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Force chain collapse as grain column buckling in granular
materials

François Nicot1 · Hao Xiong1 · Antoine Wautier1,4,5 · Jean Lerbet2 · Félix Darve3

Abstract Granular materials react under external loading
by self-organizing the topology of the grain assembly. Thus,
quasi-linear grain patterns, known as force chains, develop
within the assembly to carry the main part of the exter-
nal loading. The stability of these grain patterns controls
the strength of the material, under given loading condi-
tions. This manuscript investigates the mechanical behavior
of such grain columns and exhibits some instability modes
that can occur even when the local behavior at the contact
between grains is purely elastic. First, an analytical approach
is developed, and the ability of a grain column to collapse is
demonstrated. Then this result is confirmed from numerical
simulations performed using a discrete element method.
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1 Introduction

Material instabilities and geometric instabilities have clas-
sically been distinguished. The first basically stem from an
unstable material behavior and occur experimentally in ini-
tially homogeneous samples for some loading conditions
[12]. On the other hand, geometric instabilities are induced
by specific geometries of the body or by arrangements of the
discrete elements constituting the mechanical system, while
the constitutive behavior of these elements can be perfectly
stable [23].

Material instabilities are present in granular materials
as, for example, the softening behavior of dense sands or
the formation of shear bands as plastic strain localization
consequences. All these material instabilities leading to fail-
ure by divergence instability (keeping in mind that flutter
instability is also possible; [14]) are described by a single cri-
terion: the so-called second-order work criterion [31]. Many
studies have investigated this question from experimental
[7], theoretical [8,19,20] and numerical viewpoints through
the finite element method (FEM) [11] and the discrete ele-
ment method (DEM) [25]. However, it was experimentally
observed 50 years ago [6] and verified from a discrete numeri-
cal approach [24] that inside a granular assembly force chains
are always present, transferring the forces applied to the sam-
ple boundaries through the granular assembly. More recently,
thanks to DEM analyses, another kind of granular meso-
structure has been observed, which links contacting grains
through closed cycles, the so-called grain loops or grain
cycles [10,29,30,34]. These loops, which can involve dif-
ferent numbers of grains, seem to be less prone to transfer
forces than chains. They are more involved in the deformation
features of the granular body. Thus, inside a macroscopi-
cally homogeneous granular sample, some internal structures
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develop by self-organization of the granular assembly over a
mechanical loading: force chains and grain loops.

It can be expected that these internal meso-structures
could develop their own instability mechanisms – here
through geometric instability phenomena [28]. The purpose
of this paper is to consider if such instabilities can develop for
force chains, while loops have been investigated previously
in other papers [22]. Throughout the manuscript, a rather
simple intergranular contact law is considered: the interac-
tions between grains are assumed to be purely elastic. The
stability of discrete elastic systems has been a classical ques-
tion for half a century [2,33] and it has been shown that these
systems can develop geometric instabilities even for purely
elastic interactions between their components. Some “para-
doxical” effects have even been observed in nonconservative
elasticity. Indeed, in this last case, the stiffness matrix is non-
symmetric. Let us recall that, in elastoplasticity, the plastic
nonassociative behavior leads to a nonsymmetric constitu-
tive matrix and thus to bifurcation states strictly within the
plastic limit surface for certain loading paths. These unsta-
ble states are accurately described by the second-order work
criterion [26]. In exactly the same way, this nonsymmetry
in discrete nonconservative elastic systems induces “para-
doxical” bifurcations for certain kinematic constraints, also
accurately predicted by the second-order work criterion [15].
Thus, within the same framework of elastic discrete systems,
the questions of granular force chain stability and related col-
lapse mechanisms are considered in this paper.

