

# Multicore Locks: The Case Is Not Closed Yet

Hugo Guiroux, Renaud Lachaize, Vivien Quéma

# ▶ To cite this version:

Hugo Guiroux, Renaud Lachaize, Vivien Quéma. Multicore Locks: The Case Is Not Closed Yet. 2016 USENIX Annual Technical Conference (USENIX ATC 16), Jun 2016, Denver, United States. pp.649-662. hal-01486527

# HAL Id: hal-01486527 https://hal.science/hal-01486527v1

Submitted on 10 Mar 2017  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# **Multicore Locks: The Case Is Not Closed Yet**

Hugo Guiroux and Renaud Lachaize, Université Grenoble Alpes and Laboratoire d'Informatique de Grenoble; Vivien Quéma, Université Grenoble Alpes, Grenoble Institute of Technology, and Laboratoire d'Informatique de Grenoble

https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux

This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC '16).

June 22-24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC '16) is sponsored by USENIX.

# Multicore Locks: The Case is not Closed Yet

Hugo Guiroux<sup>†</sup>\* Renaud Lachaize<sup>†</sup>\* Vivien Quéma<sup>†</sup><sup>‡</sup>\* <sup>†</sup>Université Grenoble Alpes <sup>‡</sup>Grenoble INP \*LIG (CNRS UMR 5217)

#### Abstract

NUMA multicore machines are pervasive and many multithreaded applications are suffering from lock contention. To mitigate this issue, application and library developers can choose from the plethora of optimized mutex lock algorithms that have been designed over the past 25 years. Unfortunately, there is currently no broad study of the behavior of these optimized lock algorithms on realistic applications. In this paper, we attempt to fill this gap. We perform a performance study of 27 state-of-theart mutex lock algorithms on 35 applications. Our study shows that the case is not yet closed regarding locking on multicore machines. Indeed, our conclusions include the following findings: (i) at its optimized contention level, no single lock is the best for more than 52% of the studied workloads; (ii) every lock is harmful for several applications, even if the application parallelism is properly tuned; (iii) for several applications, the best lock changes when varying the number of threads. These findings call for further research on optimized lock algorithms and dynamic adaptation of contention management.

# 1 Introduction

Today, multicore machines are pervasive and many multithreaded applications are suffering from bottlenecks related to critical sections and their corresponding locks. To mitigate these issues, application and library developers can choose from the plethora of optimized mutex lock algorithms that have been designed over the past 25 years but there is currently no clear study to guide this puzzling choice for realistic applications. In particular, the most recent and comprehensive empirical performance evaluation on multicore synchronization [9], due to its breadth (from hardware protocols to high-level data structures), only provides a partial coverage of locking algorithms. Indeed, the aforementioned study only considers 9 algorithms, does not consider hybrid spinning/blocking waiting policies, omits emerging approaches (e.g., loadcontrol algorithms described in §2) and provides a modest coverage of hierarchical locks [14, 5, 6], a recent and efficient approach. Furthermore, most of the observations are based on microbenchmarks. Besides, in the case of papers that present a new lock algorithm, the empirical observations are often focused on the specific workload characteristics for which the lock was designed [21, 26], or mostly based on microbenchmarks [14, 12].

The present paper provides a broad performance study on Linux/x86 of 27 state-of-the-art mutex lock algorithms on a set of 35 realistic and diverse applications (the PARSEC, Phoenix, SPLASH2 suites, MySQL and an SSL proxy). We make a number of observations, several of which have not been previously mentioned: (i) about 60% of the studied applications are significantly impacted by lock performance; (ii) no single lock is systematically the best, even for a fixed number of contending cores; (iii) worse, at their optimized contention level (individually tuned for each application), the best locks never dominate for more than 52% of the lock-sensitive applications; (iv) any of the locks is harmful (i.e., significantly inefficient compared to the best one) for at least several workloads; (v) across all the lock-sensitive applications, there is no clear performance hierarchy among the locks, even at a fixed number of contending cores; (vi) for a given application, the best lock varies according to both the number of contending cores and the machine; (vii) unlike previous recommendations [9] advocating that standard Pthread mutex locks should be avoided for workloads using no more than one thread per core, we find that, with our studied workloads, the current Linux implementation of these locks actually yields good performance for many applications with this pattern. Moreover, we show that all these results hold even when each configuration, i.e., each (application, lock) pair, is tuned to its optimal degree of parallelism. From our performance study, we draw two main conclusions. First, specific lock algorithms should not be hardwired into the code of applications. Second, the observed trends call for further research both regarding lock algorithms and runtime support for parallel performance and contention management.

To conduct our study, manually modifying all the applications in order to retrofit the studied lock algorithms would have been a daunting task. Moreover, using a meta-library that allows plugging different lock algorithms under a common API (such as liblock [26] or libslock [9]) would not have solved the problem, as this would still have required a substantial re-engineering effort for each application. In addition, such meta-libraries provide no or limited support for important features like Pthread condition variables, used within many applications. Therefore, we implemented LiTL<sup>1</sup>, a low-overhead library that allows transparent interposition of Pthread mutex lock operations and support for mainstream features like condition variables, without any restriction on the application-level locking discipline.

The remainder of the paper is organized as follows: §2 presents a taxonomy of existing lock designs and the list of algorithms covered by our study. §3 describes our experimental setup and the studied applications. §4 describes the LiTL library. §5 exposes the main results from our empirical observations. §6 discusses related works and §7 concludes the paper.

#### 2 Lock algorithms

#### 2.1 Background

The body of existing works on optimized lock algorithms for multicore architectures is rich and diverse and can be split into the following five categories:

1) Flat approaches correspond to simple algorithms (typically based on one or a few shared variables accessed by atomic instructions) such as: simple spinlock [33], backoff spinlock [2, 30], test and test-and-set (TTAS) lock [2], ticket lock [30], partitioned ticket lock [11], and standard Pthread mutex lock.

**2) Queue-based approaches** correspond to locks based on a waiting queue in order to improve fairness as well as the memory traffic, such as: MCS [30, 33] and CLH [7, 29, 33].

