
HAL Id: hal-01486575
https://hal.science/hal-01486575

Submitted on 10 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Ray Traversal of Constrained Delaunay
Tetrahedralization

Maxime Maria, Sébastien Horna, Lilian Aveneau

To cite this version:
Maxime Maria, Sébastien Horna, Lilian Aveneau. Efficient Ray Traversal of Constrained Delaunay
Tetrahedralization. 12th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP 2017), Feb 2017, Porto, Portugal. pp.236-243. �hal-
01486575�

https://hal.science/hal-01486575
https://hal.archives-ouvertes.fr


Efficient Ray Traversal of Constrained Delaunay Tetrahedralization

Maxime Maria1, Sébastien Horna1 and Lilian Aveneau1

1University of Poitiers, XLIM, UMR 7252, Futuroscope Chasseneuil Cedex, Poitiers, France

{maxime.maria, sebastien.horna, lilian.aveneau}@univ-poitiers.fr

Keywords: Ray Tracing, Acceleration Structure, Constrained Delaunay Tetrahedralization

Abstract: Acceleration structures are mandatory for ray-tracing applications, allowing to cast a large number of rays per

second. In 2008, Lagae and Dutré have proposed to use Constrained Delaunay Tetrahedralization (CDT) as an

acceleration structure for ray tracing. Our experiments show that their traversal algorithm is not suitable for

GPU applications, mainly due to arithmetic errors. This article proposes a new CDT traversal algorithm. This

new algorithm is more efficient than the previous ones: it uses less arithmetic operations; it does not add extra

thread divergence since it uses a fixed number of operation; at last, it is robust with 32-bits floats, contrary to

the previous traversal algorithms. Hence, it is the first method usable both on CPU and GPU.

1 INTRODUCTION

Ray tracing is a widely used method in computer

graphics, known for its capacity to simulate com-

plex lighting effects to render high-quality realistic

images. However, it is also recognized as time-

consuming due to its high computational cost.

To speed up the process, many acceleration struc-

tures have been proposed in the literature. They are

often based on a partition of Euclidean space or ob-

ject space, like kd-tree (Bentley, 1975), BSP-tree,

BVH (Rubin and Whitted, 1980; Kay and Kajiya,

1986) and regular grid (Fujimoto et al., 1986). A

survey comparing all these structures can be found

in (Havran, 2000). They can reach interactive render-

ing, e.g exploiting ray coherency (Wald et al., 2001;

Reshetov et al., 2005; Mahovsky and Wyvill, 2006)

or GPU parallelization (Purcell et al., 2002; Foley

and Sugerman, 2005; Günther et al., 2007; Aila and

Laine, 2009; Kalojanov et al., 2011). Nevertheless,

actually a lot of factors impact on traversal efficiency

(scene layout, rendering algorithm, etc.).

A different sort of acceleration structures is the

constrained convex space partition (CCSP), slightly

studied up to then. A CCSP is a space partition into

convex volumes respecting the scene geometry. (For-

tune, 1999) introduces this concept by proposing a

topological beam tracing using an acyclic convex sub-

division respecting the scene obstacles, but using a

hand-made structure. Recently, (Maria et al., 2017)

present a CCSP dedicated to architectural environ-

ments, hence limiting its purpose. (Lagae and Dutré,

2008) propose to use a constrained Delaunay tetrahe-

dralization (CDT), i.e. CCSP only made up of tetrahe-

dra. However, our experiments show that their CDT

traversal methods cannot run on GPU, due to numer-

ical errors.

Using a particular tetrahedron representation, this

paper proposes an efficient CDT traversal, having the

following advantages:

• It is robust, since it does not cause any error due to

numerical instability, either on CPU or on GPU.

• It requires less arithmetic operations and so it is

inherently faster than previous solutions.

• It is adapted to parallel programming since it does

not add extra thread divergence.

This article is organized as follows: Section 2 re-

capitulates previous CDT works. Section 3 presents

our new CDT traversal. Section 4 discusses our ex-

periments. Finally, Section 5 concludes this paper.

2 PREVIOUS WORKS ON CDT

This section first describes CDT, then it presents its

construction from a geometric model, before focusing

on former ray traversal methods.

