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Abstract. An implicit method based on high-order differentiation to
determine the mean, Gaussian and principal curvatures of implicit sur-
faces from a three-dimensional scalar field is presented and assessed. The
method also determines normal vectors and principal directions. Com-
pared to explicit methods, the implicit approach shows robustness and
improved accuracy to measure curvatures of implicit surfaces. This is
evaluated on simple cases where curvature is known in closed-form. The
method is applied to compute the curvatures of wrinkled flames on large
triangular unstructured meshes (namely a 3D isosurface of temperature).
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Introduction

Curvatures play an important role in many areas of physics where interfaces
are encountered [13,20]. For instance, local curvatures can modify combustion
speed [1,8,9,38], surface tension [4] and evaporation speed [7]. Accurate methods
for determining curvatures can then be of paramount importance for flow analy-
sis. In the recent study of Yu et Bai [38], local mean and Gaussian curvatures are
computed to analyse deflagration fronts during an auto-ignition. Strong saddle
front and small sphere front are shown to play an important role during the
auto-ignition process. However, numerical techniques used to estimate curva-
tures are not detailed and plots with curvatures show a large scattering of data.
The present work proposes implicit methods to improve such analyses. These
methods measure curvatures and principal directions of isosurfaces extracted
from 3D data. Many methods use an explicit representation of surfaces, where



2

the surface is discretized by elementary 2D cells like triangles, but very few make
use of values of the scalar function that defines implicitly the surface.

The visualization of implicit surfaces is however commonly encountered in
magnetic resonance, tomography [19] or in the post-processing of three dimen-
sional data of numerical simulation [31]. The implicit description of surfaces is
also used in level set methods [26] where a scalar function φ(x, y, z) is introduced
for computational purpose. The use of such an implicit representation can handle
complex changes of topology that may be encountered e.g. in primary break-up
of sprays [17] or in turbulent flame propagation [36]. The dynamics of explicit
three-dimensional flame surfaces can be computed, but requires complex treat-
ment of intersections (coalescence, break-up) [9]. Whereas the mean curvature
is often deduced from the divergence of ∇φ [26], the Gaussian curvature is usu-
ally not computed. However, a similar expression for the Gaussian curvature
for implicitly defined surfaces, provided in the recent studies of Trott [35] and
Goldman [14], is of interest to deduce minimal and maximal curvatures for flow
analysis. Note that Goldman also extends curvature formulas to higher dimen-
sion than 3D but does not discuss about principal directions. In [18], Lehmann
et Reif detail how to build the curvature tensor. No explicit formulas are given
for principal curvatures or principal directions but their methodology allows to
compute them independently of a given parametrization by searching eigenvalues
and eigenvectors. In our study, a scalar formulation of Goldmann’s expression
and an algorithm derived from [18] are validated through numerical tests with
high order diffuse approximation and Lagrange differentiation schemes.

Implicit surfaces of 3D scalar data are commonly extracted by a marching
cube method to be visualized or analysed. This method has been introduced by
Lorensen and Cline [19] to extract an explicit unstructured mesh of the isosur-
face using triangles including topological information. The obtained isocontour
is a three-dimensional surface. It is for instance used for flow visualization in the
open-source software ParaView [31] or in the GTS library [29,34]. Various algo-
rithms are available to determine curvatures from a triangle mesh [10,15,22,24,27,28].
Such algorithms may be used to compute curvatures of the explicit mesh rep-
resenting the isosurface. We call them by “explicit methods” in opposition to
“implicit methods” that use 3D scalar data. A comparison between many usual
methods can be found in Gatze et al. [12]. For instance, local fitting methods
of analytical surface with a least square approximation allow to approximate
mean and Gaussian curvatures [12,22]. Meyer et al. [24] define several discrete
operators to compute normal vectors and curvatures. If discrete methods [11,24]
are appealing from a computational point of view compared to fitting methods,
they suffer from the noise and regularity issues [12]. In this paper, we show that
the present ‘implicit method’ to determine curvatures is more accurate and less
sensitive to surface discretization errors than these ‘explicit methods’ to analyse
isosurfaces from 3D scalar data.

In section 1, we gather some formula of the literature allowing to compute
the principal curvatures of implicit surfaces and propose an algorithm to de-
termine corresponding principal directions. High order differentiation schemes



3

used in ‘implicit methods’ are briefly presented in section 2. The accuracy of
the proposed implicit methods to determine curvatures, normals and principal
directions is assessed in section 3. The method is also tested to measure curva-
tures of isocontours extracted from 3D scalar fields and compared to ‘explicit
methods’ in terms of accuracy and speed. It is then applied on large data of
Direct Numerical Simulations of expanding and imploding flames in section 4.
Concluding remarks end the paper in section 5.