**3) Hierarchical approaches** are specifically aimed at providing scalable performance on large-scale NUMA machines, by attempting to reduce the rate of lock migrations among NUMA nodes. This category includes HBO [32], HCLH [28], FC-MCS [13], HMCS [5], AHMCS [6] and the algorithms that stem from the *lock cohorting* framework [14]. A cohort lock is based on a combination

of two lock algorithms (similar or different): one used for the global lock and one used for the local locks (there is one local lock per NUMA node); in the usual  $C-L_A-L_B$ notation,  $L_A$  and  $L_B$  respectively correspond to the global and the node-level lock algorithms. The list includes C-BO-MCS, C-PTL-TKT and C-TKT-TKT (also known as Hticket [9]). The *BO*, *PTL* and *TKT* acronyms respectively correspond to backoff lock, partitioned ticket lock, and standard ticket lock.

**4) Load-control approaches** correspond to algorithms that aim at limiting the number of threads that concurrently attempt to acquire a lock, in order to prevent a performance collapse. These algorithms are derived from queue-based locks. This category includes MCS-TimePub<sup>2</sup> [19] and so-called *Malthusian algorithms* like Malth\_Spin and Malth\_STP<sup>3</sup> [12].

**5) Delegation-based approaches** correspond to algorithms in which it is (sometimes or always) necessary for a thread to delegate the execution of a critical section to another thread. The typical benefits expected from such approaches are improved cache locality and better resilience under high lock contention. This category includes Oyama [31], Hendler [20], RCL [26], CC-Synch [15] and DSM-Synch [15].

Another important design dimension is the waiting policy used when a thread cannot immediately obtain a requested lock [12]. There are three main approaches: (i) spinning on a memory address, (ii) immediate parking (i.e., blocking the thread) either for a fixed amount of time or until the thread gets a chance to obtain the lock, and (iii) spinning-then-parking (STP), a hybrid strategy using a fixed or adaptive threshold [22]. The choice of the waiting policy is mostly orthogonal to the lock design but, in practice, policies other than pure spinning are only considered for certain types of locks: the queue-based (from categories 2-4 above) and the standard Pthread mutex locks. Besides, note that the GNU C library for Linux provides two versions of Pthread mutex locks: the default one uses parking (via the futex syscall) and the second one uses an adaptive spin-thenpark strategy. The latter version can be enabled with the PTHREAD\_MUTEX\_ADAPTIVE\_NP option [23].

# 2.2 Studied algorithms

Our choice of studied locks is guided by the decision to focus on *portable* lock algorithms. We therefore exclude the following locks that require strong assumptions on

<sup>&</sup>lt;sup>1</sup>LiTL: Library for Transparent Lock interposition.

<sup>&</sup>lt;sup>2</sup>MCS-TimePub is mostly known as MCS-TP but we use MC-TimePub to avoid confusion with MCS\_STP.

<sup>&</sup>lt;sup>3</sup>Malth\_Spin and Malth\_STP correspond to MCSCR-S and MCSCR-STP, respectively, but we do not use the latter names to avoid confusion with other MCS locks.

| Name                        | A-64                    | A-48                    | I-48                      |
|-----------------------------|-------------------------|-------------------------|---------------------------|
| Total #cores                | 64                      | 48                      | 48 (no hyperthreading)    |
| Server model                | Dell PE R815            | Dell PE R815            | SuperMicro SS 4048B-TR4FT |
| Processors                  | 4× AMD Opteron 6272     | 4× AMD Opteron 6344     | 4× Intel Xeon E7-4830 v3  |
| Microarchitecture           | Bulldozer / Interlagos  | Piledriver / Abu Dhabi  | Haswell-EX                |
| Core clock                  | 2.1 GHz                 | 2.6 GHz                 | 2.1 GHz                   |
| Last-level cache (per node) | 8 MB                    | 8 MB                    | 30 MB                     |
| Interconnect                | HT3 - 6.4 GT/s per link | HT3 - 6.4 GT/s per link | QPI - 8 GT/s per link     |
| Memory                      | 256 GB DDR3 1600 MHz    | 64 GB DDR3 1600 MHz     | 256 GB DDR4 2133 MHz      |
| #NUMA nodes (#cores/node)   | 8 (8)                   | 8 (6)                   | 4 (12)                    |
| Network interfaces (10 GbE) | 2× 2-port Intel 82599   | 2× 2-port Intel 82599   | 2-port Intel X540-AT2     |

Table 1: Hardware characteristics of the testbed platforms.

the application/OS behavior, code modifications, or fragile performance tuning: HCLH, HBO, FC-MCS, and all the delegation-based locks (see Dice et al. [14] for detailed arguments).

Our study considers 27 mutex lock algorithms that are representative of both well-established and state-ofthe-art approaches. We use the *\_Spin* and *\_STP* suffixes to differentiate variants of the same algorithm that only differ in their waiting policy. The *-LS* tag corresponds to optimized algorithms borrowed from libslock [9]. Our set includes ten flat locks (Backoff, Partitioned ticket, Phtread, Pthread adaptive, Spinlock, Spinlock-LS, Ticket, Ticket-LS, TTAS, TTAS-LS), seven queue-based locks (Alock-LS, CLH-LS, CLH\_Spin, CLH\_STP, MCS-LS, MCS\_Spin, MCS\_STP), seven hierarchical locks (C-BO-MCS\_Spin, C-BO-MCS\_STP, C-PTL-TKT, C-TKT-TKT, Hticket-LS, HMCS, AHMCS), and three loadcontrol locks (Malth\_Spin, Malth\_STP, MCS-TimePub).

# 3 Experimental setup and methodology

#### 3.1 Testbed and studied applications

Our experimental testbed consists of three Linux-based servers whose main characteristics are summarized in Table 1. All the machines run the Ubuntu 12.04 OS with a 3.17.6 Linux kernel (CFS scheduler), glibc 2.15 and gcc 4.6.3. For our comparative study of lock performance, we consider (i) the applications from the PARSEC benchmark suite (emerging workloads), (ii) the applications from the Phoenix 2 MapReduce benchmark suite, (iii) the applications from the SPLASH2 high-performance computing benchmark suite<sup>4</sup>, (iv) the MySQL database running the Cloudstone workload, and (v) SSL proxy, an event-driven SSL endpoint that processes small messages. In order to evaluate the impact of workload changes on locking performance, we also consider so called "long-lived" variants of four of the above workloads denoted with a "\_ll" suffix. Note that six of the applications cannot be evaluated on the two 48-core machines because, by design, they only accept a number of threads that correspond to a power of two: facesim, fluidanimate (from PARSEC), fft, ocean\_cp, ocean\_ncp, radix (from SPLASH2).