Before any stability analysis, a first question can be raised:
how can the interaction elastic law between two contacting
spheres be properly defined? The model proposed by Cun-
dall [5] is based on a normal elastic law relating the normal
component of the incremental contact force to the normal
relative incremental displacement and on a tangential elastic
law defined in the same way. This kind of law has proved
to be efficient in innumerable DEM modeling, which has
been compared successfully to experimental results obtained
in 2D conditions with circular piled cylinders and in 3D
conditions with spherical grains. However, within the per-
spective of analytical analyses of force chain stability, no
expression of the interaction elastic law in an integrated
or global form generally exists. Thus, problems arise here
since Cundall’s incremental elastic law can be integrated only
with additional assumptions, which are in fact debatable.
As an example of these difficulties, let us briefly mention
the fact that the incremental tangential displacement can-
not be generally integrated in presence of normal granular
interpenetrations, which are, however, necessarily induced
by the normal elastic law [22]. More precisely, following
these additional assumptions, the interaction elastic law can
take different forms and, roughly speaking, it can be hyper-
elastic or hypoelastic. For bifurcation analyses, this point is
crucial, since in hyperelasticity the stiffness matrix will be

symmetric because of the existence of a global elastic poten-
tial and will be non-symmetric in hypoelasticity without any
potential [1,9,32]. This general discussion is not considered
in this paper and it will be treated in a further paper. Here
a hypoelastic framework is detailed in Subsect. 2.1, show-
ing the nonconservativeness of the local intergranular law
essentially because of the normal grain deformability.

The paper is structured logically after this first subsection
on the constitutive formalism. According to the analytical
model, some limit states are obtained in Sect. 2.2. Then
these limit states are studied, first from the analytical for-
malism perspective in Sect. 3.1 and from a DEM modelling
in Sect. 3.2. A comparison is presented and analyzed in the
closure discussion in the fourth section.

2 Modeling a grain column mechanically

2.1 Geometrical setting and governing equations

We consider a linear-like assembly of n spherical particles
in contact, as depicted in Fig. 1. The spheres have the same
radius r . The geometry of the assembly is described by means
of the distribution of deflecting angles αi and branch dis-
tances li between the two adjoining particles ‘i’ and ‘i − 1’.
The elementary assembly is assumed to be loaded by an axial
force F1 applied to grains ‘1’ and ‘n’ located at the ends of the
chain (grain ‘n’ is reputed to be fixed with respect to a suit-
able Galilean frame), and a set of n lateral forces Gi oriented
perpendicularly to the axial force F1. The lateral balance con-
dition imposes that

∑n
i=1 Gi = 0. This system is believed

to model a force chain composed of n particles. The lateral
forces model the confining effect directed by the neighbor-
ing grains (in a granular assembly). This model differs from
what was developed by Tordesillas and Muthuswamy [28],
where the authors modeled the confining effect applied to the
grain column by a series of lateral springs.

The purpose of this section is to investigate the mechan-
ical behavior of this assembly, by focusing on the possible
occurrence of instability modes.

The length of the force chain is denoted L1, and corre-
sponds to the axial distance between particles ‘1’ and ‘n’. It
can be written:

L1 =
n−1∑

i=1

li cos αi (1)

Prior to any loading, any branch length verifies li = 2r , and
the geometrical configuration of the force chain is entirely
described by the initial values αi,o of the deflecting angles.
Applying an external loading (F1, G1, . . .Gn) changes the
geometry of the assembly. Assuming the spheres are rigid
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Fig. 1 The linear-like pattern. Geometrical model and notations

bodies, the change in geometry is related to the relative
motion between the spheres. The normal component of the
relative displacement between particles ‘i’ and ‘i − 1’ is
denoted uni , whereas the tangential counterpart is denoted
uti . This relative displacement directs a contact force between
the adjoining grains; Ni is the normal component and Ti is
the tangential component. Furthermore, the rotation θi of any
particle induced by the torque Mi = r (Ti+1 − Ti ) will be
disregarded. This situation corresponds to an infinite rolling
resistance, which can account for nonspherical particles with
surface irregularities (as for granular soils, for example).