2.1 CDT description

A Delaunay tetrahedralization of a set of points

X ∈ E
3 is a set of tetrahedra occupying the whole



Figure 1: Delaunay triangulation: no vertex is inside a cir-
cumscribed circle.

space and respecting the Delaunay criterion (Delau-

nay, 1934): a tetrahedron T , defined by four vertices

V ⊂ X , is a Delaunay tetrahedron if it exists a cir-

cumscribed sphere S of T such as no point of X \{V}
is inside S. Figure 1 illustrates this concept in 2D.

Delaunay tetrahedralization is “constrained” if it re-

spects the scene geometry. In other words, all the

geometric primitives are necessarily merged with the

faces of the tetrahedra making up the partition.

Three kinds of CDT exist: usual constrained

Delaunay tetrahedralization (Chew, 1989), conform-

ing Delaunay tetrahedralization (Edelsbrunner and

Tan, 1992) and quality Delaunay tetrahedraliza-

tion (Shewchuk, 1998). In ray tracing context, (Lagae

and Dutré, 2008) proved that quality Delaunay tetra-

hedralization is the most efficient to traverse.

2.2 CDT construction

CDT cannot be built from every geometric models. A

necessary but sufficient condition is that the model is a

piecewise linear complex (PLC) (Miller et al., 1996).

In 3D, any non empty intersection between two faces

of a PLC must correspond to either a shared edge or

vertex. In other words, there is no self-intersection

(Figure 2). In computer graphics, a scene is gener-

ally represented as an unstructured set of polygons. In

such a case, some self-intersections may exist. Nev-

ertheless, it is still possible to construct PLC using a

mesh repair technique such as (Zhou et al., 2016).

CDT can be built from a given PLC using the

Si’s method (Si, 2006). It results in a tetrahedral

mesh, containing two kinds of faces: occlusive faces,

belonging to the scene geometry; and some non-

occlusive faces, introduced to build the partition. Ob-

viously, a given ray should traverse the latter, as non-

occlusive faces do not belong to the input geometry.

2.3 CDT traversal

Finding the closest intersection between a ray and

CDT geometry is done in two main steps. First, the

(a) (b)

Figure 2: Examples of two non-PLC configurations: inter-
section between (a) two faces, (b) an edge and a face.

tetrahedron containing the ray origin is located. Sec-

ond, the ray goes through the tetrahedralization by

traversing one tetrahedron at a time until hitting an

occlusive face. This process is illustrated in Figure 3.

Let us notice that there is no need to explicitly test

intersections with the scene geometry, as usual ac-

celeration structures do. This is done implicitly by

searching the exit face from inside a tetrahedron.

Locate
origin

Exit face search

Return
intersection

Occlusive
face?

Propagate
ray

CDT Traversal

Yes No

Figure 3: CDT traversal overview: the main key of any
CDT traversal algorithm lies in the “exit face search” part.

2.3.1 Locating ray origin

Using pinhole camera model, all primary rays start

from the same origin. For an interactive application

locating this origin is needed only for the first frame,

hence it is a negligible problem. Indeed, camera mo-

tion generally corresponds to a translation, for in-

stance when the camera is shifted, or when ray origins

are locally perturbed for depth-of-field effect. Using a

maximal distance in the traversal algorithm efficiently

solves this kind of move.

Locating the origin of non primary rays is avoided

by exploiting implicit ray connectivity inside CDT:

both starting point and volume correspond to the ar-

rival of the previous ray.

2.3.2 Exit face search

Several methods have been proposed in order to find

the exit face of a ray from inside a tetrahedron. (La-

gae and Dutré, 2008) present four different ones. The

first uses four ray/plane intersections and is similar to



(Garrity, 1990). The second is based on half space

classification. The third finds the exit face using 6

permuted inner products (called side and noted ⊙) of

Plücker coordinates (Shoemake, 1998). It is similar to

(Platis and Theoharis, 2003) technique. Their fourth

and fastest method uses 3 to 6 Scalar Triple Products

(STP). It is remarkable that none of these four meth-

ods exploits the knowledge of the ray entry face.

For volume rendering, (Marmitt and Slusallek,

2006) extend (Platis and Theoharis, 2003). Their

method (from now MS06) exploits neighborhood re-

lations between tetrahedra to automatically discard

the entry face. It finds the exit face using 2,67 side

products on average. Since the number of products

varies, MS06 exhibits some thread divergence in par-

allel environment. This drawback also appears with

the fastest Lagae et al. method.