Most of these applications use a number of threads equal to the number of cores, except the three following ones: dedup ( $3 \times$  threads), ferret ( $4 \times$  threads) and MySQL (hundreds of threads). Two thirds of the applications use Pthread condition variables.

# 3.2 Tuning and experimental methodology

For the lock algorithms that rely on static thresholds, we use the recommended values from the original papers and implementations. The algorithms based on a spinthen-park waiting policy (e.g., Malth\_STP [12]) rely on a fixed threshold for the spinning time that corresponds to the duration of a round-trip context switch [22] — in this case, we calibrate the duration using a microbenchmark on the testbed platform.

All the applications are run with memory interleaving (via the numactl utility) in order to avoid NUMA memory bottlenecks. Generally, in the experiments presented in this paper, we study the performance impact of a lock for a given contention level, i.e., the number of threads of the application. We vary the contention level at the granularity of a NUMA node (i.e., 8 cores for the A-64 machine, 6 cores for the A-48 machine, and 12 cores for the I-48 machine). For most of the experiments detailed in the paper, the application threads are not pinned to specific cores. The impact of pinning is nonetheless discussed in §5.3.

Finally, each experiment is run at least five times and we compute the average value. Overall, we observe little variability for most configurations. For all experiments, the considered application-level performance metric is the throughput (operations per time unit).

<sup>&</sup>lt;sup>4</sup>We excluded the Cholesky application because of extremely short completion times.

#### 4 The LiTL lock interposition library

In order to carry out the lock comparison study, we have developed LiTL, an interposition library for Linux/x86 allowing transparently replacing the lock algorithm used for Pthread mutexes. We describe its design, implementation, and assess its performance.

# 4.1 Design

The design of LiTL does not impose any restriction on the level of nested locking and is compatible with arbitrary locking disciplines (e.g., hand-over-hand locking [33]). The pseudo-code of the main wrapper functions of the LiTL library is depicted in Figure 1.

```
// return values and error checks
// omitted for simplification
pthread_mutex_lock(pthread_mutex_t *m) {
    optimized_mutex_t *om = get_optimized_mutex(m);
    if (om == null) {
        om = create_and_store_optimized_mutex(m);
    optimized mutex lock(om):
    real_pthread_mutex_lock(m);
pthread_mutex_unlock(pthread_mutex_t *m) {
    optimized_mutex_t *om = get_optmized_mutex(m);
    optimized_mutex_unlock(om);
    real pthread mutex unlock(m);
}
pthread_cond_wait(pthread_cond_t *c,
                  pthread_mutex_t *m) {
    optimized_mutex_t *om = get_optimized_mutex(m);
    optimized_mutex_unlock(om);
    real_pthread_cond_wait(c, m);
    real_pthread_mutex_unlock(m);
    optimized_mutex_lock(om);
    real_pthread_mutex_lock(m);
}
// Note that the pthread_cond_signal and
// pthread_cond_broadcast primitives
// do not need to be interposed
```

Figure 1: Overview of the pseudocode for the main wrapper functions of LiTL.

**General principles** The primary role of LiTL is to maintain a mapping structure between an instance of the standard Pthread lock (pthread\_mutex\_t) and an instance of the chosen optimized lock type (e.g., MCS\_Spin). This implies that LiTL must keep track of the lifecycle of all the application's locks through interposition of the calls to pthread\_mutex\_init() and pthread\_mutex\_destroy(), and that each interposed call to pthread\_mutex\_lock() must trigger a lookup for the instance of the optimized lock. In addition, lock instances that are statically initialized can only be discovered and tracked upon the first invocation of pthread\_mutex\_lock() on them (i.e., a failed lookup leads to the creation of a new mapping).

The lock/unlock API of several lock algorithms requires an additional parameter (called "struct" hereafter) in addition to the lock pointer. For example, in the case of an MCS lock, this parameter corresponds to the record to be inserted in (or removed from) the lock's waiting queue. In the general case, a struct cannot be reused nor freed before the corresponding lock has been released. For instance, an application may rely on nested critical sections (i.e., a thread *T* must acquire a lock  $L_2$  while holding another lock  $L_1$ ). In this case, *T* must use a distinct struct for  $L_2$  in order to preserve the integrity of  $L_1$ 's struct. In order to gracefully support the most general cases, LiTL systematically allocates exactly one struct per lock instance and per thread.

Supporting condition variables Dealing with condition variables inside each optimized lock algorithm would be complex and tedious as most locks have not been designed with condition variables in mind. We therefore use the following strategy: our wrapper for pthread\_cond\_wait () internally calls the true pthread\_cond\_wait() function. To issue this call, we need to hold a real Pthread mutex lock (of type pthread\_mutex\_t). This strategy (depicted in the pseudocode of Figure 1) does not introduce high contention on the internal Pthread lock. Indeed, for workloads that do not use condition variables, the Pthread lock is only requested by the holder of the optimized lock associated with the critical section. Furthermore, workloads that use condition variables are unlikely to have more than two threads competing for the Pthread lock: the holder of the optimized lock and a notified thread. Note that the latter claim also holds for workloads that rely on pthread\_cond\_broadcast() because the Linux implementation of this call only wakes up a single thread from the wait queue of the condition variable and directly transfers the remaining threads to the wait queue of the Pthread lock.

**Support for specific lock semantics** The design of LiTL is compatible with specific lock semantics when the underlying lock algorithms offer the corresponding properties. For example, LiTL supports non-blocking lock requests (pthread\_mutex\_trylock()) for all the currently implemented locks except CLH-based locks and Hticket-LS, which are not compatible with such semantics. Although not yet implemented, LiTL could easily support blocking requests with timeouts for the so-called "abortable" locks (e.g., MCS-Try [34] and MCS-TimePub [19]). Moreover, support for optional Pthread



Figure 2: Performance comparison (throughput) of manually implemented locks (black bars) vs. transparently interposed locks using LiTL (white bars). The throughput is normalized with respect to the best performing configuration for a given application (A-64 machine).

mutex behavior like reentrance and error checks<sup>5</sup> could be easily integrated in the generic wrapper code by managing fields for the current owner and the lock acquisition counter.

# 4.2 Implementation

The library relies on a scalable concurrent hash table (CLHT [10]) in order to store, for each Pthread mutex instance used in the application, the corresponding optimized lock instance, and the associated perthread structs. For well-established locking algorithms like MCS, the code of LiTL borrows from other libraries [9, 1, 26]. Other algorithms are implemented from scratch based on the description of the original papers. For algorithms that are based on a parking or on a spinning-then-parking waiting policy, our implementation directly relies on the futex Linux system call.