At any stage of the loading, the following balance equa-
tions hold:

For particle ‘1’

F1 = N1 cos α1 − T1 sin α1 (2a)

G1 = N1 sin α1 + T1 cos α1 (2b)

For particle ‘i’ (2 ≤ i ≤ n − 1)

Ni−1 cos αi−1 − Ti−1 sin αi−1

= Ni cos αi − Ti sin αi (3a)

Gi = Ni sin αi + Ti cos αi

−Ni−1 sin αi−1 − Ti−1 cos αi−1 (3b)

For particle ‘n’

F1 = Nn−1 cos αn−1 − Tn−1 sin αn−1 (4a)

Gn = −Nn−1 sin αn−1 − Tn−1 cos αn−1 (4b)

It is worth noting that Eqs. (2), (3) and (4) can be merged
into the following relations (1 ≤ i ≤ n − 1):

i∑

j=1

G j = Ni sin αi + Ti cos αi (5)

Ni cos αi − Ti sin αi = F1 (6)

The local behavior is assumed to be purely elastic and can be
expressed under the following rate formalism, which intro-
duces a normal elastic stiffness kn and a tangential elastic
stiffness kt , both constant:

Ṅi = −kn u̇ni (7a)

Ṫi = −kt u̇
t
i (7b)

The standard soil mechanics sign convention is adopted
throughout the text: the forces are counted positive in com-
pression.

The balance equations can be written under a rate form.
After differentiating Eq. (6), as u̇ni = l̇i and u̇ti = li α̇i (see
[22], for a detailed discussion on the kinematic description
of the contact between two spheres), the following can be
obtained:

Ḟ1 = −kn l̇i cos αi + kt li α̇i sin αi

− (Ni sin αi + Ti cos αi ) α̇i (8)

And by virtue of Eq. (5):

Ḟ1 = −kn l̇i cos αi + kt li α̇i sin αi −
i∑

j=1

G j α̇i (9)

As for i = 1, Eq. (9) reads:

Ḟ1 = −kn l̇1 cos α1 + kt l1 α̇1 sin α1 − G1 α̇1 (10)

We finally obtain, for 1 ≤ i ≤ n − 1:

−kn l̇1 cos α1 + (kt l1 sin α1 − G1) α̇1 = −kn l̇i cos αi

+
⎛

⎝kt li sin αi −
i∑

j=1

G j

⎞

⎠ α̇i (11)
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Moreover, differentiating Eq. (5) gives, with the help of Eq.
(6):

i∑

j=1

Ġ j = −kn l̇i sin αi − kt li α̇i cos αi + F1 α̇i (12)

Thereafter, we particularize the loading to the following case:
starting from an initial geometrical configuration (αi,o), the
lateral forces Gi are kept constant (Ġi = 0), while the axial
loading is monotonously increased: L̇1 = const(negative).
L1 is therefore the control parameter.

Then, Eq. (12) gives, for 1 ≤ i ≤ n − 1:

l̇i = F1 − kt li cos αi

kn sin αi
α̇i (13)

Combining Eq. (13) with Eq. (11) yields, for 2 ≤ i ≤ n − 1:

⎛

⎝(F1 − kt li cos αi ) cot αi +
i∑

j=1

G j − kt li sin αi

⎞

⎠ α̇i

= ((F1 − kt l1 cos α1) cot α1 + G1 − kt l1 sin α1) α̇1

(14)

For conciseness, Eqs. (13) and (14) can be expressed as:

Ai α̇i = A1 α̇1, for 2 ≤ i ≤ n − 1 (15)

l̇i = Bi α̇i , for 1 ≤ i ≤ n − 1 (16)

with Bi = F1−kt li cos αi
kn sin αi

and Ai = (F1 cos αi − kt li ) /

sin αi + ∑i
j=1 G j .

Furthermore, differentiating Eq. (1) yields:

L̇1 =
n−1∑

i=1

(Bi cos αi − li sin αi ) α̇i (17)

Given any value L̇1, the n − 1 geometrical parameters
(α1, . . . αn−1) can be determined from Eqs. (15) and (17).
Thus, the following linear system can be derived:

⎡

⎢
⎢
⎢
⎣

C1 C2 · · · Cn−1

A1 −A2 · · · 0
...

...
. . .

...

A1 0 · · · −An−1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

α̇1

α̇2
...

α̇n−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

L̇1

0
...

0

⎤

⎥
⎥
⎥
⎦

(18)

with Ci = Bi cos αi − li sin αi . The existence of a unique
solution is guaranteed if det H �= 0, with:

H =

⎡

⎢
⎢
⎢
⎣

C1 C2 · · · Cn−1

A1 −A2 · · · 0
...

...
. . .

...