All these methods are not directly usable on GPU,

due to numerical instability. Indeed, the insufficient

arithmetic precision with 32-bits floats causes some

failures to traverse CDT, leading to infinite loops.

In this paper, we propose a new traversal algo-

rithm, based on Plücker coordinates. Like MS06,

it exploits the neighborhood relations between faces.

The originality lies in our specific tetrahedron repre-

sentation, allowing to use exactly 2 optimized side

products.

3 NEW TRAVERSAL

ALGORITHM

CDT traversal algorithm is a loop, searching for the

exit face from inside a tetrahedron (Figure 3). We

propose a new algorithm, both fast and robust. It

uses Plücker coordinates, i.e. six coordinates corre-

sponding to the line direction u and moment v. Such

a line is oriented: it passes through a first point p, and

then a second one q. Then, u = q− p and v = p× q.

For two lines l = {u : v} and l′ = {u′ : v′}, the sign

of the side product l⊙ l′ = u · v′+ v · u′ indicates the

relative orientation of the two lines: negative value

means clockwise orientation, zero value indicates in-

tersection, and positive value signifies counterclock-

wise orientation (Shoemake, 1998).

3.1 Exit face search

Our algorithm assumes that the entry face is known,

and that the ray stabs the current tetrahedron. For a

given entry face, we use its complement in the tetrahe-

dron, i.e. the part made of one vertex, three edges and

three faces. We denote Λ0, Λ1 and Λ2 the complement

edges, with counterclockwise orientation from inside

Λ2

Λ0

Λ1

r

r⊙Λ1

r⊙Λ2

21

< 0

≥ 0 ≥ 0

r⊙Λ0

< 0< 0

≥ 0

10

(b)(a)

Figure 4: Exit face search example: (a) ray r enters the
tetrahedron through the back face; (b) r⊙Λ2 < 0 and r⊙
Λ0 ≥ 0, so the exit face is identified by 0.

the tetrahedron (Figure 4). We number complement

faces with a local identifier from 0 to 2, such that:

face 0 is bounded by Λ0 and Λ2, face 1 is bounded

by Λ1 and Λ0, and face 2 is bounded by Λ2 and Λ1.

Using Plücker side product, the face stabbed by ray r

is:

• face 0, if and only if r turns counterclockwise

around Λ0 and clockwise around Λ2 (r⊙Λ0 ≥ 0

and r⊙Λ2 < 0);

• face 1, if and only if r turns counterclockwise

around Λ1 and clockwise around Λ0 (r⊙Λ1 ≥ 0

and r⊙Λ0 < 0);

• face 2, if and only if r turns counterclockwise

around Λ2 and clockwise around Λ1 (r⊙Λ2 ≥ 0

and r⊙Λ1 < 0).

We compact these conditions into a decision tree

(Figure 4(b)). Each leaf corresponds to an exit face,

and each interior node represents a side product be-

tween r and a line Λi. At the root, we check r⊙Λ2. If

it is negative (clockwise), then r cannot stab face 2: in

the left subtree, we only have to determine if r stabs

face 0 or 1, using their shared edge Λ0. Otherwise, r

turns counterclockwise around Λ2 and so cannot stab

face 0, and the right subtree we check if r stabs face

1 or 2 using their shared edge Λ1. With Figure 4(a)

example, r turns clockwise around Λ2 and then coun-

terclockwise around Λ0; so, r exits through face 0.

Require: Fe = {Λ0,Λ1,Λ2}: entry face; Λr: ray;

Ensure: Fs: exit face;

1: side← Λr⊙Fe.Λ2;

2: id← (side≥ 0); {id ∈ {0,1}}
3: side← Λr⊙Fe.Λid ;

4: id← id +(side < 0); {id ∈ {0,1,2}}
5: Fs← getFace(Fe,id);

6: return Fs;

Algorithm 1: Exit face search from inside a tetrahedron.



Exit Entry face

identifier F0 F1 F2 F3

0 F1 F0 F0 F0

1 F2 F3 F1 F2

2 F3 F2 F3 F1

Table 1: Exit face according to the entry face and a local
identifier in {0,1,2}, following a consistent face numbering
(Figure 5(a)).