Finally, the source code of LiTL relies on preprocessor macros rather than function pointers. Indeed, we have observed that the use of function pointers in the critical path introduced a surprisingly high overhead. Moreover, all data structures are cache-aligned in order to mitigate the impact of false sharing.

#### 4.3 Experimental validation

In this section, we assess the performance of LiTL using the A-64 machine. To that end, we compare the performance (throughput) of each lock on a set of applications running in two distinct configurations: manually modified applications and unmodified applications using interposition with LiTL. Clearly, one cannot expect to obtain exactly the same results in both configurations, as the setups differ in several ways, e.g., with respect to the exercised code paths, the process memory layout and the allocation of the locks (e.g., stack- vs. heap-based). However, we show that between both configurations: (i) the achieved performance is close and (ii) the general trends for the different locks remain stable.

We selected three applications: pca\_ll, radiosity\_ll and s\_raytrace\_ll. These three applications are particularly lock-intensive and the last two use Pthread condition variables. Therefore, all three represent an unfavorable case for LiTL. Moreover, we focus the discussion on the results under the highest contention level (i.e., when the application uses all the cores of the target machine), as this again represents an unfavorable case for LiTL.

Figure 2 shows the normalized performance (throughput) of both configurations (manual/interposed) for each *(application, lock)* pair: black bars correspond to manually implemented locks, whereas white bars correspond to transparently interposed locks using LiTL. In addition, Table 2 summarizes the performance differences for each application: number of locks for which each version performs better and, in each case, the average gain and the relative standard deviation.

We observe that, for all of the three applications, the results achieved by the two versions of the same lock are very close: the average performance difference is below 5%. Besides, Figure 2 highlights that the general trends observed with the manual versions are preserved with the interposed versions. We thus conclude that using LiTL to study the behavior of lock algorithms in an application yields only very modest differences with respect to the performance behavior of a manually modified version.

<sup>&</sup>lt;sup>5</sup>Using respectively the PTHREAD\_MUTEX\_RECURSIVE and PTHREAD\_MUTEX\_ERRORCHECK attributes.

|     |              | pca_ll | radiosity_11 | s_raytrace_ll |
|-----|--------------|--------|--------------|---------------|
| al  | Winners      | 10     | 17           | 19            |
| nu  | Average Gain | 2%     | 3%           | 4%            |
| Ŵ   | Rel. Dev.    | 4%     | 4%           | 5%            |
| . 1 | Winners      | 17     | 10           | 8             |
| E   | Average Gain | 2%     | 3%           | 3%            |
| Ц   | Rel. Dev.    | 2%     | 5%           | 3%            |

Table 2: Detailed statistics for the performance comparison of manually implemented locks vs. transparently interposed locks using LiTL (**A-64 machine**).

#### **5** Performance study of lock algorithms

In this section, we use LiTL to compare the behavior of the different lock algorithms on different workloads and at different levels of contention. In the interest of space, we do not systematically report the observed standard deviations. However, in order to mitigate the impact of variability, when comparing the performance of two locks, we consider a margin of 5%: lock A is considered better than lock B if B's achieved performance is below 95% of A's. Besides, in order to make fair comparisons, the results presented for the Pthread locks are obtained using the same library interposition mechanism as with the other locks.

Note that some configurations are not tested because of specific restrictions. First, streamcluster, streamcluster\_ll, and vips cannot use CLH-based locks or Hticket-LS as they do not support trylocks semantics. Second, we omit the results for most locks with MySQL: given the extremely large ratio of threads to cores, most locks yield performance close to zero. Third, some applications, e.g., dedup and fluidanimate, run out of memory for some configurations.

Finally, for the sake of space, we do not report all the results for the three studied machines. We rather focus on the A-64 machine and provide summaries of the results for the A-48 and I-48 machines. Nevertheless, the entire set of results can be found in a companion technical report [18].

The section is structured as follows. §5.1 provides preliminary observations that drive the study. §5.2 answers the main questions of the study regarding the observed lock behavior. §5.3 discusses additional observations.

#### 5.1 Preliminary observations

Before proceeding with the detailed study, we highlight some important characteristics of the applications.

#### 5.1.1 Selection of lock-sensitive applications

Table 3 shows two metrics for each application and for different numbers of nodes on the A-64 machine: the performance gain of the best lock over the worst one, as well as the relative standard deviation for the performance of the different locks. For the moment, we only focus on the relative standard deviations at the maximum number of nodes (*max nodes*—highest contention) given in the 5th column (the detailed results from this table are discussed in §5.2.1).

We consider that an application is *lock-sensitive* if the relative standard deviation for the performance of the different locks at max nodes is higher than 10% (high-lighted in bold font). We observe that about 60% of the applications are impacted by locks. We observe similar trends on the three studied machines (see Table 4).

In the remainder of this study, we focus on locksensitive applications.

