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Abstract—In this paper, we present an analytical lower bound
on the ergodic capacity of optical multiple-input multiple-output
(MIMO) channels. It turns out that the optical MIMO channel
matrix which couples the mt inputs (modes/cores) into mr

outputs (modes/cores) can be modeled as a sub-matrix of a
m × m Haar-distributed unitary matrix where m > mt,mr .
Using the fact that the probability density of the eigenvalues of a
random matrix from unitary ensemble can be expressed in terms
of the Christoffel-Darboux kernel. We provide a new analytical
expression of the ergodic capacity as function of signal-to-noise
ratio (SNR). Moreover, we derive a closed-form lower-bound
expression to the ergodic capacity. In addition, we also derive
an approximation to the ergodic capacity in low-SNR regimes.
Finally, we present numerical results supporting the expressions
derived.

I. INTRODUCTION

With the advent of massive multiple-input multiple-output

(MIMO) technologies and the development of Internet of

Things (IoT), the fifth generation cellular networks (5G)

should be supported by a high quality backhaul. This backhaul

can be realized through both wired and wireless technolo-

gies. Among all the possible solutions, the deployment of

optical fibers is the one that ensures the greatest throughput

while maintaining a high level of reliability. Moreover, space-

division multiplexing (SDM) based on multicore/multimode

optical fiber can significantly increase the capacity limit of

optical fibers [1]–[3] and it overcomes the capacity crunch.

To take full advantage of the potential throughput increase

promised by SDM, the in-band crosstalk must be properly

managed. This can be done using MIMO signal processing

techniques [4]. Moreover, assuming negligible backscattering

and near loss-less propagation, the propagation channel in an

optical fiber can be modeled by a complex random unitary

matrix [5].

For wireless communications, different models are used

to characterize the MIMO propagation channel. Most of the

time, the Rayleigh fading model [6] is used to model the

MIMO channel, in this case, the entries of the channel matrix

can be modeled by an independent and identically distibuted

zero mean Gaussian complex numbers. Moreover, the matrices

H†H are referred to as uncorrelated Wishart matrices, where

.† is the complex transconjugate. In optical fiber, the channel

matrix can be modeled by a Haar distributed matrix [7].

Therefore, the matrices follow the Jacobi unitary ensemble

[5]. The channel model of the SDM optical fiber was first

discussed in [8], further studied in [7], [9]. In [7] the ergodic

capacity of the Jacobi MIMO channel was expressed as an

integral and sum of Jacobi polynomials.

In this article, the ergodic capacity formula is first rewritten

to show that the polynomial part of the integrand consists

of the Christoffel-Darboux kernel [10]. Then, the Christoffel-

Darboux formula is used to reword the expression of the

ergodic capacity of loss-less SDM optical fiber channel. The

derived new expression reduces the computational complexity

of numerical evaluations of the ergodic capacity. Besides, we

use this new expression to propose a lower-bound of the

ergodic capacity. We finally use the proposed new expression

to derive a low SNR first order Taylor expansion of the

ergodic capacity. According to [8] and [7] as well as authors

knowledge, no existing work addresses the lower-bound and

low-SNR approximation of the ergodic capacity of the Jacobi

MIMO channel.

The rest of this paper is organized as follows. The sys-

tem model is introduced in Section II. In Section III, the

Christoffel-Darboux formula is used to derive a new expres-

sions for the ergodic capacity and its lower bound. Some

numerical results are provided to validate the accuracy of the

derived expressions in Section IV. Finally, Section V provides

a conclusion.

II. SYSTEM MODEL

In an optical MIMO-SDM system with mt transmit

cores/modes and mr receiving cores/modes, neglecting nonlin-

earities, the expression of the received signal can be expressed

as [8]:
y = Hx + n (1)

Where y ∈ C
mr×1 is the vector of received symbols,

x ∈ C
mt×1 vector of transmitted symbols, n ∈ C

mr×1 is the

Gaussian with zero mean and unitary variance noise vector

and H ∈ C
mr×mt is the channel matrix.

A multi-modes/multi-cores optical fiber composed by m

modes/cores can be modeled by a m×m matrix denoted G.