Since every decision tree branch has a fixed depth

of 2, our new exit face search method answers using

exactly two side products. Moreover, it is optimized

to run efficiently without any conditional instruction

(Algorithm 1). Notice that leave labels form two pairs

from left to right: the first pair (0,1) is equal to the

second (1,2), minus 1. Then, it uses that successful

logical test returns 1 (and 0 in failure case) to decide

which face to discard. So, the test r⊙Λ2 ≥ 0 allows

to decide if we have to consider the first or the second

pair. Finally, the same method is used with either the

line Λ0 or Λ1.

This algorithm ends with getFace function call.

This function returns the tetrahedron face number ac-

cording to the entry face and to the exit face label.

It answers using a lookup-table, defined using simple

combinatorics (Table 1), assuming a consistent label-

ing of tetrahedron faces (Figure 5(a)).

3.2 Data structure

Algorithm 1 works for any entry face of any tetrahe-

dron. It relies on two specific representations of the

tetrahedron faces: a local identifier in {0,1,2}, and

global face Fi, i ∈ [0 . . .3]. For a given face, it uses 3

Plücker lines Λi. Since such lines contain 6 coordi-

nates, a face needs 18 single precision floats for the

lines (18 × 32 bits), plus brdf and neighborhood data

(tetrahedron and face numbers).

To reduce data size and balance GPU computa-

tions and memory accesses, we dynamically calculate

the Plücker lines knowing their extremities: each line

starts from a face vertex and ends with the comple-

ment vertex. So, we need all the tetrahedron vertices.

We arrange the faces such that their complement ver-

tex have the same number, implicitly known. Vertices

are stored into tetrahedra (for coalescent memory ac-

cesses), and vertex indices (in [0 . . .3]) are stored into

faces. This leads to the following data structure:

s t r u c t Face {
i n t b r d f ; / / −1: Non−O c c l u s i v e
i n t t e t r a ; / / n e i g h b o r
i n t f a c e ; / / n e i g h b o r
i n t idV [ 3 ] ; / / f a c e v e r t i c e s

} ;

V3
V2

V1

V0

F1

F0

F2

F3

(a)

V3

F3

Λ2

Λ0

Λ1

(b)

Figure 5: Description of a tetrahedron: (a) vertices and
faces numbering; (b) the complement vertex for F3 is {V3},
and its edges are Λ0 =V1V3, Λ1 =V0V3 and Λ2 =V2V3.

s t r u c t T e t r a h e d r o n {
f l o a t 3 V [ 4 ] ; / / v e r t i c e s
Face F [ 4 ] ; / / f a c e s

} ;

To save memory and so bandwidth, we compact

the structure Face. The neighboring face (the field

face) is a number between 0 and 3; it can be encoded

using two bits, and so packed with the field tetra,

corresponding to the neighboring tetrahedron. Thus,

tetrahedron identifiers are encoded on 30 bits, allow-

ing a maximum of one billion tetrahedra. In a similar

way, field idV needs only 2 bits per vertex. But, they

are common to all the tetrahedra, and so are stored

only once for all into 4 unsigned char. Hence, a

face needs 8 bytes, and a full tetrahedron 80 bytes.

Notice that, on GPU a vertex is represented by 4 floats

to have aligned memory accesses. Then on GPU a full

tetrahedron needs 96 bytes.

Figure 5 proposes an example: for F3 (made using

the complement vertex V3 and counterclockwise ver-

texes V1, V0 and V2), we can deduce that Λ0 = V1V3,

Λ1 = V0V3 and Λ2 = V2V3. Table 2 gives the descrip-

tion of faces according to their vertices and edges, fol-

lowing face numbering presented in Figure 5(a).

F Vertexes Λ0 Λ1 Λ2

0 {3,1,2} V3V0 V1V0 V2V0

1 {2,0,3} V2V1 V0V1 V3V1

2 {3,0,1} V3V2 V0V2 V1V2

3 {1,0,2} V1V3 V0V3 V2V3

Table 2: Complement edges of entry face Fi are implicitly
described by the face complement vertex (identified by i),
and its vertices in counterclockwise order.