|                   | Gain | R.Dev. | Gain  | R.Dev. | Gain  | R.Dev. |
|-------------------|------|--------|-------|--------|-------|--------|
|                   | 1    | 1      | max   | max    | opt   | opt    |
|                   | node | node   | nodes | nodes  | nodes | nodes  |
| barnes            | 10%  | 2%     | 36%   | 8%     | 31%   | 7%     |
| blackscholes      | 11%  | 2%     | 2%    | 1%     | 2%    | 1%     |
| bodytrack         | 1%   | 0%     | 9%    | 2%     | 4%    | 1%     |
| canneal           | 5%   | 1%     | 7%    | 2%     | 7%    | 2%     |
| dedup             | 683% | 56%    | 970%  | 55%    | 683%  | 56%    |
| facesim           | 10%  | 2%     | 771%  | 76%    | 14%   | 3%     |
| ferret            | 1%   | 0%     | 349%  | 58%    | 107%  | 25%    |
| fft               | 8%   | 2%     | 11%   | 3%     | 9%    | 2%     |
| fluidanimate      | 48%  | 11%    | 302%  | 28%    | 133%  | 20%    |
| fmm               | 26%  | 7%     | 42%   | 12%    | 42%   | 11%    |
| freqmine          | 7%   | 2%     | 6%    | 1%     | 6%    | 1%     |
| histogram         | 7%   | 2%     | 20%   | 5%     | 12%   | 3%     |
| kmeans            | 9%   | 3%     | 12%   | 2%     | 12%   | 2%     |
| linear_regression | 9%   | 2%     | 228%  | 22%    | 49%   | 10%    |
| lu_cb             | 11%  | 2%     | 5%    | 1%     | 5%    | 1%     |
| lu_ncb            | 17%  | 5%     | 8%    | 2%     | 8%    | 2%     |
| matrix_multiply   | 7%   | 3%     | 643%  | 51%    | 372%  | 38%    |
| mysqld            | 30%  | 9%     | 174%  | 38%    | 122%  | 34%    |
| ocean_cp          | 17%  | 4%     | 129%  | 15%    | 22%   | 5%     |
| ocean_ncp         | 21%  | 5%     | 118%  | 14%    | 18%   | 4%     |
| pca               | 12%  | 3%     | 358%  | 31%    | 47%   | 8%     |
| pca_ll            | 19%  | 5%     | 665%  | 47%    | 100%  | 20%    |
| p_raytrace        | 2%   | 0%     | 1%    | 0%     | 2%    | 0%     |
| radiosity         | 3%   | 1%     | 91%   | 13%    | 13%   | 4%     |
| radiosity_ll      | 8%   | 2%     | 2299% | 71%    | 180%  | 29%    |
| radix             | 2%   | 1%     | 8%    | 2%     | 8%    | 2%     |
| s_raytrace        | 4%   | 1%     | 1929% | 62%    | 126%  | 29%    |
| s_raytrace_ll     | 4%   | 1%     | 3343% | 79%    | 157%  | 26%    |
| ssl_proxy         | 37%  | 6%     | 1309% | 63%    | 58%   | 11%    |
| streamcluster     | 13%  | 3%     | 1087% | 56%    | 13%   | 3%     |
| streamcluster_ll  | 23%  | 4%     | 1305% | 55%    | 56%   | 12%    |
| string_match      | 5%   | 2%     | 11%   | 2%     | 11%   | 2%     |
| swaptions         | 8%   | 2%     | 10%   | 2%     | 10%   | 2%     |
| vips              | 2%   | 1%     | 334%  | 32%    | 8%    | 2%     |
| volrend           | 7%   | 1%     | 161%  | 21%    | 24%   | 5%     |
| water_nsquared    | 10%  | 2%     | 94%   | 14%    | 94%   | 14%    |
| water_spatial     | 24%  | 5%     | 98%   | 15%    | 96%   | 15%    |
| word_count        | 4%   | 1%     | 17%   | 3%     | 12%   | 2%     |
| x264              | 4%   | 1%     | 6%    | 2%     | 5%    | 2%     |

Table 3: For each application, performance gain of the best vs. worst lock and relative standard deviation (A-64 machine).

|                               | A-64 | A-48 | I-48 |
|-------------------------------|------|------|------|
| # tested applications         | 39   | 33   | 33   |
| # lock-sensitive applications | 23   | 19   | 17   |

Table 4: Number of tested applications and number of lock-sensitive applications (**all machines**).

| Applications      | ahmcs | alock-ls | backoff | c-bo-mcs_spin | c-bo-mcs_stp | clh-ls | clh_spin | clh_stp | c-ptl-tkt | c-tkt-tkt | hmcs | hticket-ls | malth_spin | malth_stp | mcs-ls | mcs-spin | mcs_stp | mcs-timepub | partitioned | pthread | pthreadadapt | spinlock | spinlock-ls | ticket | ticket-ls | ttas | ttas-ls |
|-------------------|-------|----------|---------|---------------|--------------|--------|----------|---------|-----------|-----------|------|------------|------------|-----------|--------|----------|---------|-------------|-------------|---------|--------------|----------|-------------|--------|-----------|------|---------|
| dedup             | -     | 252      | 129     | 89            | 95           | 229    | 200      | 204     | 125       | 117       | 75   | 96         | 119        | 119       | 106    | 110      | 113     | 80          | 136         | 120     | 126          | 147      | 118         | 141    | 121       | 145  | 197     |
| facesim           | 412   | 908      | 425     | 172           | 55           | 888    | 895      | 78      | 460       | 328       | 324  | 379        | 711        | 71        | 1k     | 948      | 87      | 26          | 895         | 91      | 67           | 726      | 35          | 919    | 462       | 489  | 530     |
| ferret            | 134   | 176      |         | 46            |              | 170    | 174      |         | 109       | 63        | 100  | 108        | 57         |           | 194    | 192      |         |             | 173         |         |              |          |             | 182    | 34        |      | 7       |
| fluidanimate      | -     | 72       |         |               | 9            | -      | -        | - 1     |           |           |      | -          | 7          | 53        | 8      | 12       | 54      | 7           |             |         |              | 16       |             | 13     | 11        | 6    | 65      |
| fmm               |       |          |         |               |              |        | 15       | 12      |           |           |      |            |            |           |        |          |         |             |             |         |              |          |             |        |           |      |         |
| histogram         | 95    | 88       | 90      | 95            | 95           | 87     | 92       | 92      | 84        | 79        | 94   | 90         | 90         | 88        | 89     | 85       | 109     | 84          | 89          | 125     | 88           | 107      | 87          | 105    | 102       | 97   | 104     |
| linear_regression | 44    | 227      | 12      | 21            | 132          | 67     | 45       | 34      | 7         | 49        | 44   | 15         | 25         | 8         | 51     | 47       | 24      |             | 50          | 10      | 8            | 38       | 8           | 21     |           |      | 27      |
| matrix_multiply   |       | 259      |         |               |              |        |          |         |           | 92        | 287  | 66         |            |           | 62     |          |         |             | 7           |         |              |          | 64          |        | 65        |      | 55      |
| mysqld            | -     | -        | -       | -             |              | -      | -        | -       | -         | -         | -    | -          | -          |           | -      | -        |         | 25          | -           |         |              | -        | -           | -      | -         | -    | -       |
| ocean_cp          | 107   | 97       | 114     | 81            | 70           | 103    | 124      | 121     | 89        | 92        | 96   | 73         | 87         | 75        | 111    | 114      | 82      | 45          | 103         | 72      | 73           | 234      | 49          | 136    | 60        | 106  | 173     |
| ocean_ncp         | 93    | 99       | 90      | 73            | 69           | 90     | 93       | 79      | 76        | 90        | 81   | 73         | 84         | 85        | 73     | 92       | 95      | 61          | 98          | 97      | 85           | 206      | 56          | 89     | 57        | 93   | 186     |
| pca               | 77    | 79       | 163     | 42            | 370          | 69     | 44       | 148     | 40        | 34        | 68   | 49         | 37         |           | 49     | 55       | 134     | 19          | 50          | 97      | 36           | 229      | 80          | 116    | 35        | 160  | 130     |
| pca_ll            | 91    | 81       | 219     | 14            | 582          | 74     | 41       | 321     | 23        | 16        | 88   | 31         | 7          | 21        | 58     | 41       | 403     |             | 21          | 195     | 114          | 513      | 168         | 108    | 51        | 206  | 476     |
| radiosity         |       |          |         |               |              | 1.0    | 1.0      | 60.0    |           |           |      |            |            |           | 1.0    |          | 69      | 10          | 10          |         |              |          | 21          |        | 10        |      | 53      |
| radiosity_ll      |       | 12       | 413     |               | 1k           | 13     | 10       | 699     | 33        | 19        |      | 1.6        | 7          |           | 13     | 11       | 792     | 18          | 48          | 157     | 71           | 987      | 164         | 296    | 97        | 411  | 615     |
| s_raytrace        | 10    | 18       | 185     | 17            | lk           | 110    | 66       | 460     | 0.2       | 14        | 13   | 16         | 60         | 7         | 100    | 0.0      | 436     | 110         | 100         | 88      | 14           | 269      | 50          | 134    | 149       | 195  | 154     |
| s_raytrace_ll     | 19    | 96       | 781     | 17            | 2k           | 110    | 107      | lk      | 83        | 180       | 15   | 170        | 68         | 161       | 108    | 88       | 1k      | 118         | 178         | 371     | 185          | 1k       | 308         | 495    | 301       | 857  | 881     |
| ssl_proxy         | 44    | 69       | 695     | 33            | lk           | 107    | 61       | 1k      | 61        | 103       | 608  | 78         | 36         | 52        | 95     | 99       | 1k      | 73          | 87          | 268     | 195          | 2k       | 268         | 360    | 139       | 718  | 957     |
| streamcluster     | 2k    | 2k       | 4k      | 2k            | 2k           | -      | -        | -       | 1k        | 2k        | 1k   | -          | 4k         | 16k       | 4k     | 3k       | 16k     | lk          | 1k          | 2k      | 3k           | 9k       | 2k          | 5k     | 4k        | 4k   | 7k      |
| streamcluster_ll  | 421   | 246      | 829     | 410           | 497          | -      | -        | - 1     | 266       | 275       | 250  | -          | 816        | 4k        | 114    | 590      | 4k      | 301         | 275         | 446     | 450          | 2k       | 585         | 1k     | 615       | 718  | IK      |
| vips              | 64    | 56       | 22      | 400           | 32           | -      | -        | -       | 331       | 189       | 131  | -          | 229        | 18        | 46     | 51       | 18      | 21          | 60          | 20      | 21           | 20       | 23          | 37     | 28        | 22   | 26      |
| volrend           | 52    | 88       | 97      | 62            | 99           | 72     | 82       | 123     | 50        | 62        | 52   | 59         | 69         | 128       | 79     | 86       | 109     | 82          | 83          | 131     | 162          | 222      | 114         | 74     | 70        | 108  | 154     |
| water_nsquared    |       |          |         |               |              |        |          |         |           |           |      |            |            |           |        |          |         |             |             |         |              |          |             |        |           |      |         |
| water_spatial     |       |          |         |               |              |        |          |         |           |           |      |            |            |           |        |          |         |             |             |         |              |          |             |        |           |      |         |