1 Curvatures and principal directions of implicit surfaces

In level set methods, it is common to use a 3D scalar function φ(x, y, z) to
implicitly define an interface. The interface is then a 3D surface defined as the
isocontour φ(x, y, z) = φ0 = cst. Some geometrical properties like normals n and
mean curvatures κH are deduced from φ using formulas (1) and (2):

n =
∇φ

‖∇φ‖ =
∇φ

[(∂φ/∂x)2 + (∂φ/∂y)2 + (∂φ/∂z)2]
1/2

(1)

κH =
∇ · n

2
=
φ2x(φyy + φzz) + φ2y(φxx + φzz) + φ2z(φxx + φyy)

2 · (φ2x + φ2y + φ2z)
3/2

− φxφyφxy + φxφzφxz + φyφzφyz
(φ2x + φ2y + φ2z)

3/2
(2a)

=
φuu + φvv

2 · |φn|
(2b)

The two-dimensional version of equation (2a) was first used in the context of
the level set method by Chang et al. [6]. The three-dimensional version can be
found for example in Osher and Fedkiw [26, pp. 12]. In an orthonormal frame
(n, u, v) where u and v are arbitrary vectors defining the tangent plane to the
surface, the formula (2a) reduces to a simpler expression (2b).

A similar expression for the Gaussian curvature κK is derived in Goldman
(see eqn (4.1) in [14]) where κK is expressed as a function of the gradient ∇φ,
the Hessian matrix H(φ) and its adjugate matrix. A scalar formulation is also
derived using the Mathematica software in Trott [35, pp. 1285–1286]. The for-
mulation (3a) used in this work is a scalar formulation similar to [35] but slightly
reformulated to prevent a division by zero when φz vanishes:

κK = 2
φxφy(φxzφyz − φxyφzz) + φxφz(φxyφyz − φxzφyy) + φyφz(φxyφxz − φyzφxx)

(φ2x + φ2y + φ2z)
2

+
φ2x · (φyyφzz − φ2yz) + φ2y · (φxxφzz − φ2xz) + φ2z · (φxxφyy − φ2xy)

(φ2x + φ2y + φ2z)
2

(3a)

=
φuuφvv − φ2uv

φ2n
(3b)



4

Expressions (2b) and (3b) are also the eigenvalues of the curvature tensor as
explained in [18] and shown in the annex A. The annex A also shows how to
derive expressions in the (x,y,z) basis from φuu, φuv and φvv using change of
basis (15). Since κK = κmin ·κmax and κH = (κmin+κmax)/2, the minimal and
maximal curvatures are then deduced from the mean and Gaussian curvatures:

κmin = κH −
√
|κ2H − κK | (4a)

κmax = κH +
√
|κ2H − κK | (4b)

With the chosen convention of orientation, normal vectors point to large values
of φ and curvatures are negative when normals converge towards high φ values.

At umbilical points where κmin = κmax, any direction is a principal direction.
However, directions of the minimal and maximal curvatures of implicit surfaces
are single solutions at non-umbilical points and may be computed by searching
eigenvectors of the curvature tensor, as detailed in Lehmann et Reif [18]. Rather
than using an eigenvector solver, we derive in annex A expressions to directly
compute principal directions t1, t2 corresponding to principal curvatures κ1 =
κH −

√
|κ2H − κK | · ζ, κ2 = κH +

√
|κ2H − κK | · ζ:

t1 =

0
φuv
κ1φn − φuu


n,u,v

=

 (κ1φn − φuu) · vx + φuvux
(κ1φn − φuu) · vy + φuvuy
(κ1φn − φuu) · vz + φuvuz


x,y,z

(5a)

t2 =

0
κ2φn − φvv
φuv


n,u,v

=

 (κ2φn − φvv) · ux + φuvvx
(κ2φn − φvv) · uy + φuvvy
(κ2φn − φvv) · uz + φuvvz


x,y,z

(5b)

Principal direction coordinates into brackets are given both in the (n,u,v) and
(x,y, z) bases. The subscript notations in (5a) indicate the coordinate system
used for the vector decomposition. These expressions are quite similar to those
found in the litterature dealing with the computation of crest lines [5,25,33],
except we introduce a sign function ζ = ±1 to circumvent degeneracies (see
case studies proposed at the end of annex A). Because a wrong choice of u,
v may yield to find t1 = t2 = 0, we propose a criterion on ζ to ensure that
the found vectors are non-null for any arbitrary choice of u, v. Since equa-
tion (2b) implies |κminφn − φuu| = |κmaxφn − φvv|, we propose the following
algorithm in order to compute tmin and tmax associated to κmin and κmax:

choose arbitrarily u, v from n;
compute φuu and φvv with system (15);
if |κminφn − φuu| > |κminφn − φvv| then

choose ζ = +1 to avoid κ1φn − φuu = −(κ2φn − φvv) = 0;
compute tmin = t1 and tmax = −t2 with κmin = κ1 and κmax = κ2;

else
choose ζ = −1 since |κmaxφn − φuu| > |κmaxφn − φvv| > 0;
compute tmin = −t2 and tmax = t1 with κmax = κ1 and κmin = κ2;

end
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This algorithm requires to arbitrarily choose (u,v) and compute φuu and φvv
to determine κH , κK , t1 and t2 with explicit expressions (2b), (3b), (5a) and
(5b). An alternative choice would be to build the curvature tensor in standard co-
ordinates [18] and use a specific solver for searching eigenvalues and eigenvectors.
If principal directions are not required, curvatures are computed by the intrinsic
formulas (2a) and (3a) that do not require any choice of u, v or eigen solver.
Some exercises are also proposed at the end of annex A to better understand
the following algorithm. This algorithm implies that the basis (tmin,tmax,n) is
direct and:

κmin = κ1
1+ζ
2 + κ2

1−ζ
2 κmax = κ1

1−ζ
2 + κ2

1+ζ
2 (6a)

tmin = t1
1+ζ
2 + t2

1−ζ
2 tmax = t1

1−ζ
2 − t2

1+ζ
2 (6b)

2 High order differentiation schemes for implicit methods

In order to compute curvatures and principal directions using equations (1)
to (5), it is necessary to compute second-order cross derivatives of φ at a given
point P (x, y, z) from neighbor points Pi where φ is discretized. The point P
where curvatures have to be computed is not necessarily lying on one of the
nodes Pi. Figure 1 shows a schematic discretization of φ.

Fig. 1a non Cartesian stencil Fig. 1b Cartesian stencil
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Fig. 1. Schematic representation of a point P where curvatures are computed from a
3D discrete scalar field φj . Coefficients (δxj , δyj , δzj) or bij represent the position of
the neighbor discrete points Pj to P .

2.1 Diffuse approximation (DA)

Diffuse approximations (DA) allow to compute all derivatives of φ at P from the
values φi known at points Pi of coordinates (x+δxi, y+δyi, z+δzi) with any kind
of mesh [30]. Coefficients δxi, δyi and δzi are then small real numbers defining
the position of the ith neighbor point Pi relatively to P (see Fig. 1a). The value of

the scalar at a point Pi is estimated by a Taylor expansion φ∗i =
∑Nu

j=1 Pijαj . The
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matrices P and α are given as an example for a second-order Taylor expansion
(N = 2, Nu = 10) but can be similarly constructed for a fourth order N = 4:

P = [Pij ] =
[
1, δxi, δyi, δzi, δx

2
i , δy

2
i , δz

2
i , δxiδyi, δxiδzi, δyiδzi

]
(7a)

α = [αj ] =

[
φ , φx , φy , φz ,

φxx
2

,
φyy
2

,
φzz
2

, φxy , φxz , φyz

]
(7b)

If a number Nn of neighbor nodes are used around P , the method consists in
minimizing the quadratic error I(α) =

∑Nn

i=1 ωi(φi − φ∗i )
2 weighted by ωi =

e−(δx
2
i+δy

2
i+δz

2
i )/∆x

2

. This minimization yields a linear system A · α = B to
solve with:

A = [Akj ] =

[
Nn∑
i=1

ωi · Pik · Pij
]

with j ∈ [1;Nu] (8a)

B = [Bk] =

[
Nn∑
i=1

ωi · Pik · φi
]

(8b)

P is a matrix of size Nn×Nu. The searched vector α of size Nu is then computed
after inverting the matrix A of size N2

u . Minimizing the quadratic error with
a Taylor expansion of order N + 1 implies a N th-order accuracy for the first
derivatives and an order N − 1 for the second derivatives.

Note that Marchandise et al [21], in the context of two-phase flows, already
used a least-squares method (2nd-order DA with no weighting function : ωi = 1)
and equation κH = −∇ · n to compute the mean curvature with a slightly
different two-step procedure. A 2nd-order DA method is also used in the coupled
VOF-level set method proposed by Sussmann et al. [23,32], but only to compute
the normal of the piecewise linear surface reconstructions. In this paper, the
DA method is used directly to compute principal curvatures and directions with
higher order accuracy at any point on the interface.

2.2 Lagrange differentiation (LD)

High-order differentiation with Lagrange polynomials are also tested to compute
principal curvatures and directions if the implicit function φ is discretized on
a Cartesian grid (Fig. 1b shows a Cartesian stencil as an example with n =
3). First, second and cross derivatives like φx, φzz and φxy are computed by
weighting neighbour values of the implicit function over the Cartesian stencil:

∂φ

∂x1

∣∣∣∣
P

= φx =

n∑
i=1

n∑
j=1

n∑
k=1

β̇1i · β̄2j · β̄3k · φi,j,k (9a)

∂φ

∂x23

∣∣∣∣
P

= φzz =

n∑
i=1

n∑
j=1

n∑
k=1

β̄1i · β̄2j · β̈3k · φi,j,k (9b)