In the case of mt, mr ≤ m, if mt (mr) modes/cores are

excited for transmission (reception), the channel matrix H is

a mr × mt block of G. Without loss of generality, we can

take the upper-left corner of G [11]. In optical fiber, H can

be modeled as a random Haar distributed matrix [7]. This

matrix can be achieved by orthonormalizing an independent

identically distribution random Gaussian matrix. Moreover, if

H is a Haar distributed matrix, H†H follows the Jacobi Unitary

Ensemble (JUE).



Let us recall the definition of the Jacobi polynomials as fol-

lows. The Jacobi polynomial of degree n is denoted P a,b
n (x).

Those polynomials are orthogonal with respect to the inner

product:

〈P (x)|Q(x)〉 =

∫ 1

−1

(1− x)a(1 + x)bP (x)Q(x) dx (2)

More generally, with this inner product a Jacobi polynomial

of degree n is orthogonal with all polynomials of degree n−
1 or lower. Moreover, we recall here the expression of the

derivative of a Jacobi polynomial [12]:

P a,b′
n (x) =

(n+ a+ b+ 1)

2
P

a+1,b+1
n−1 (x) (3)

Furthermore, we suppose that the receiver has complete

channel state information (CSI) and that the transmitter has

no CSI. In this case, the definition of the ergodic capacity of

the channel is given by [6]–[8]:

Cm,ρ
mt,mr

= EH

{

log2
(

det(Imt
+ ρH†H)

)}

(4)

Where EH is the expectation with respect to the density of

the eigenvalues of H†H and ρ the signal-to-noise-ratio (SNR)

which can be defined by the ratio between the variance of the

received power and the variance of the noise.

When the total number of antennas exceeds the number of

modes/cores in the fiber, mr +mt > m, the ergodic capacity

can be expressed as [7]:

Cm,ρ
mt,mr

= (mt +mr −m) log2(1 + ρ) +C
m,ρ
m−mr,m−mt

(5)

Thus, without loss of generality, in this paper, our study will

be limited to the case mr + mt ≤ m, and the expression of

the ergodic capacity is given by [7]:

Cm,ρ
mt,mr

=

∫ 1

0

λa(1− λ)b log2(1 + λρ)

×
r−1
∑

k=0

B−1
k,a,b

[

P
a,b
k (1− 2λ)

]2

dλ (6)

Where P
a,b
k (x) is a Jacobi polynomial of degree k and:

Bk,a,b =
||P a,b

k (x)||2

2a+b+1

=
1

2k + a+ b+ 1

(

2k + a+ b

k

)(

2k + a+ b

k + a

)−1

(7)

Where
(

n
k

)

= n!
k!(n−k)! denotes the binomial coefficient, and

a = |mr −mt|, b = m−mr −mt, r = min{mr,mt}.

III. NEW EXPRESSION OF THE ERGODIC CAPACITY

Moreover, the expression of the diagonal Christoffel-

Darboux kernel is given by [10]:

Kn(x, x) =
n
∑

k=0

1

‖pk‖2
pk(x)

2 (8)

And the Christoffel-Darboux formula:

Kn(x, x) =
kn

kn+1‖pn‖2
(p′n+1(x)pn(x)− p′n(x)pn+1(x))

(9)

Where kn is the leading coefficient of the orthogonal

polynomial pn.

With the variable change x = 1− 2λ, the expression of the

ergodic capacity (6) can be rewritten:

Cm,ρ
mt,mr

=

∫ 1

−1

(1− x)a(1 + x)b log2

(

1 +
ρ(1− x)

2

)

×
r−1
∑

k=0

[

P
a,b
k (x)

]2

‖P a,b
k ‖2

dx (10)

The first theorem of this paper is obtained by applying the

Christoffel Darboux formula for Jacobi polynomials on (10)

and then by computing the derivatives of the polynomials with

(3).