Table 5: For each *(application, lock)* pair, performance gain (in %) of the optimized configuration over the max-node configuration. The background color of a cell indicates the number of nodes (1, 2, 4, 6, or 8 nodes) for the optimized configuration: 1 | 2 | 4 | 6 | 8. Dashes correspond to untested cases. (A-64 machine).

#### 5.1.2 Selection of the number of nodes

In multicore applications, optimal performance is not always achieved at the maximum number of available nodes (abbreviated as *max nodes*) due to various kinds of scalability bottlenecks. Therefore, for each (*application, lock*) pair, we empirically determine the *optimized configuration* (abbreviated as *opt nodes*), i.e., the number of nodes that yields the best performance. For the A-64 and A-48 machines, we consider 1, 2, 4, 6, and 8 nodes. For the I-48 machines, we consider 1, 2, 3, and 4 nodes. Note that 6 nodes on A-64 and A-48 correspond to 3 nodes on I-48, i.e., 75% of the available cores.

The results for the A-64 machine are displayed in Table 5. For each (*application, lock*) pair, the corresponding cell indicates the performance gain of the optimized configuration with respect to the max-node configuration. The background color of a cell indicates the number of nodes for the optimized configuration. In addition, Table 6 provides a breakdown of the (*application, lock*) pairs according to their optimized number of nodes for all machines.

We observe that, for many applications, the optimized number of nodes is lower than the max number of nodes. Moreover, we observe (Table 5) that the performance gain of the optimized configuration is often extremely large. This confirms that tuning the degree of parallelism has frequently a very strong impact on performance. We also notice that, for some applications, the optimized number of nodes varies according to the chosen lock.

|         | A-64 | A-48 |         | I-48 |
|---------|------|------|---------|------|
| 1 Node  | 11%  | 9%   | 1 Node  | 33%  |
| 2 Nodes | 28%  | 24%  | 2 Nodes | 14%  |
| 4 Nodes | 27%  | 21%  | 3 Nodes | 8%   |
| 6 Nodes | 7%   | 9%   | 4 Nodes | 45%  |
| 8 Nodes | 27%  | 37%  |         |      |

Table 6: Breakdown of the (*application*, *lock*) pairs according to their optimized number of nodes (**all machines**).

In light of the above observations, the main questions investigated in the study (§5.2) will be considered from two complementary angles: (i) comparing locks at a fixed number of nodes, and (ii) comparing locks at their optimized configurations (i.e., with possibly a different number of nodes for each). The first angle offers insight for situations in which the degree of parallelism cannot be adjusted, while the second is useful for scenarios in which more advanced application tuning is possible.

#### 5.2 Main questions

#### 5.2.1 How much do locks impact applications?

Table 3 shows, for each application, the performance gain of the best lock over the worst one at 1 node, max nodes, and opt nodes for the A-64 machine. The table also shows the relative standard deviation for the performance of the different locks.