∂2φ

∂x1∂x2

∣∣∣∣
P

= φxy =

n∑
i=1

n∑
j=1

n∑
k=1

β̇1i · β̇2j · β̄3k · φi,j,k (9c)
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Weighting coefficients β̄ij , β̇ij or β̈ij correspond respectively to an interpolation,
a first differentiation or a second differentiation in the xi direction. Their expres-
sion are similar to Lagrange basis polynomials [16] and their derivatives, they
are obtained from the inversion of the Vandermonde matrix [2]:

β̄ij =

( n∏
k=1
k 6=j

bik

)
/Aij with Aij =

n∏
k=1
k 6=j

(bik − bij) (10a)

β̇ij = −
( n∑
k=1
k 6=j

n∏
l=1
l 6=j,k

bil

)
/(Aij ·∆x) (10b)

β̈ij =

( n∑
k=1
k 6=j

n∑
l=1
l 6=j,k

n∏
m=1

m 6=j,k,l

bim

)
/(Aij ·∆x2) (10c)

These coefficients can be directly computed from bij that represents the position
of the point P in the xi direction within the stencil (see Fig. 1b). As an example,
the reader may compute β̄ij , β̇ij or β̈ij for j ∈ [1, 2, n = 3] with bi1 = −∆x,
bi2 = 0, bi3 = ∆x to recover well-known coefficients of finite differences.

3 Test of implicit methods

3.1 Accuracy assessment of implicit methods

A spherical surface with known curvature is used to test the accuracy of the
method. The radius of this sphere centered at the point C is denoted R and
the parameter δ controls the stiffness of the scalar function using a hyperbolic
tangent profile:

φ(x, y, z) = tanh ((r −R)/δ) (11)

r =
√

(x− xC)2 + (y − yC)2 + (z − zC)2

xC = xO +R sinφ cos θ

yC = yO +R sinφ sin θ

zC = zO +R cosφ

Figure 2 shows a schematic representation of this spherical function around
a cubic stencil of center O. In the present analysis, the stencils are defined on
Cartesian grids, with Nn = n3 points in order to allow comparisons with LD
and DA differentiation schemes. The implicit spherical function is characterized
by its radius R, angles (θ, φ) and stiffness 1/δ in equation (11).

The accuracy of the implicit method for computing curvatures is investigated
by varying the surface normal via (θ, φ) and the spherical function via R and δ.
Figure 3a shows the relative error on the mean-curvature ∆κH/κH = κH ·R− 1
determined at point O when varying the normal angles (θ ∈ [0; 2π], φ ∈ [0;π],
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Fig. 2. Representation of a volumetric spherical function with known curvatures.

R/∆x = 10, δ/∆x = 2) with the second-order diffuse approximation method
(N = 2, Nn = 53). Because the expressions (2)-(3) and the stencil present a
symmetry towards planes (O, −→x ), (O, −→y ) and (O, −→z ), the error is periodical
along θ and φ directions and the study of errors could be limited to one eighth
of the domain. The maximal error is obtained at some positions of the curvature
center and can be extracted from these curves; it will be denoted max |∆κH/κH |.
The maximal error on this domain is subsequently plotted for various radius R
and stiffness 1/δ in Fig. 3b. The error is higher for stiff or highly-curved functions.
The stiffness and the curvature have a similar influence on the error that is then
controlled by the most critical parameter between high curvatures and high
stiffness.

Fig. 3a Fig. 3b
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Fig. 3. Measurements of the relative error when computing the mean curvature at the
center O of a stencil of size ±2∆x with a second-order diffuse approximation.

Figure 4 shows the maximum relative errors on the mean curvatures com-
puted at the center of the stencil as a function of the critical parameters (stiffness
or curvature) to compare the effect of the numerical schemes on the error. The
obtained error on Gaussian curvatures are really similar to mean curvature errors
and are not shown for brevity. Errors decrease for smooth function and weakly



9

Fig. 4a Diffuse Approximation Fig. 4b Lagrange Differences
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Fig. 4. Relative error on mean curvatures for various stencil sizes (Nn = n3 with
n ∈ {3; 5; 7}) and numerical schemes (accuracy order: N for DA and n for LD schemes).

curved surfaces. Implicit methods with Lagrange differentiation (LD) and diffuse
approximation (DA) present similar accuracies. For a second-order DA (N = 2)
with Nn = 33 points, the error is similar to the 2nd-order LD (n = 3). However,
this error decreases when the stencil is larger with second-order DA (Nn = 53 or
Nn = 73). Accuracies on curvatures increase for high-order LD or DA numerical
schemes. They are similar with 4th order schemes (DA with N = 4, LD with
n = 5). The implicit method with a 6th-order LD scheme for first-derivatives
(n = 7) reaches lowest errors in this test where no interpolation inside stencils
is performed.