Theorem 1. For mr+mt ≤ m with perfect CSI at the receiver

and no CSI at the transmitter, the expression of the ergodic

capacity of a Jacobi MIMO channel is:

Cm,ρ
mt,mr

= Ma,b
r

∫ 1

−1

(1−x)a(1+x)b log2

(

1 +
ρ(1− x)

2

)

×
[

P
a,b
r−1(x)P

a+1,b+1
r−1 (x)−Na,b

r P a,b
r (x)P a+1,b+1

r−2 (x)
]

dx

(11)

Where,

Ma,b
r =

(r + a+ b+ 1)!r!

2a+b+1(r + a− 1)!(r + b− 1)!(2r + a+ b)
, (12)

and,

Na,b
r =

(r + a+ b)

(r + a+ b+ 1)
(13)

.

In case where r is large (r ≥ 3), this new expression is more

convenient than (6) for numerical evaluations. Indeed, the

computation of the capacity with (6) requires the computation

of the sum of r− 1 products of Jacobi polynomials, whereas,

in (11) this sum is replaced by the difference between two

products.

The new expression expressed in theorem 1 can be used to

derive a lower bound for the capacity:

Lemma 1. If mr+mt ≤ m, the ergodic capacity of the Jacobi

MIMO channel is lower bounded by:

Lbm,ρ
mt,mr

= Ma,b
r

∫ 1

−1

(1−x)a(1+x)b log2

(

1 +
ρ(1− x)

2

)

× P
a,b
r−1(x)P

a+1,b+1
r−1 (x)dx (14)

Proof. To prove that (14) is a lower-bound of the capacity, it

is sufficient to prove that the quantity:

Q =

∫ 1

−1

(1− x)a(1 + x)b log2

(

1 +
ρ(1− x)

2

)

[

P a,b
r (x)P a+1,b+1

r−2 (x)
]

dx (15)



is negative.

First, the use of the inequality of convexity of the logarithm

log(1 + x) ≤ x leads to:

Q ≤
ρ

2 ln(2)

∫ 1

−1

(1−x)a+1(1+x)b
[

P a,b
r (x)P a+1,b+1

r−2 (x)
]

dx

(16)

Moreover, the link between the degree and the coefficients

of Jacobi polynomials can be made with [12]:

P a−1,b
n (x) =

(n+ a+ b)

(2n+ a+ b)
P a,b
n (x)−

(n+ b)

(2n+ a+ b)
P

a,b
n−1(x)

(17)

(17) and the orthogonality of Jacobi polynomials allow us

to conclude that:
∫ 1

−1

(1− x)a+1(1 + x)b
[

P a,b
r (x)P a+1,b+1

r−2 (x)
]

dx = 0 (18)

This finally proves that Q ≤ 0. This last result proves lemma

1.

Moreover, at low SNR, log(1 + x) ≈ x and thus Q ≈ 0,

thus, at low SNR,

Lbm,ρ
mt,mr

≈ Cm,ρ
mt,mr

(19)

We can note that, at low SNR, log(1 + x) ≈ x and thus

Q ≈ 0 and the proposed lower bound is a good approximation

of the capacity.

The novel expression of the ergodic capacity derived in

theorem 1 can also be used to propose a low SNR approx-

imation of the ergodic capacity. Indeed, at low SNR, the

ergodic capacity can be approximated by a very simple linear

expression.

Lemma 2. At low SNR, the expression of the ergodic capacity

of the Jacobi MIMO channel is:

Cm,ρ
mt,mr

≈
ρmrmt

m ln(2)
ρ ≪ 1 (20)

Thus, to maximize the capacity at low SNR, the number of

transmit and receiving cores/modes must be maximized and

the number of unused cores/modes must be minimized.

Proof. For mr +mt ≤ m,

Firstly, with the first order Taylor expansion of the loga-

rithm, ln(1 + x) ∼
0
x, (11) becomes:

Cm,ρ
mt,mr

=
ρMa,b

r

2 ln(2)

∫ 1

−1

(1− x)a+1(1 + x)b

[

P
a,b
r−1(x)P

a+1,b+1
r−1 (x)−Na,b

r P a,b
r (x)P a+1,b+1

r−2 (x)
]

dx

(21)

It has already been proved that:
∫ 1

−1

(1− x)a+1(1 + x)bP a,b
r (x)P a+1,b+1

r−2 (x)dx = 0 (22)