A1 0 · · · −An−1

⎤

⎥
⎥
⎥
⎦

(19)

H stands as a matrix that relates the evolution of the kinemat-
ical parameters of the system (angles αi ) to the evolution of
the control parameter L1. It is worth mentioning that matrix
H is not intrinsic but depends on the loading path considered
(here, lateral forces are imposed constant).

As det H = (−1)n−1
n−1∑

i=1

(

Ci
∏n−1

j=1
j �=i

A j

)

, it appears that

det H = 0 as soon as any two terms Ai are zero.

2.2 Existence of a limit state

The resulting axial force F1 is obtained from Eqs. (9) and
(13). After simplification, the following relation can be
inferred:

Ḟ1 = −A1 α̇1 (20)

Taking advantage of Eqs. (15), (20) can also be expressed as:

(∀i = 1, . . . n − 1) Ḟ1 = −Ai α̇i (21)

As a result, Eq. (21) shows that a limit state (Ḟ1 = 0) can
be reached along a given loading path if one any term Ai

vanishes. Thus, the condition for having a limit state reads:

∃i ∈ [1, . . . n − 1] /F1 cos αi +
i∑

j=1

G j sin αi − kt li = 0

(22)

If only one term vanishes, say A j , the system has a unique
solution:

α̇ j = L̇1

Bj cos α j − l j sin α j
and (∀i �= j) α̇i = 0 (23)

This can be regarded as localized buckling, with a strong
deviation effect between particles ‘ j’ and ‘ j+1’. Since det H
does not vanish, Eq. (18) has a unique solution. The system
therefore continues to deform continuously, under the con-
trol of the kinematic variable L1. With this control, this limit
state is not associated with any effective failure. However, if
the loading control is changed into a force control (an addi-
tional axial loading is prescribed), then an abrupt collapse is
expected. The system does not have any geometrical config-
uration that can balance the external loading.

If more than one term, say m terms A j1 , . . . A jm , vanish,
the system given by Eq. (18) does not have a unique solution
(except if symmetry conditions hold): (∀i �= j1, . . . jm) α̇i =
0, and α̇ j1 , . . . α̇ jm are undetermined under the prescription∑m

k=1

(
Bjk cos α jk − l jk sin α jk

)
α̇ jk = L̇1.
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Table 1 Numerical simulation: constitutive and general parameters

n r (m) kn (kN/m) kt (kN/m)

5 0.1 1000 400

Table 2 Numerical simulation: initial geometrical configuration (αi,o)

α1,o (◦) α2,o (◦) α3,o(◦) α4,o (◦)

9 −23 23 −9

Table 3 Numerical simulation: lateral forces Gi

G1/(2r kn) G2/(2r kn) G3/(2r kn) G4/(2r kn) G5/(2r kn)

1 −1.5 1 −1.5 1

3 Numerical inspection

3.1 Inspection using the analytical model

To illustrate these results, the governing Eqs. (18) and (21)
were solved numerically. The simulation is run using the
parameters reported in Tables 1, 2 and 3. The lateral forces
Gi are kept constant (Ġi = 0), while the axial loading is
monotonously increased: L̇1 = const (negative).

The evolution of the axial force (F1) as a function of
the axial strain (1 − L1/L1o) is reported in Fig. 2. After
an increasing phase, the axial force reaches a peak (9.56
kN), then follows a descending branch. At the peak (cor-
responding to a limit state), the system is clearly unstable.
Any additional axial force applied to the system will lead to
the abrupt collapse of the chain. As seen in Fig. 3, term A2

vanishes exactly at the point where the axial force reaches
the peak (for an axial strain of 18%), whereas A1 does not
vanish (but reaches an extremum). For symmetry reasons,
A1 = −A4 and A2 = −A3.

The change in the geometrical configuration of the chain
is given in Fig. 4, with the evolution of the αi angles. For
symmetry reasons, α1 = −α4 and α2 = −α3.

Figure 5 shows the geometrical configuration of the chain,
prior to loading (left) and at the end of loading (right). It is
worth noting that the chain experiences a sharp localized col-
lapse (called buckling) with significant grain rearrangement
(grain translation) in the central part of the column between
grains 2 and 3, and grains 3 and 4.