3.2 Accuracy comparison using a marching cube extraction of
isocontours

The accuracy of proposed implicit methods is now compared to standard ex-
plicit methods when computing mean and Gaussian curvatures of a sphere with
varying sphere resolution R/∆x. In this test, the initial data is for all cases
an implicit 3D spherical function defined by equation (11) and centered at
xC = yC = zC = 0 in a cubic box of size [−N2 ∆x; N2 ∆x] large enough to contain

the radius R and stencil points; the stiffness is chosen equal to ∆x
R . As shown

in Fig. 5a, an explicit irregular triangulated surface of this sphere of radius R
is extracted using a marching cube method [19]. Fig. 5b illustrates how triangle
meshes are generated from linear interpolation on edges of the Cartesian grid
with a marching cube method (cf. edges P1P2, P1P3, P5P6 and P5P7).

Mean and Gaussian curvatures are then computed at the nodes of this spher-
ical isocontour with various implicit and explicit methods for comparisons. The
first explicit method is classical and consists in fitting full quadric [12,22]. Dis-
crete explicit methods implemented in the ParaView software [31] or the GTS
library [29] are also tested. The mean curvature is computed in ParaView from
the length of neighbor edges and dihedral angles between normals of neighbor
facets [11] while it is deduced from the ‘Mean Curvature Normal Operator’ in



10

Fig. 5a Extracted isocon-
tour from a spherical func-
tion ( R

∆x
= 4).

Fig. 5b Triangles gener-
ated with a marching cube
method.
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Fig. 5. Illustration of the marching cube method used to generate an isocontour rep-
resenting the implicit interface contained in 3D data.

GTS [24]. The Gaussian curvature is computed with angle deficit methods both
in ParaView and GTS [24] but with a more complex estimation of the area in
the GTS library to deal with obtuse triangles. The implicit methods are based
on diffuse approximation or Lagrange differentiation, as described in section 2.

Fig. 6a plots the maximum error on mean curvatures in log-scale as a func-
tion of the sphere resolution. Once again, relative errors on κK , κmin and κmax
are very similar to mean curvature errors and are not shown for brevity. The
explicit discrete methods of ParaView or GTS present both relative errors larger
than 100% on curvatures. These discrete methods fail in estimating curvatures
because the marching cube method generates a very irregular mesh of the sphere
with non-uniform triangles (see Fig. 5a and section 3.3). Fitting methods com-

Fig. 6a Maximum errors Fig. 6b Error distributions for R
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Fig. 6. Errors when computing mean curvatures of a spherical isocontour extracted
from a 3D implicit function using a marching cube method.
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pute reasonable estimations of curvatures with relative errors about 10% with
sufficiently refined spheres (R/∆x ≥ 8). Note that increasing the number of
rings of neighbor nodes to fit paraboloids slightly increased the accuracy with
such irregular meshes. Implicit methods significantly improves the accuracy to
estimate curvatures of an isocontour generated with a marching cube method.
The relative error on curvatures is below 1% for sufficiently refined spheres and
about 10% at low resolution ( R

∆x or δ
∆x ' 1).

The error distributions of the computed curvatures are also plotted forR/∆x =
8 in Fig. 6b. The large width and flatness of distributions for discrete methods
demonstrate that these methods are inaccurate on a large number of nodes and
not only at an isolated node. The implicit methods with a second-order diffuse
approximation and Lagrange differentiation with higher order (n ≥ 5) present
the narrowest distributions and therefore highest accuracies.

3.3 Accuracy comparison using a regular triangle mesh

Compared to the previous test-case, the triangle mesh of the spherical isosurface
is no more extracted by a marching cube method. It is ‘artificially ’ generated
from the subdivision of an icosahedron constituted of N4,0 = 20 equilateral
triangles and 12 nodes. The ith refined icosahedron has N4 = 4i·N4,0 equilateral
triangles. In this test, curvatures are then computed at the nodes of a very regular
triangle mesh of a sphere. This regular mesh, constituted of N4 equilateral
triangles of side ∆x, is artificially positioned at a radius R

∆x = (N4
√

3/16π)1/2

since 4πR2 ' N4 · A4, with A4 =
√

3∆x2/4 being the area of an equilateral
triangle. The implicit spherical function is then defined with a stiffness ∆x

δ = ∆x
R

to allow comparisons between implicit/explicit methods.

The maximum errors on mean and Gaussian are plotted in log-scale as a
function of the sphere resolution R/∆x in Fig. 7a. All explicit methods exhibit a
better accuracy with such artificially generated regular meshes than with previ-
ous irregular meshes. If the built-in discrete method of ParaView reaches about
10% of accuracy, the GTS discrete method reaches accuracies under 1% and
even under 0.01% for the mean curvatures. The accuracy is also increased for
fitting methods with such regular meshes even if less accurate than the GTS
discrete method. Implicit methods still reach highest accuracies on curvatures
even if nodes of the artificial isosurface are located any-where within the stencil
where φ is discretized, which requires more interpolations than previous test-
cases. Second-order numerical schemes (DA with N = 2 and LD with n = 3)
are 1st-order accurate to compute curvatures whereas 4th-order (LD with n = 5
or DA with N = 4) are 3rd-order accurate. Implicit methods with high order
schemes reach accuracies better than 1% for reasonable resolutions.