We observe that the impact of locks on the performance of applications depends on the number of nodes. At 1 node, the impact of locks on lock-sensitive applications is moderate. More precisely, most applications exhibit a gain of the best lock over the worst one that is lower than 30%. In contrast, at max nodes, the impact of locks is very high for all lock-sensitive applications. More precisely, the gain brought by the best lock over the worst lock ranges from 42% to 3343%. Finally, at the optimized number of nodes, the impact of locks is high, but noticeably lower than at max nodes. We explain this difference by the fact that, at max nodes, some of the locks trigger a performance collapse for certain applications (as shown in Table 5), which considerably increases the observed performance gaps between locks. We observe the same trends on the A-48 and I-48 machines (see the companion technical report [18]).

#### 5.2.2 Are some locks always among the best?

Table 7 shows the *coverage* of each lock, i.e., how often it stands as the best one (or is within 5% of the best) over all the studied applications for the A-64 machine. The results are shown for three configurations: 1 node, max nodes, and opt nodes. Besides, Table 8 displays, for each machine (at 1 node, max nodes and opt nodes) the following metrics aggregated over the different locks: the min and max coverage, the average coverage, and the relative standard deviation of the coverage.

|               | N   | lumber of node | es  |
|---------------|-----|----------------|-----|
| Locks         | 1   | Max            | Opt |
| ahmes         | 67% | 24%            | 52% |
| alock-ls      | 52% | 4%             | 30% |
| backoff       | 83% | 30%            | 26% |
| c-bo-mcs_spin | 74% | 22%            | 39% |
| c-bo-mcs_stp  | 62% | 12%            | 29% |
| clh-ls        | 63% | 5%             | 37% |
| clh_spin      | 68% | 5%             | 37% |
| clh_stp       | 63% | 16%            | 21% |
| c-ptl-tkt     | 57% | 22%            | 35% |
| c-tkt-tkt     | 74% | 22%            | 39% |
| hmcs          | 65% | 22%            | 48% |
| hticket-ls    | 63% | 16%            | 37% |
| malth_spin    | 61% | 9%             | 26% |
| malth_stp     | 54% | 29%            | 29% |
| mcs-ls        | 74% | 4%             | 30% |
| mcs_spin      | 70% | 22%            | 48% |
| mcs_stp       | 79% | 21%            | 29% |
| mcs-timepub   | 54% | 38%            | 29% |
| partitioned   | 70% | 22%            | 39% |
| pthread       | 50% | 21%            | 29% |
| pthreadadapt  | 58% | 33%            | 29% |
| spinlock      | 65% | 26%            | 30% |
| spinlock-ls   | 57% | 30%            | 35% |
| ticket        | 74% | 22%            | 39% |
| ticket-ls     | 74% | 13%            | 35% |
| ttas          | 83% | 26%            | 43% |
| ttas-1s       | 65% | 0%             | 9%  |

Table 7: For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: 1 node, max nodes, and opt nodes (**A-64 machine**).

| # nodes | Coverage   | A-64       | A-48       | I-48       |
|---------|------------|------------|------------|------------|
|         | [min; max] | [50%; 83%] | [27%; 83%] | [44%; 89%] |
| 1       | Avg.       | 66%        | 66%        | 62%        |
|         | Rel. Dev.  | 9%         | 15%        | 12%        |
|         | [min; max] | [0%; 38%]  | [0%; 42%]  | [5%; 50%]  |
| Max     | Avg.       | 19%        | 17%        | 24%        |
|         | Rel. Dev.  | 10%        | 12%        | 11%        |
|         | [min; max] | [9%; 52%]  | [0%; 47%]  | [5%; 50%]  |
| Opt     | Avg.       | 34%        | 21%        | 28%        |
|         | Rel. Dev.  | 9%         | 13%        | 12%        |

Table 8: Statistics on the coverage of locks for three configurations: 1 node, max nodes, and opt nodes (**all machines**).

We make the following observations (Table 8). No lock is among the best for more than 89% of the applications at 1 node and for more than 52% of the applications both at max nodes and at the optimal number of nodes. We also observe that the average coverage is much higher at 1 node than at max nodes, and slightly higher at the optimized number of nodes than at max nodes. This is directly explained by the observations made in §5.2.1. First, at 1 node, locks have a much lower impact on applications than in other configurations and thus yield closer results, which increases their likelihood to be among the best ones. Second, at max nodes, all of the different locks cause, in turn, a performance collapse, which reduces their likelihood to be among the best locks. This latter phenomenon is not observed at the optimized number of nodes. We observe the same trends on the A-48 and I-48 machines (see the companion technical report [18]).

#### 5.2.3 Is there a clear hierarchy between locks?

Table 9 shows pairwise comparisons for all locks, at max nodes on the A-64 machine. In each table, cell (rowA, colB) contains the score of lock A vs. lock B, i.e., the percentage of applications for which lock A is at least 5% better than lock B. For example, Table 9 shows that for 38% of the applications, AHMCS performs at least 5% better than Backoff at the optimized number of nodes. Similarly, the table shows that Backoff is at least 5% better than AHMCS for 29% of the applications. From these two values, we can conclude that the two above mentioned locks perform very closely for 33% of the applications. At the end of each line (resp. column), the table also shows the mean of the fraction of applications for which a lock is better (resp. worse) than others. Besides, the latter two metrics are summarized for the three machines in Table 10.

We observe that **there is no clear global performance hierarchy between locks**. More precisely, for most pairs of locks (A, B), there are some applications for which A is better than B, and vice-versa (Table 9). The only marginal exceptions are the cells having 0% for value. This corresponds to pairs of locks (A, B) for which A