3.3 Exiting the starting volume

Algorithm 1 assumes known the entry face. This con-

dition is not fulfilled for the starting tetrahedron. Al-

gorithm 1 must be adapted in that case. A simple so-

lution lies in using a decision tree of depth 4, leading



to three Plücker side products. One can settle this tree

starting with any edge to discriminate between two

faces, and so on with the children.

Nevertheless, a simpler but equivalent solution ex-

ists. Once the root fixed, we have only three possi-

ble exit faces. This corresponds to Algorithm 1, as

if the discarded face was the entry one. So, we just

choose one edge to discard a face and then we call

Algorithm 1 with the discarded exit face as the fake

entry one. This leads to Algorithm 2. We naturally

choose edge V2V3 shared by faces F0 and F1 (Fig-

ure 5(a)). If the side product is negative, then we can-

not exit through F1. Else, with a positive or null value,

we cannot exit through F0. Thus, the starting tetrahe-

dron problem is solved using three and only three side

products.

Require: T = {Vi,Fi}i∈[0...3]: Tetrahedron; Λr: Ray;

Ensure: Fs: exit face;

1: side← Λr⊙V2V3;

2: f← side < 0; {f∈ {0,1}}
3: return ExitTetra(Ff ,Λr); {Algorithm 1}

Algorithm 2: Exit face search from the starting tetrahedron.

3.4 Efficient side product

Both Algorithm 1 and 2 use Plücker side products. A

naive approach results in 23 operations per side prod-

uct: to calculate Plücker coordinates, we need 3 sub-

tractions for its direction and 6 multiplications and 3

subtractions for its moment. Then, side product needs

6 multiplications and 5 additions. The two side prod-

ucts in Algorithm 1 result in 46 operations.

We propose a new method using less operations. It

rests upon a coordinate system translation to the com-

plement vertex Vf of the entry face. In this local sys-

tem, lines Λi have a nil moment (since they contain

the origin). So, side products are inner products of

vectors having only 3 coordinates: each one needs 3

multiplications and 2 additions. Moreover, line direc-

tions are computed using 3 subtractions. Hence, such

side products need only 8 operations.

Nevertheless, we also need to modify Plücker co-

ordinates of the ray r to obtain valid side products.

Let us recall how a Plücker line is made. We com-

pute its direction u using two points p and q on the

line, and its moment v with p× q = p× u. In the lo-

cal coordinates system, the new line coordinates must

be calculated using translated points. The direction is

obviously the same, only v is modified:

v′ = (p−Vf )×u

= p×u−Vf ×u

= v−Vf ×u.

So, v′ is calculated using 12 operations: 3 subtrac-

tions, 6 multiplications and 3 subtractions. This ray

transformation is done once per tetrahedron, the local

coordinates system being shared for all the lines Λi.

As a conclusion, the number of arithmetic opera-

tions involved in Algorithm 1 can be decreased from

46 to 28, saving about 40% of computations.

4 EXPERIMENTS

This section discusses some experiments made using

our new traversal algorithm.

4.1 Results

Performance is evaluated using three objects tetrahe-

dralized using Tetgen (Si, 2015). Table 3 sums up

their main characteristics and measured performance.

The simplest object is constructed from a banana

model, with 25k occlusive faces. The other two corre-

spond to well-known Stanford’s objects: BUNNY and

ARMADILLO. Their CDT respectively count 200k

and 1.1M occlusive faces. We use quality CDT, in-

troducing new vertices into object models, explaining

the high number of faces our three objects have.

Performance is measured in millions of ray cast

per second (Mrays/s) using ray casting, 1024× 1024

pixels and no anti-aliasing. The used computer pos-

sesses an Intel R© CoreTM i7-4930K CPU @ 3.40Ghz,

32 Gb RAM and NVidia R© GeForce R© GTX 680. Al-

gorithms are made parallel on CPU (OpenMP) and

GPU (CUDA, with persistent threads (Aila et al.,

2012)). On average, CPU ray casting reaches 9

Mrays/s, GPU version 280 Mrays/s.