The error distributions at a moderate resolution R/∆x ' 6.64 are also shown
in Fig. 7b. These distributions confirm that the errors are better bounded with
regular meshes for explicit methods. The explicit discrete GTS methods and
implicit methods are the most accurate since the error distribution is very narrow
and centered around analytical solution. A shift from the analytical solution is
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Fig. 7. Errors when computing mean and Gaussian curvatures of a regular triangle
mesh (equilateral triangles artificially generated to avoid mesh irregularities of the
isosurface).

present with the explicit fitting method and the computed curvatures are very
dispersed with the discrete method implemented in ParaView.

The two previous test-cases show that explicit methods are really dependent
on the regularity of the isosurface mesh. In opposite, the accuracy of implicit
methods does not depend on the procedure used to extract the isocontour. It
depends only on neighbor 3D scalar values and numerical differentiation schemes.

3.4 Accuracy assessment to measure principal directions

A donut is a nice geometry to test the proposed algorithm that computes prin-
cipal directions. Indeed, this geometry presents elliptical points where the sur-
face is convex (κK > 0), hyperbolic points where the surface is saddle shaped
(κK < 0) and parabolic points (κK = 0) but does not contain umbillical points
(κmin = κmax) where principal directions are undefined. An implicit function

φ(x, y, z) = tanh({((x
2+y2)1/2−R)2+z2}1/2−r

δ ) is used to describe the torus with

r = δ = R
2 . Fig. 8a illustrates the implicit toric function as a cheese chunk and

principal directions computed on an extracted isocontour with a marching cube
method for a resolution r

∆x = 4.
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Fig. 8a Torus with r
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implicit methods. The maximum angle error of all computed vectors are plotted in
Fig. 8b for various numercial schemes.

An error between computed vectors and analytical solutions is then defined
by ‖u ∧ usol‖ = sin(û,usol) at each point of isocontours. Fig. 8b then plots the
maximum angle error on computed normals and principal directions as a function
of the torus resolution and for various differentiation schemes. The accuracy
of implicit methods increases with the resolution and high order schemes. The
largest angle errors are obtained with the 2nd-order LD implicit method that uses
the smallest stencil. They are below 1◦ with a second order diffuse approximation
and below 0.1◦ with 4th-order LD or DA schemes for sufficiently refined cases
δ
∆x > 4. The algorithm has been tested successfully through other cases that are
not described here to be concise.

3.5 Speed assessment of the implicit method

The CPU time of implicit methods depends on the used numerical scheme (LD,
DA and N) and the stencil size Nn = n3. Lagrange differentiation methods are
faster than diffuse approximation ones for the same stencil size (see Fig. 9a). LD
methods allow to reach high orders with less CPU time.

The speed of the implicit method is also compared to those of discrete and
fitting methods in Fig. 9b. All programs are written in C# for this speed com-
parison. The speed increases linearly with the number of points on the discrete
sphere for all methods. Implicit methods with Lagrange differentiation reach the
highest speeds. The fourth-order LD (n = 5) and 2nd-order DA (Nn = 33) have
comparable speeds to the built-in discrete method of the GTS library and the
two-ring fitting method.

The curvature accuracy of these different methods is compared when com-
puting Gaussian and mean curvatures of a same mesh extracted from a spherical
implicit function with marching cubes like in section 3.2. Fig. 10a plots accuracy
vs computation time for a coarse mesh and Fig. 10b for a finer mesh. These
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Fig. 9a implicit methods Fig. 9b implicit & explicit methods
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Fig. 10. Comparison diagram of computation time vs accuracy for various implicit
and explicit methods. Curvatures are measured on a coarse and refined mesh generated
from a spherical implicit function with marching cubes.

diagrams show that LD implicit methods reach the best compromises between
speed and accuracy. Discrete method and the 1-ring fitting method fail in pre-
dicting accurately curvatures at some nodes. DA implicit methods allow to reach
higher accuracies than quadric fitting method but may require an additional cpu
cost.

4 Applications

These methods are applied to determine curvatures of expanding and implod-
ing flames. The flame images are obtained from Direct Numerical Simulations
using the H-allegro in-house software [1] on a supercomputing infrastructure
(PRACE).
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4.1 Laminar flames

An unburnt methane-air mixture at Tu = 480K is ignited at atmospheric pres-
sure with a Gaussian profile in temperature and composition. The adiabatic
flame temperature of such a mixture is Tb = 2260K and the planar thermal
flame thickness is δ0L = 202µm. The computational domain is a cube of 1.5cm
width discretized with a Cartesian grid of (336)3 points, which implies a sufficient
refinement to solve the flame propagation (δ0L/∆x ' 4.5).

