo
r

"O
ut

of
M

em
or

y"
w

hi
le

la
be

lN
SR

st
an

ds
fo

r
"N

o
Se

gm
en

ta
tio

n

R
ef

er
en

ce
".

C
ol

or
im

ag
es

ar
e

su
ffi

xe
d

by
"c

"
in

th
ei

r
na

m
es

.
ta

bl
e

PATTERN ANALYSIS AND APPLICATIONS 28

plane – 1443× 963 cells – 1536× 1536 lena – 2048× 2048 woman – 211× 172× 92

Image "plane" Image "cells" Image "lena" Image "woman"

Fig. 9: Influence of the parameter γ (bottom row) for segmenting 2D and 2D+t images (top

row) with a TV+L2 model in connectivity 1. On the bottom row, blue curve with squares and

red curve with triangles correspond respectively to the gain in time and the amount of memory

allocated for the reduced graph. Green curves with circles and purple curves with diamonds

correspond respectively to the DSC and the MSASD between γ-parametrized segmentations and

the segmentations obtained with standard graph cuts.
figure

4) The parameter γ

The Figure 9 illustrates the role of the parameter γ using the same model, images and parameters

as in Figure 5. This experiment shows how far the condition (11) can be relaxed while nearly

having an exact solution. In Figure 9, the window radii are chosen to minimize the memory

consumption. The differences between the segmentations with the standard graph cuts and the

reduced graph cuts are estimated using two evaluation measures: the DSC and the MSASD (see

Appendix I). Then, we display the DSC (green curve), the MSASD (purple curve) as well and

the execution time (blue curve) and the memory consumption (red curve) over a fixed range of

γ values ranging from 0 to 1. As γ decreases to 0, we naturally observe that we get a coarser

approximation of the solution. In practice, we obtain nearly exact solutions for γ ≥ 0.5. For

γ < 0.4, the solution is slightly different but remains close from the original segmentation.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 29

5) The parameter η

A lower bound for η

For a fixed window radius, notice first that the value of η must be sufficiently large for keeping

the graph in a whole piece (see Figure 10). Below some value (denoted by ηmin), the reduced

graph can be unfortunately split into several connected components and pixels can be wrongly

labeled in the segmentation. A lower bound of such a value can be easily be computed by

considering an image consisting of two contrasted areas separated by a vertical edge. An easy

estimate of ηmin is to impose that ηmin permits to segment these two contrasted areas. In order

to do so, we want the test (12) to be false for any pixel p located on the boundary between these

areas. For such a pixel, we have (e.g. if we assume c(p) ≥ +δγ):

]{q ∈ Bp | c(q) ≥ +δγ} = (r + 1)(2r + 1)d−1.

As a consequence, if

η ≤ (r + 1)(2r + 1)d−1

(2r + 1)d
,

the pixel p does not belong to the reduced graph G ′. Since we want to avoid the situation, we

therefore must have:
η > (r+1)(2r+1)d−1

(2r+1)d

= 1− r
2r+1

= ηmin.
(15)

Thus, as r tends to infinity, the maximum proportion of nodes allowed being linked to opposite

terminals tends to 50%. Notice that this lower bound no longer holds in connectivity 0. Indeed,

the lower bound can be too small in areas with high-curvature and the reduced graph would

be disconnected into multiple pieces (see Figure 10). Consequently, the min-cut is no longer

ensured of being fully contained in G ′.

Further reducing the graphs using η

We now detail how the parameter η can be used for reducing the memory usage. The Figure 11

illustrates how far the condition (11) can be relaxed for further reducing graphs while getting

nearly the same segmentation. In this experiment, the segmentation and the reduced graph are

shown for segmenting a synthetic noisy 2D image with a Boykov-Jolly model using connectivity

1. Since the condition (12) becomes easier to satisfy when η decreases, the graph around the

object contours becomes thicker.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 30

η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Fig. 10: Illustration of the lower bound ηmin for segmenting a 2D synthetic image using a TV+L2

model. In this experiment, ηmin ' 0.523 and we set r = 10 using connectivity 1. On all images,

the pixels belonging to V ′ are superimposed in yellow to the original image by transparency.

The middle and the bottom rows correspond respectively to close-ups of the red and cyan areas.

Observe how the reduced graph split into multiple pieces as soon as η ≤ ηmin.
figure

Denoising using η

The parameter η can be also used for denoising the segmentation. Indeed, it can be tuned to

remove small regions of the segmentation and therefore denoise it. This behavior is illustrated

in Figure 12 for segmenting a 3D noisy image from a confocal microscope with a Boykov-Jolly

model. In this picture, white spots correspond to cell nuclei in a mouse cerebellum. Observe how

the denoising acts for small values of η: small regions in the graph and in the segmentation are

progressively removed as η decreases. Typically, this parameter is useful for denoising images

corrupted by a noise behaving like an impulsive noise. Finally, unlike traditional filters, our

method does not require any pre or post-processing steps.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 31

η 1.0 0.9 0.8 0.7 0.6

ρ 93.28% 30.99% 5.74% 3.65% 2.00%

Fig. 11: Memory gain when segmenting a 2D synthetic image corrupted by 10% of impulsive

noise, using a Boykov-Jolly model (left). Top row shows the nodes of the reduced graph in light

gray while bottom row shows the corresponding segmentation. In this experiment, we set r = 3,

γ = 1 and use connectivity 1. In this experiment, ηmin ' 0.571.
figure

η 1.0 0.9 0.8 0.7 0.6

ρ 55.70% 37.15% 18.26% 12.65% 8.87%

Fig. 12: Simultaneous segmentation and denoising of a 3D image using a Boykov-Jolly model

(left) in connectivity 1. In this picture, white spots correspond to cell nuclei in a mouse

cerebellum. Top row shows the nodes of the reduced graph in light gray while bottom row

shows the corresponding segmentation. In this experiment, we set r = 5 and γ = 1.
figure

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 32

REFERENCES

[1] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in

vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[2] D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact maximum a posteriori estimation for binary images,” Journal of

the Royal Statistical Society, vol. 51, no. 2, pp. 271–279, 1989.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” in ICCV, vol. 1, 1999, pp.