4.2 Traversal

Closest ray/object intersection is found by travers-

ing CDT one tetrahedron at a time until hitting an

occlusive face. The ray traversal complexity is lin-

ear in the number of traversed tetrahedra. Figure 6

shows the relation between execution time (T ) and

number of traversed tetrahedra per image (Φ). Statis-

tics are extracted on CPU using 1,282 points of view

from BUNNY. The execution time is proportional to

Φ: on point of view (A), almost 10 millions tetrahe-

dra are traversed in 40.1 ms; on point of view (B),

we traverse 23 millions tetrahedra in 122 ms. It is



BANANA BUNNY ARMADILLO

Tetrahedra 71,300 682,733 2,990,552

Occlusive faces 24,568 222,775 1,105,218

Non-occlusive faces 117,994 1,142,650 4,875,834

Memory (MB) 6 62 273

Ray-casting (Mray/s)
CPU 9.76 10.5 6.75

GPU 428 289 123

Table 3: Scenes characteristics and performance: number of tetrahedra, number of occlusive faces (faces coming from the
model), number of non-occlusive faces (faces created during tetrahedralization), occupied memory and ray casting perfor-
mance in millions of ray cast per second on CPU and GPU.

T = 40.1 ms - Φ = 9.6 (A) T = 122 ms - Φ = 22.71 (B)

ΦT

200

160

120

80

40

0

35

30

25

20

15

0

10

5

1000 200

Number of traversed tetrahedra per ray

200+

Figure 6: Rendering times on CPU in ms (T , red curve) and number of traversed tetrahedra in millions (Φ, gray bars) using
1,282 points of view and BUNNY; (A) T = 40.1 ms - Φ = 9.6; (B) T = 122 ms - Φ = 22.71.

not strictly proportional, mainly due to memory ac-

cesses that become more important when more tetra-

hedra are traversed, leading to more memory cache

defaults. False-colored image of point of view (B) re-

veals that rays going close to object boundary traverse

more tetrahedra.

4.3 Numerical robustness

Using floating-point numbers can cause errors due to

numerical instability. Tetgen uses geometric predi-

cates (e.g. (Shewchuk, 1996) or (Devillers and Pion,

2003)) to construct robust CDT. If this is common

practice in algebraic geometry, it is not the case in

rendering. Hence, it is too expensive to be used in

CDT ray traversal.

We experimented three methods proposed in (La-

gae and Dutré, 2008) (ray/plane intersection tests,

Plücker coordinates and STP), plus the method pro-

posed in (Marmitt and Slusallek, 2006) (MS06) (Sec-

tion 2.3.2). We noticed they all suffer from numer-

ical errors either on CPU or GPU. Indeed, calcula-

tion are not enough precise with rather flat tetrahedra.

Thus, without extra treatment (like moving the ver-

tices) these algorithms may return a wrong exit face

or do not find any face at all (no test is valid). Table 4

reports for each object the number of rays per image

concerned by this problem, averaged over points of



BANANA BUNNY ARMADILLO

Ray/plane 33.27 40.85 74.85

Plücker 3.6 22.25 412.13

STP 63.07 204.89 456.65

MS06 0.0007 0.004 0.422

Ours 0 0 0

Table 4: Numerical errors impact on GPU: number of rays
suffering from wrong results for 1024× 1024 pixels, and
averaged over about 1,300 points of view.

view series.

In contrast, we did not obtain wrong results us-

ing our method. It can be explained by the smaller

number of performed arithmetic operations; less nu-

merical errors accumulated, more accurate results.

4.4 Exit face search comparison

This section compares performance of our exit face

search algorithm with the same 4 previous methods:

ray/plane intersection tests, Plücker coordinates, STP

and MS06 (Section 2.3.2). Statistics are summed up

in Table 5. Times are measured for 16,384 random

rays stabbing 10,000 random tetrahedra, both on CPU

(using one thread) and GPU.

Method
Time (ms)

CPU GPU

Ray/plane 15,623 36

Plücker 10,101 28

STP 4,876 29

MS06 5,994 21

Ours 2,663 13

Table 5: Exit face search comparison: time (in ms) to deter-
mine the exit face for 10,000 tetrahedra and 16,384 random
rays per tetrahedron; on CPU (single thread) and on GPU.

CPU results show that our method is much more

efficient than former ones. This behavior is expected

since our new method requires less arithmetic opera-

tions. STP is the fastest previous method, but is 83%

slower than ours.

On GPU, results are slightly different. For exam-

ple, Plücker method is faster than STP. Indeed, even

if it requires more operations, it does not add extra

thread divergence. Hence, it is more adapted to GPU.

Among the previous GPU methods, the most efficient

is MS06, still 59% slower than ours.