Curvatures of the flame front are measured in the simulation results along
the flame propagation with different methods. To determine flame curvatures,
isocontours of a 569K temperature (progress variable of 5%) are first extracted
with a marching cube method [19]. The ParaView software [31] is used to handle
the multiple-files of the parallel solution (512 files for one time-step) and the
complex topology of isocontours with a triangle mesh. Fifteen quasi-spherical
isocontours are extracted along the flame propagation; the flame evolves from a
small radius RS ' 12δ0L to a larger radius RS ' 150δ0L.

Figure 11 shows the computed local flame radius RH = 1/κH based on mean
curvatures as a function of the area based flame radius RS =

√
S/(4π). Curves

for the Gaussian curvatures are not shown because too similar. At each flame
radius, the discrete methods of ParaView or GTS are inaccurate, because of
the irregularity of the mesh. The scattering of the local radius is so large that
we did not plot it out for comparisons. With fitting methods, the scattering is
reduced in particular when several rings to fit parabolas are used. Nevertheless,
the dispersion is still very high even with a 4 ring stencil. Implicit methods with
large stencils (Nn > 53 points) points significantly improves the accuracy when
predicting the local flame radius based on the mean or Gaussian curvatures,
which makes curvature analysis in flows possible. The small remaining scattering
at large radii is attributed to the effect of boundary conditions and not to the
inaccuracy of the proposed method.
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Fig. 11. Comparison of the measured local radii to the global radii based on the whole
surface when the flame propagates for DA implicit and fitting methods.
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Probability density functions (PDF) of Gaussian and mean curvatures are
plotted in Fig. 12 at the middle time of the simulation (t = 0.785ms). At this
stage, the flame is quasi-spherical with a radius R ' −0.3cm. The probability
density function and cumulative function are respectively expected to be close
to a Dirac function and a Heaviside function. For the implicit method, the prob-
ability density is as expected a peak centered around κH = 1/R or κK = 1/R2

and the cumulative probability is the stiffest step compared to the fitting and
discrete methods. The absence of peaks on the PDF for fitting and discrete meth-
ods shows that explicit methods are really inaccurate to estimate the curvatures
of this stiff flame (δ0L/∆x ' 4.5).
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Fig. 12. Probability density function and cumulative distribution function of mea-
sured Gaussian, mean, minimal and maximal curvatures of a quasi-spherical flame
(t = 0.785ms). Note that only the implicit method has a PDF close to a Dirac function
and a cumulated probability close to a Heaviside function.

4.2 Turbulent flames

A turbulent imploding hydrogen flame premixed with air diluted with 20% of
steam is ignited by a Gaussian profile of temperature. After a transient, the flame
propagates inward and becomes highly wrinkled. An isocontour of temperature
(corresponding to a progress variable value of 50%) is extracted with a marching
cube method at 1.5ms after the ignition. The mean, Gaussian, minimum and
maximum curvatures of this isocontour are then computed at every nodes of the
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Fig. 13. Test of different methods to compute Gaussian, mean, minimal and maximal
curvatures on a triangular unstructured mesh. Curvatures are plotted in colors from
blue to red (κH , κmin, κmax ∈ [−50; 50cm−1]).

mesh making use of i) a 2nd-order DA implicit method with Nn = 73, ii) a fitting
method with a 3 ring patch, iii) the explicit discrete method of GTS and iv) the
explicit discrete method of ParaView. Results are compared in figure 13.

If all methods seem to compute very similar curvatures, a careful look shows
numerous oscillations for the discrete methods (compare zooms on κH in Fig. 13).
Both the fitting method (with a large stencil) and the DA implicit method show
very similar results. However, the fitting method fails at some node locations to
fit a parabola; this method also generates visible oscillations near highly curved
surface compared to the implicit method (cf. zooms). However, the similitude
between results confirms the ability of the implicit method to compute mean,
Gaussian, minimum and maximum curvatures, even for complex geometries.
From previous test-cases, it may be expected that the implicit method give the
most accurate estimates of curvatures. Explicit methods show a more acceptable
prediction of curvatures compared to the inaccuracies observed on the laminar
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flame, this is attributed to the quality of the isosurface mesh that is better
defined in the turbulent case with a different progress variable (50% vs 5%) and
a more refined flame (δ0L/∆x ' 7.8 > 4.5).

Figure 14 shows some examples of local analyses that may be conducted
to study turbulent flames with implicit methods. Some computed principal di-
rections of the previous hydrogen imploding flame are shown in Fig. 14a. The
implicit method may be used to measure other flame properties from normals
and curvatures. It may for instance be used to measure local consumption of the
gaz mixture, local flame speeds, local flame stretches. Fig. 14b shows a scatter
plot of the local consumption speed as a fonction of mean and principal cur-
vatures for a turbulent methane-air expanding flame, which highlights a link
between gaz consumption and mean flame curvatures in this case.

Fig. 14a principal directions Fig. 14b local mixture consumption
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Fig. 14. Example of local flame analysis using implicit methods.