377–384.

[4] H. Lombaert, Y. Sun, L. Grady, and C. Xu, “A multilevel banded graph cuts method for fast image segmentation,” in

ICCV, vol. 1, 2005, pp. 259–265.

[5] A. Sinop and L. Grady, “Accurate banded graph cut segmentation of thin structures using laplacian pyramids,” in MICCAI,

vol. 9, no. 2, 2006, pp. 896–903.

[6] P. Kohli, V. Lempitsky, and C. Rother, “Uncertainty driven multi-scale energy optimization,” in DAGM, 2010, pp. 242–251.

[7] Y. Li, J. Sun, C. Tang, and H. Shum, “Lazy Snapping,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 303–308, 2004.

[8] J. Stawiaski, E. Decencière, and F. Bidault, “Computing approximate geodesics and minimal surfaces using watershed and

graph-cuts,” in ISMM, 2007, pp. 349–360.

[9] C. Cigla and A. Alatan, “Region-based image segmentation via graph cuts,” in ICIP, 2008, pp. 2272–2275.

[10] A. Delong and Y. Boykov, “A scalable graph-cut algorithm for N-D grids,” in CVPR, 2008, pp. 1–8.

[11] P. Strandmark and F. Kahl, “Parallel and distributed graph cuts by dual decomposition,” in CVPR, 2010, pp. 2085–2092.

[12] B. Scheuermann and B. Rosenhahn, “Slimcuts: Graphcuts for high resolution images using graph reduction,” in EMMCVPR,

July 2011.

[13] V. Lempitsky and Y. Boykov, “Global optimization for shape fitting,” in CVPR, 2007, pp. 1–8.

[14] N. Lermé, F. Malgouyres, and L. Létocart, “Reducing graphs in graph cut segmentation,” in ICIP, 2010, pp. 3045–3048.

[15] ——, “Reduction of "vision graphs",” Patent No. FR2955408 (A1), January 2010.

[16] N. Lermé, F. Malgouyres, and J.-M. Rocchisani, “Fast and memory efficient segmentation of lung tumors using graph

cuts,” in MICCAI – Workshop on Pulmonary Image Analysis, 2010, pp. 9–20.

[17] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images,”

in ICCV, vol. 1, 2001, pp. 105–112.

[18] P. Kohli and P. H. S. Torr, “Dynamic graph cuts for efficient inference in markov random fields,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2079–2088, 2007.

[19] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147–159, 2004.

[20] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, pp.

259–268, 1992.

[21] F. Ranchin, A. Chambolle, and F. Dibos, “Total variation and graph cuts approaches for variational segmentation,” in

Proceedings of SSVM, June 2007, pp. 743–753.

[22] J. Darbon and M. Sigelle, “Exact optimization of discrete constrained total variation minimization problems,” in IWCIA,

vol. 3322, 2004, pp. 548–557.

[23] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

July 3, 2012 DRAFT

PATTERN ANALYSIS AND APPLICATIONS 33

[24] L. Grady and M.-P. Jolly, “Weights and topology: A study of the effects of graph construction on 3D image segmentation,”

in Proceedings of MICCAI, vol. 1, no. 5241, 2008, pp. 153–161.

[25] F. Malgouyres and N. Lermé, “A non-heuristic reduction method for graph cut optimization,” 2012, submitted.

APPENDIX I

EVALUATION AND REDUCTION MEASURES

Let SG,GT ⊂ {0, 1}N (N > 0) denote respectively a machine-obtained segmentation and

the ground truth. The function ∂S : {0, 1}N → {0, 1}N will correspond to the border of any set

S ⊂ {0, 1}N which is formally defined as ∂S = {p ∈ S| ∃(p, q) ∈ N , q 6∈ S}.

• Dice Similarity Coefficient (DSC): DSC(SG,GT) = 2 ·](SG
T
GT)

]SG+]GT
× 100 ∈ [0, 100].

• Volumetric Overlap (VO): V O(SG,GT) =](SG
T
GT)

](SG
S
GT)
× 100 ∈ [0, 100].

• Symmetric RMS Surface Distance (SRMSSD):

SRMSSD(SG,GT) =

√(∑
p∈∂SG minq∈∂GT d(p, q)2 +

∑
q∈∂GT minp∈∂SG d(p, q)2

]∂SG+]∂GT

)
• Maximum Symmetric Absolute Surface Distance (MSASD or Hausdorff distance):

MSASD(SG,GT) = max{max
p∈∂SG

min
q∈∂GT

d(p, q), max
q∈∂GT

min
p∈∂SG

d(p, q)}

• Relative Max-flow Error (RME):

RME(G,G ′) =
(f ∗ − f ′∗)

f ∗
× 100 ∈ [0, 100]

July 3, 2012 DRAFT