4.5 State-of-the-art comparison

In (Lagae and Dutré, 2008), authors noticed that ren-

dering using CDT as acceleration structure takes two

to three more computation times than using kdtree. In

CDT
BVH

(Aila et al., 2012)

BANANA 315-947 200-260

BUNNY 130-1040 160-260

ARMADILLO 82-160 130-260

Table 6: Performance comparison with (Aila et al., 2012),
in number of frames per second.

this last section, we check if it is still the case using

our new tetrahedron exit algorithm and on GPU. We

compare our GPU ray-tracer with the state-of-the-art

ray tracer (Aila et al., 2012), always using the same

computer. Their acceleration structure is BVH, con-

structed using SAH (MacDonald and Booth, 1990)

and split of large triangles (Ernst and Greiner, 2007).

To our knowledge, nowadays their implementation is

the fastest GPU one.

Table 6 sums up this comparison. Results show

that CDT is still not a faster acceleration structure

than classical ones (at least than BVH on GPU). First,

the timings show larger amplitude using CDT than

BVH. Moreover, while CDT is on average faster than

BVH with BANANA and BUNNY models, it is no

more true using ARMADILLO. This is directly linked

to the traversal complexity of the two structures. BVH

being built up following SAH, its performance is less

impacted with the geometry input size, contrary to

CDT where this size has a direct impact on perfor-

mance. Clearly, a heuristics similar to SAH is missing

for tetrahedralization.

5 CONCLUSION

This article proposes a new CDT ray traversal algo-

rithm. It is based upon a specific tetrahedron repre-

sentation, and fast Plücker side products. It uses less

arithmetic operations than previous methods. Last but

not least, it does not involve any conditional instruc-

tions, employing two and only two side products to

exit a given tetrahedron.

This algorithm exhibits several advantages com-

pared to the previous ones. Firstly it is inherently

faster, requiring less arithmetic operations. Secondly

it is more adapted to parallel computing, since having

a fixed number of operations it does not involve extra

thread divergence. Finally, it is robust and works with

32-bits floats either on CPU or GPU.

As future work, we plan to design a new construc-

tion heuristic, to obtain as fast to traverse as possible

CDT. Indeed, CDT traversal speed highly depends on

its construction. CDT traversal complexity is linear

in the number of traversed tetrahedra: the less tra-



versed tetrahedra, the more high performance. Be-

fore SAH introduction, the same problem existed with

well-known acceleration structures like kd-tree and

BVH, for which performance highly depends on the

geometric model. Since CDT for ray-tracing is a re-

cent method, we expect that similar heuristics exists.

REFERENCES

Aila, T. and Laine, S. (2009). Understanding the Efficiency
of Ray Traversal on GPUs. In High-Performance
Graphics, HPG ’09, pages 145–149.

Aila, T., Laine, S., and Karras, T. (2012). Understanding
the efficiency of ray traversal on GPUs – Kepler and
Fermi addendum. Technical report, NVIDIA Corp.

Bentley, J. L. (1975). Multidimensional Binary Search
Trees Used for Associative Searching. Communica-
tions of the ACM, 18(9):509–517.

Chew, L. P. (1989). Constrained Delaunay triangulations.
Algorithmica, 4:97–108.

Delaunay, B. (1934). Sur la sphère vide. À la mémoire de
Georges Voronoı̈. Bulletin de l’Académie des Sciences
de l’URSS, (6):793–800.

Devillers, O. and Pion, S. (2003). Efficient Exact Ge-
ometric Predicates for Delaunay Triangulations. In
5th Workshop on Algorithm Engineering and Exper-
iments, ALENEX ’03, pages 37–44.

Edelsbrunner, H. and Tan, T. S. (1992). An upper bound
for conforming delaunay triangulations. In 8th An-
nual Symposium on Computational Geometry, SCG
’92, pages 53–62.

Ernst, M. and Greiner, G. (2007). Early Split Clipping for
Bounding Volume Hierarchies. In IEEE Symposium
on Interactive Ray Tracing, RT ’07, pages 73–78.

Foley, T. and Sugerman, J. (2005). KD-tree Accelera-
tion Structures for a GPU Raytracer. In ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
Hardware, HWWS ’05, pages 15–22.