Then, with (17) and by performing the variable change x =
−x, the expression of the capacity at low SNR becomes:
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Fig. 1. Numerical evaluation of the ergodic capacity when m = 32

Cm,ρ
mt,mr

=
ρMa,b

r

2 ln(2)

∫ 1

−1

(1− x)b(1 + x)a+1

×
[

AP
b,a+1
r−1 (x)P b+1,a+1

r−1 (x) +BP
b,a+1
r−2 (x)P b+1,a+1

r−1 (x)
]

dx

(23)

Where

A =
(r + a+ b)

(2r + a+ b− 1)
B =

(r + b− 1)

(2r + a+ b− 1)
(24)

Finally, we can compute this integral with [13]:

∫ 1

−1

(1− x)c(1 + x)bP a,b
n (x)P c,b

m (x) dx =

2b+c+1(a+ b+m+ n)!(b+ n)!(c+m)!(a− c+ n−m− 1)!

m!(n−m)!(a+ b+ n)!(b+ c+m+ n+ 1)!(a− c− 1)!
(25)

Finally, 25 proves that at low SNR, the expression of the

ergodic capacity is:

Cm,ρ
mt,mr

=
ρ

ln(2)

(a+ r)r

(a+ b+ 2r)
(26)

Which proves lemma 2 in the case where mr +mt ≤ m.

This result can be extended to the case mr + mt > m with

the first order Taylor expansion of (5).

IV. NUMERICAL RESULTS

In this section, we provide a set of Matlab simulations that

illustrate the theoretical results presented in the previous sec-

tions. We first suppose that the number of supported modes in

the fiber is equal to 32 and that the SNR varies between 0 and

30 dB. In a first step, the ergodic capacity is computed using

the expression proposed in theorem 1, then the computation

is made using (6) proved in [7]. The obtained results with the

two formulas, for different values of mr and mt, are drawn

in figure 1.

Figure 1 shows that the two expressions of the ergodic

capacity ( Eq.(6) and Eq.(11)) produce the same simulation

results. Furthermore, the proposed expression of the ergodic

capacity reduces the evaluation time without impacting the

results. Note that mr and mt have a symmetrical role in the

expression of the ergodic capacity. Also, the evaluation time
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Fig. 2. Impact of unused cores/modes on the ergodic capacity
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Fig. 3. Simulated ergodic capacity and analytical lower bound against the
SNR when m = 32 and mt = mr

is drastically reduced when the parameter r = min{mr,mt}
is large.

In figure 2, we analyze the effect of unused modes on the

channel ergodic capacity. We compare the evolution of the

capacity where m = 16 and m = 32 for different values of

mr and mt. For a fixed number of transmit and receiving

cores/modes, the channel ergodic capacity decreases as m

increases. In other words, the capacity decreases as the number

of unused cores/modes increases. This observation allows to

generalize the observation done at low SNR.

Using the same simulation parameters (m, mr, mt and

the SNR variation range) as in figure 1, the channel ergodic

capacity and its lower-bound are depicted against the SNR in

figure 3. As anticipated, at low SNRs, the lower-bound of the

ergodic capacity is very close to the ergodic capacity. However,

them increases as the capacity gap between them increases

when SNR is large.

In figure 4, we analyze the evolution of the lower-bound of

the ergodic capacity for different values of mr and mt when

mr + mt = 16 and m = 32. The gap between the ergodic

capacity and the proposed lower bound expression decreases

as a = |mr−mt| is large. Moreover, this capacity gap reaches

a maximum when mr = mt.

V. CONCLUSION

In this paper, we used the Jacobi MIMO channel to analyze

the ergodic capacity of the propagation channel in a multi-
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Fig. 4. Simulated ergodic capacity and analytical lower bound against the
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mode/multi-core optical fiber. We first used the Christoffel-

Darboux formula to reformulate the expression of the er-

godic capacity. The proposed new expression reduces the

computation time to evaluate the ergodic capacity. Moreover,

this expression has been used to propose a lower-bound of

the capacity. We finally derived a very simple low SNR

approximation of the ergodic capacity.
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