Depending on the initial configuration and the loading
conditions, this localization can occur at different places on
the chain. To investigate this question, we must return to Eq.
(22), which gives the condition for a limit state to occur.

Equation (22) can be expressed as:

F1 = kt li
cos αi

−
i∑

j=1

G j tan αi (24)

where the localized buckling of the column will occur in the
first branch ‘i’ (joining grains i and i + 1) that fulfills Eq.
(24).

As the axial force F1 increases over loading, the local-
ized buckling occurs in the branch ‘i’ corresponding to the
smallest term χi = kt li

cos αi
− ∑i

j=1 G j tan αi . The lower the
tangent stiffness and the branch length (scaling to the radius
of the particles), and the larger

∑i
j=1 G j (or smaller, if neg-

ative), the lower the magnitude of these terms is. Thus, the
lateral forces direct a counterintuitive effect by promoting the
occurrence of a limit state, whereas they apply lateral confin-
ing (modeling, for example, the interactions with the other
grains in a granular assembly). In the previous example, the
different terms χ j can be assessed at the initial state:

χ1 = χ4 = 2r kn
cos α1,0

(
0.4 − sin α1,0

) ≈ 0.49 r kn (25a)

χ2 = χ3 = 2r kn
cos α2,0

(
0.4 + 0.5 sin α2,0

) ≈ 0.44 r kn

(25b)

Ignoring the evolution of angles α1 and α2, this analysis
shows that χ2 < χ1, therefore justifying that the localized
buckling occurs in the branches i = 2 and i = 3, between
grain 3 and grains 2 and 4.

By changing the initial geometrical configuration (Table 4),
one can expect that the system will collapse with a sharp
localization at the extremities of the column as:

χ1 = χ4 = 2r kn
cos α1,0

(
0.4 − sin α1,0

) ≈ 0.29 r kn (26a)

χ2 = χ3 = 2r kn
cos α2,0

(
0.4 + 0.5 sin α2,0

) ≈ 0.56 r kn

(26b)

As observed in Fig. 6, a limit state is reached at 8% axial
strain. At this state, unlike in the previous case, the term
A1 vanishes, whereas A2 reaches a minimum value (Fig. 7).
Moreover, Figs. 8 and 9 show that the deformation within
the chain localizes at the extremities of the chain, within the
branches i = 1 and i = 4. Both angles α1 and α4 increase
significantly after the limit state is reached, whereas angles
α2 and α3 remain more or less constant.
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Fig. 2 Axial force versus axial
strain

Fig. 3 Terms A1 and A2 versus
axial strain
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Fig. 4 Angles α1, α2, α3 and
α4 versus axial strain
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Grain 3 
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Grain 5 

Fig. 5 Geometrical configuration of the chain before loading (left) and
after loading (right)

Table 4 Numerical simulation: initial geometrical configuration (αi,o)

α1,o (◦) α2,o (◦) α3,o (◦) α4,o (◦)

15 −15 15 −15

3.2 Inspection from a discrete element model

Complementary to the analytical approach developed in
Sect. 2, the grain column problem is approached using a Dis-
crete Element Method [5] implemented in YADE software
[13,27] in order to recover the buckling of the force chain
predicted analytically.

As shown in Fig. 10, five spherical particles of identical
radii r are generated in the (x, y) plane in the same geometri-
cal configuration as presented in Table 2. To keep the problem
two-dimensional even though YADE software is designed for
3D simulations, displacement along the z-axis of the whole
system is prevented. Moreover, the rolling effect is dismissed
by preventing the particles from rolling. We do insist that a
simplified model was considered to investigate the mechani-
cal behavior of grain columns and to exhibit instability modes
that can occur even when the local behavior at the contact
between grains is purely elastic. It should be emphasized that
the absence of grain rotation is rather stabilizing, restricting
the occurrence of instability modes.

As introduced in Sect. 2.1, the inter-particle contact is
set to be purely elastic with both normal and tangent contact

forces described by the force–displacement relations recalled
in Eqs. (7a) and (7b). The normal stiffness kn and the tan-
gential stiffness kt (Fig. 10, right) are set according to the
parameters reported in Table 5. Likewise, the lateral forces
(G1 to G4) are set equal to the values given in Table 3.