Fortune, S. (1999). Topological Beam Tracing. In 15th An-
nual Symposium on Computational Geometry, SCG
’99, pages 59–68.

Fujimoto, A., Tanaka, T., and Iwata, K. (1986). ARTS:
Accelerated Ray-Tracing System. IEEE Computer
Graphics and Applications, 6(4):16–26.

Garrity, M. P. (1990). Raytracing Irregular Volume Data.
ACM SIGGRAPH Computer Graphics, 24(5):35–40.

Günther, J., Popov, S., Seidel, H.-P., and Slusallek, P.
(2007). Realtime Ray Tracing on GPU with BVH-
based Packet Traversal. In IEEE Symposium on Inter-
active Ray Tracing 2007, RT ’07, pages 113–118.

Havran, V. (2000). Heuristic Ray Shooting Algorithms.
PhD thesis, Department of Computer Science and En-
gineering, Faculty of Electrical Engineering, Czech
Technical University in Prague.

Kalojanov, J., Billeter, M., and Slusallek, P. (2011). Two-
Level Grids for Ray Tracing on GPUs. Computer
Graphics Forum, 30(2):307–314.

Kay, T. L. and Kajiya, J. T. (1986). Ray Tracing Com-
plex Scenes. ACM SIGGRAPH Computer Graphics,
20(4):269–278.

Lagae, A. and Dutré, P. (2008). Accelerating Ray Trac-
ing using Constrained Tetrahedralizations. Computer
Graphics Forum, (4):1303–1312.

MacDonald, D. J. and Booth, K. S. (1990). Heuristics for
Ray Tracing Using Space Subdivision. The Visual
Computer, 6(3):153–166.

Mahovsky, J. and Wyvill, B. (2006). Memory-Conserving
Bounding Volume Hierarchies with Coherent Raytrac-
ing. Computer Graphics Forum, 25(2):173–182.

Maria, M., Horna, S., and Aveneau, L. (2017). Constrained
Convex Space Partition for Ray Tracing in Architec-
tural Environments. Computer Graphics Forum.

Marmitt, G. and Slusallek, P. (2006). Fast Ray Traversal
of Tetrahedral and Hexahedral Meshes for Direct Vol-
ume Rendering. In 8th Joint EG / IEEE VGTC Confer-
ence on Visualization, EUROVIS ’06, pages 235–242.

Miller, G. L., Talmor, D., Teng, S.-H., Walkington, N.,
and Wang, H. (1996). Control Volume Meshes using
Sphere Packing: Generation, Refinement and Coars-
ening. In 5th International Meshing Roundtable, IMR
’96, pages 47–62.

Platis, N. and Theoharis, T. (2003). Fast Ray-Tetrahedron
Intersection Using Plucker Coordinates. Journal of
Graphics Tools, 8(4):37–48.

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan,
P. (2002). Ray Tracing on Programmable Graph-
ics Hardware. ACM Transactions on Graphics,
21(3):703–712.

Reshetov, A., Soupikov, A., and Hurley, J. (2005). Multi-
level Ray Tracing Algorithm. ACM Transactions on
Graphics, 24(3):1176–1185.

Rubin, S. M. and Whitted, T. (1980). A 3-dimensional rep-
resentation for fast rendering of complex scenes. ACM
SIGGRAPH Computer Graphics, 14(3):110–116.

Shewchuk, J. R. (1996). Adaptive precision floating-point
arithmetic and fast robust geometric predicates. Dis-
crete & Computational Geometry, 18:305–363.

Shewchuk, J. R. (1998). Tetrahedral Mesh Generation by
Delaunay Refinement. In 14th Annual Symposium on
Computational Geometry, SCG ’98, pages 86–95.

Shoemake, K. (1998). Plücker coordinate tutorial. Ray
Tracing News, 11:20–25.

Si, H. (2006). On Refinement of Constrained Delaunay
Tetrahedralizations. In 15th International Meshing
Roundtable, IMR ’06, pages 509–528.

Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahe-
dral Mesh Generator. ACM Transactions on Mathe-
matical Software, 41(2).

Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001).
Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum, 20(3):153–165.

Zhou, Q., Grinspun, E., Zorin, D., and Jacobson, A. (2016).
Mesh Arrangements for Solid Geometry. ACM Trans-
actions on Graphics, 35(4).