5 Conclusion

A computational method has been presented to compute curvatures and princi-
pal directions of implicit surfaces from 3D scalar data. Curvatures are computed
at any vertex whithin the stencil where the implicit surface is discretized. This
implicit method makes use of high-order Diffuse Approximation (DA) or La-
grange differentation (LD) schemes to interpolate/differentiate the 3D scalar
function. Implicit methods are compared to standard explicit methods (surface
fitting, discrete methods) when computing curvatures along isocontours repre-
senting the implicit surface.

It is evidenced through numerous test cases that explicit methods fail in
measuring accurately curvatures of surfaces with irregular meshes. However, the
extraction of surfaces with complex topologies is not trivial and commonly used
techniques like marching-cube methods do not always generate regular meshes.
It is shown that implicit methods do not require regular meshes and may reach
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high accuracy, which makes these methods interesting to analyse curvatures of
isosurfaces from 3D data. If the stiffness of the implicit function is known and
not too high, the maximum error on curvatures with implicit methods may be
estimated from Fig. 6a. The implicit method is also found to be competitive
with discrete methods in terms of computational speed. A 2nd-order DA or LD
schemes of higher order are recommended when computing curvatures to reduce
the error without requiring much cpu overhead.

The proposed implicit method has been successfully applied to measure prop-
erties of flame surfaces based on normals and curvatures and shows very promis-
ing results to conduct accurate local 3D analysis of wrinkled flames (local con-
sumption speed, displacement speeds, curvatures and stretches of the flame). A
perspective of this work would be to extend this methodology to implicit surfaces
defined by stiffer implicit functions using non-oscillatory schemes for interpola-
tion/differentiation since discontinuous 3D scalar data may be encountered for
instance in multiphase flows or medical images.

A Derivation of formulas for principal directions of
implicit surfaces

The methodology of Lehmann et al. [18] is used to build the curvature tensor in
the (u,v,n) frame. In this frame, the orthogonal projector T onto the tangent
space and the Hessian matrix of φ are respectively:

T = Id3 − n · nt =

1 0 0
0 1 0
0 0 0

 and ∇2φ =

 φuu φuv φuN
φvu φvv φvN
φNu φNv φNN


(u,v,n)

The curvature tensor has then a simple expression in the normal frame:

E =
T · ∇2φ · T
|φn|

=


φuu

|φn|
φuv

|φn| 0
φuv

|φn|
φvv

|φn| 0

0 0 0


(u,v,n)

(12)

Its expression is far more complicated in an arbitrary basis (x,y, z) where we
could not find eigenvectors. In the normal frame, main eigenvalues and corre-
sponding eigenvectors of the curvature tensor are then found equal to:

κ1 = Kh −
√
|κ2h − κk| · ζ

t1 =
1

D1

φuvκ1φn − φuu
0


u,v,n

κ2 = Kh +
√
|κ2h − κk| · ζ (13)

t2 =
1

D2

κ2φn − φvvφuv
0


u,v,n

(14)

with κk =
φuuφvv−φ2

uv

φ2
n

, κh = φuu+φvv

2|φn| , D1 = D2 =
√
φ2uv + (κ1φn − φuu)2 and

ζ = ±1.
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Since derivatives in the (u,v,n) basis are linked to the derivatives in the
default basis (x,y,z) and coordinates of u, v, n:

φn = ∇φ · n = φxnx + φyny + φznz = ‖∇φ‖ = |φn| (15a)

φuv = ut · ∇2φ · v = φxxuxvx + φyyuyvy + φzzuzvz

+ φxy(uxvy + uyvx) + φxz(uxvz + uzvx) + φyz(uyvz + uzvy) (15b)

φuu = ut · ∇2φ · u (15c)

φvv = vt · ∇2φ · v (15d)

Replacing φn, φuv, φuv and φuv into curvature expressions (2b), (3b) and making
some formal simplication, we recover the intrinsic expressions of curvatures (2a),
(3a) that are independent on the choice of u,v. To sum up, principal curvatures
do not depend on the choice of (u,v) whereas principal directions depend on
their coordinates. A bad choice of (u,v) may then conduct to null vectors and
then bad estimations. To circumvent bad choices, we then propose a criteria on
ζ to ensure that t1 and t2 are non-null vectors in section 1.

To better understand the role of the parameter ζ in avoiding degeneracies, it
is advised to compute curvatures and principal directions by hand with ζ = ±1
at u = v = 0 and n = |R| for the following case studies:

– φ(u, v, n) = u2 + n2 −R2 ⇒ cylinder of axis v that requires ζ = +1
– φ(u, v, n) = R2 − u2 − n2 ⇒ cylinder of axis v that requires ζ = −1
– φ(u, v, n) = v2 + n2 −R2 ⇒ cylinder of axis u that requires ζ = −1
– φ(u, v, n) = R2 − v2 − n2 ⇒ cylinder of axis u that requires ζ = +1
– φ(u, v, n) = ±u ∗ v + n ⇒ saddle shaped surface (ζ = ±1)
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