Contrary to the analytical approach where the problem
was described from a differential formulation, the initial nor-
mal and tangential displacements cannot be dismissed in this
DEM approach in order to ensure the initial equilibrium prior
to the application of any vertical displacement. These dis-
placements were computed using Eqs. (5), (6), (7a) and (7b)
and imposed at each of the four grain contacts. If the normal
displacement at contact i corresponds to a geometrical grain
interpenetration as li = 2r +uni , the tangential displacement
at contact i is a hidden variable in the DEM code updated at
each time increment dt as duti = li α̇i dt .

From this initial equilibrium position, the testing proce-
dure used previously is applied by blocking the ycoordinate
of the bottom grain while moving the top grain step by step
in the downward direction until the axial strain reaches 20%.
During this strain-controlled procedure, the top and bottom
grains are left free to move along the x direction.

Since the DEM solves Newton’s second law, the response
of the system is inherently dynamic. However, a quasi-static
response of the grain column can be reached providing that:

• the incremental displacements imposed on the top grain
are very small compared to the grain radii;

• the system is left free to stabilize around an equilibrium
position before applying any new displacement incre-
ment.

During this testing procedure, the axial force F1 is recorded
and its evolution is plotted in terms of the axial strain in
Fig. 11. As done for the analytical model, the geometrical
evolution of the grain column, characterized by the deflection
angles α1, α2, α3 and α4, is plotted in Fig. 12. Overall, the
evolution of both the axial force and the four deflecting angles
are found to be very similar to the analytical curves given in
Figs. 2 and 4. As observed from the analytical model, the
stress-strain curve passes through a peak at 18% axial strain.
The system is therefore thought to be unstable.

To investigate the collapse of the grain column as a conse-
quence of the instability of the system, the control is switched
to a force control after 20% strain (dotted line in Fig. 11).
The vertical displacement yof the top grain is reset free and
a constant downward axial force Fext

1 is applied such that
Fext

1 = F20%
1 + dF where F20%

1 is the axial force obtained
at 20% strain (end of the displacement-controlled phase) and
dF = 0.005 F20%

1 . At 20% axial strain, the system is inca-
pable of withstanding the very small additional force dF and
a monotonous increase in axial strain is observed in Fig. 11
before the occurrence of localized buckling at 23.5% axial

7



Fig. 6 Axial force versus axial strain

A1

A2

Fig. 7 Terms A1 and A2 versus axial strain

strain. As mentioned in (Nicot et al. [21]; Nguyen et al. [16]),
the occurrence of failure of a given quasi-static system should
be linked to a transition toward a dynamic regime character-
ized by an outburst of kinetic energy. The time evolution of
both the axial strain and the kinetic energy during the force-
controlled phase is shown in Fig. 13.

At first, the axial strain increases more or less linearly
while the kinetic energy remains very small. After approxi-
mately 30 s, the kinetic energy increases dramatically until
an abrupt collapse of the chain occurs, resulting from the loss
of contact between several grains. This confirms the unsta-
ble state of the system predicted by the analytical approach
when the so-called softening regime (descending branch of
the axial force, after the peak) is reached. This marks the
bifurcation from a quasi-static regime to a dynamical regime
[17,18,21]. This dynamical regime, which was not within
the scope of the static model introduced in Sect. 2, is suc-
cessfully described here by the discrete element formulation
of the problem.

As introduced in Sect. 2, the determinant det H stands
as the key failure indicator of the grain column given that

it should vanish as soon as the column becomes unstable.
The evolution of this determinant is shown in Fig. 14 for
the two-phase testing procedure introduced in this subsec-
tion. As expected, its absolute value decreases until reaching
zero at the peak, highlighting that this limit state is an unsta-
ble equilibrium position. However, since the system evolves
under a displacement control, no failure occurs. As the sys-
tem evolves along the descending branch of Fig. 11, the
determinant becomes positive and increases slightly up to
20% axial strain. Then, during the force-controlled phase,
det H slowly decreases towards zero until the collapse of
the grain column, as predicted in Sect. 2. It is worth noting
that the determinant does not reach the zero value exactly;
in fact, when approaching this value (beyond 23% axial
strain), the response of the column becomes fully dynamic.
Figure 13 displays a sharp increase in kinetic energy, indi-
cating that inertial effects can no longer be omitted, contrary
to what was assumed in Sect. 2 developed in a static
context.
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Grain 1

Grain 2

Grain 3

Grain 4

Grain 5

Fig. 8 Geometrical configuration of the chain before loading (left) and
after loading (right)

4 Concluding remarks

Basically, the fabric of granular materials organizes around
two main components: (i) the force chains, gathering adjoin-
ing grains along a quasi-linear pattern, transmit contact forces
larger than the average value; (ii) the grain loops (or clusters),
surrounding the force chains, constitute the so-called weak
phase and ensure the stability of these linear patterns.

 y 

x z 

Fig. 10 YADE model and definition of the inter-particle contact law

Table 5 Numerical parameters used during the DEM simulations

Grain radius (m) kn (kN/m) kt (kN/m) Density (kg/m3)

0.1 1000 500 1000

The linear pattern analyzed in this manuscript models a
force chain, neighbored by a weak phase. The weak phase is
accounted for through a set of lateral forces Gi , assumed to
remain constant. In some cases (mainly due to the loading
conditions, and thus, to the neighboring conditions around the
chain), the axial force reaches a peak, and follows a descend-
ing branch. At the peak, the grain column is not able to sustain
a higher axial force. If an additional axial load is applied to
the force chain (which may occur in a granular assembly),
a collapse is expected to occur, because the external axial
force cannot be balanced by the internal forces developed
between grains. One important feature is that this limit state
does not stem from the local constitutive properties (the local
behavior is purely elastic), but from the fact that the geom-
etry of the column evolves. Of course, this instability mode
is amplified if sliding occurs between neighboring grains.
After developing an analytical approach in quasi-static con-

1
3

2
4

Fig. 9 Angles α1, α2, α3 and α4 versus axial strain
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Fig. 11 Axial force during the
displacement-controlled phase
(left of the dotted line) and
during the force-controlled
phase (right of the dotted line)

Fig. 12 Angles α1, α2, α3 and
α4 during the
displacement-controlled phase
(left of the dotted line) and
during the force-controlled
phase (right of the dotted line)

ditions, the main results were satisfactorily recovered from
numerical simulations based on a discrete element model. In
particular, the grain column was proved to be unstable once
the axial force reached a peak. Any additional elementary
axial loading makes the column collapse.

It should be emphasized that a simplified model was devel-
oped to exhibit instability modes that can occur even when the
local behavior at the contact between grains is purely elastic.
In this context, grain rotation and plastic sliding at contact
points are both omitted. The absence of grain rotation is rather
stabilizing, restricting the occurrence of instability modes. It
is therefore quite challenging to observe instability in this

context. Pointing out the role of translational displacements
between grains with a pure elastic behavior in the occurrence
of instability modes is the purpose of this manuscript.

Finally, this analysis points out the crucial interplay
between force chains and adjoining clustered structures
(grain clusters in 3D conditions, grain loops in 2D con-
ditions). Adjoining clusters define the loading conditions
applied to a given force chain and therefore the occurrence of
possible instability modes. Interestingly, the loading condi-
tions applied by the adjoining clusters depend on the topology
of these clusters [35] and therefore on their deformability. It
was clearly shown that in two-dimensional conditions, clus-
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Fig. 13 Axial strain (left) and
kinetic energy (right) during the
force-controlled phase over time

Fig. 14 Strain of the
determinant of H during the
displacement-controlled phase
(left of the dotted line) and
during the force-controlled
phase (right of the dotted line).
The inset corresponds to the
force-controlled phase

ters with at least four particles can be unstable themselves and
undergo large deformations [22]. Such deformations limit
the amplitude of the lateral confinement applied to the force
chains, making them more prone to collapse.

It should be noted that this finding is perfectly in accor-
dance with the recent investigation on elastic structures
(Ziegler column), where it is shown that some loading con-
ditions with specific kinematical constraints applied to an
initially stable column can destabilize an elastic structure
[3,4,15,20].
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