|               | ahmcs | alock-ls | backoff | c-bo-mcs_spin | c-bo-mcs_stp | clh-ls | clh_spin | clh_stp | c-ptl-tkt | c-tkt-tkt | hmcs | hticket-ls | malth_spin | malth_stp | mcs-ls | mcs-spin | mcs_stp | mcs-timepub | partitioned | pthread | pthreadadapt | spinlock | spinlock-ls | ticket | ticket-1s | ttas | ttas-ls | average |
|---------------|-------|----------|---------|---------------|--------------|--------|----------|---------|-----------|-----------|------|------------|------------|-----------|--------|----------|---------|-------------|-------------|---------|--------------|----------|-------------|--------|-----------|------|---------|---------|
| ahmes         |       | 19       | 38      | 48            | 29           | 22     | 17       | 61      | 19        | 48        | 5    | 33         | 33         | 43        | 38     | 38       | 48      | 52          | 24          | 38      | 43           | 57       | 48          | 33     | 33        | 43   | 38      | 36      |
| alock-ls      | 19    |          | 39      | 30            | 26           | 16     | 16       | 58      | 17        | 22        | 9    | 26         | 39         | 30        | 22     | 26       | 43      | 30          | 9           | 39      | 43           | 48       | 39          | 35     | 30        | 35   | 39      | 30      |
| backoff       | 29    | 35       |         | 30            | 26           | 37     | 37       | 58      | 26        | 26        | 35   | 32         | 35         | 26        | 35     | 30       | 52      | 30          | 17          | 35      | 39           | 30       | 26          | 4      | 22        | 0    | 39      | 30      |
| c-bo-mcs_spin | 33    | 48       | 43      |               | 35           | 37     | 32       | 74      | 22        | 17        | 39   | 32         | 39         | 48        | 39     | 9        | 48      | 13          | 22          | 39      | 39           | 39       | 43          | 48     | 39        | 35   | 65      | 38      |
| c-bo-mcs_stp  | 33    | 43       | 35      | 22            |              | 42     | 32       | 74      | 17        | 22        | 30   | 21         | 22         | 25        | 26     | 26       | 42      | 21          | 13          | 33      | 33           | 39       | 26          | 26     | 22        | 26   | 61      | 31      |
| clh-ls        | 22    | 21       | 37      | 42            | 32           |        | 16       | 47      | 26        | 26        | 16   | 26         | 37         | 37        | 16     | 32       | 47      | 26          | 16          | 42      | 47           | 53       | 47          | 47     | 42        | 42   | 47      | 34      |
| clh_spin      | 22    | 32       | 32      | 32            | 26           | 32     |          | 53      | 21        | 37        | 21   | 42         | 32         | 26        | 32     | 21       | 47      | 32          | 11          | 37      | 37           | 47       | 42          | 32     | 42        | 37   | 47      | 33      |
| clh_stp       | 33    | 32       | 5       | 16            | 11           | 37     | 16       |         | 26        | 16        | 26   | 26         | 16         | 11        | 21     | 16       | 11      | 5           | 11          | 11      | 11           | 21       | 21          | 11     | 26        | 11   | 32      | 18      |
| c-ptl-tkt     | 19    | 35       | 35      | 39            | 30           | 32     | 21       | 68      |           | 26        | 22   | 26         | 26         | 43        | 30     | 26       | 57      | 39          | 17          | 39      | 35           | 48       | 35          | 30     | 30        | 35   | 57      | 35      |
| c-tkt-tkt     | 24    | 39       | 35      | 26            | 39           | 32     | 26       | 74      | 26        |           | 30   | 32         | 48         | 65        | 43     | 17       | 57      | 22          | 9           | 39      | 43           | 39       | 43          | 39     | 43        | 35   | 65      | 38      |
| hmcs          | 14    | 30       | 39      | 35            | 22           | 42     | 32       | 74      | 17        | 39        |      | 32         | 39         | 35        | 35     | 26       | 52      | 39          | 26          | 39      | 39           | 48       | 39          | 30     | 30        | 30   | 52      | 36      |
| hticket-ls    | 17    | 16       | 47      | 32            | 26           | 21     | 32       | 74      | 11        | 21        | 5    |            | 32         | 42        | 11     | 26       | 53      | 32          | 11          | 42      | 42           | 53       | 42          | 37     | 26        | 47   | 58      | 33      |
| malth_spin    | 14    | 35       | 22      | 22            | 26           | 26     | 16       | 63      | 13        | 17        | 22   | 16         |            | 22        | 22     | 13       | 39      | 17          | 4           | 35      | 35           | 35       | 39          | 17     | 13        | 17   | 48      | 25      |
| malth_stp     | 24    | 35       | 22      | 35            | 21           | 32     | 37       | 58      | 17        | 17        | 26   | 21         | 4          |           | 22     | 17       | 33      | 25          | 9           | 33      | 29           | 35       | 22          | 17     | 17        | 17   | 48      | 26      |
| mcs-ls        | 24    | 17       | 35      | 35            | 35           | 21     | 26       | 63      | 13        | 17        | 17   | 16         | 35         | 26        |        | 17       | 39      | 17          | 4           | 39      | 43           | 43       | 35          | 30     | 17        | 35   | 48      | 29      |
| mcs_spin      | 29    | 43       | 35      | 26            | 39           | 37     | 32       | 68      | 26        | 17        | 39   | 47         | 39         | 43        | 43     |          | 43      | 22          | 22          | 35      | 39           | 35       | 43          | 39     | 30        | 39   | 61      | 37      |
| mcs_stp       | 29    | 35       | 9       | 22            | 21           | 32     | 32       | 42      | 22        | 9         | 30   | 26         | 17         | 17        | 26     | 9        |         | 12          | 17          | 21      | 25           | 17       | 17          | 13     | 17        | 13   | 39      | 22      |
| mcs-timepub   | 33    | 39       | 35      | 22            | 33           | 42     | 37       | 68      | 17        | 9         | 30   | 32         | 39         | 29        | 22     | 9        | 38      |             | 13          | 29      | 33           | 30       | 35          | 30     | 30        | 30   | 57      | 32      |
| partitioned   | 24    | 39       | 26      | 39            | 43           | 32     | 32       | 68      | 26        | 22        | 39   | 53         | 52         | 43        | 35     | 35       | 61      | 35          |             | 43      | 48           | 48       | 43          | 26     | 43        | 35   | 65      | 41      |
| pthread       | 29    | 39       | 22      | 26            | 25           | 37     | 32       | 58      | 22        | 17        | 39   | 26         | 30         | 25        | 35     | 26       | 46      | 25          | 13          |         | 21           | 39       | 13          | 17     | 13        | 17   | 43      | 28      |
| pthreadadapt  | 29    | 43       | 22      | 35            | 21           | 37     | 37       | 53      | 30        | 26        | 35   | 26         | 26         | 25        | 35     | 30       | 42      | 25          | 17          | 21      |              | 22       | 22          | 17     | 17        | 17   | 43      | 29      |
| spinlock      | 29    | 39       | 9       | 26            | 17           | 37     | 32       | 53      | 35        | 13        | 39   | 32         | 43         | 35        | 35     | 22       | 39      | 17          | 22          | 26      | 30           |          | 26          | 13     | 30        | 9    | 35      | 29      |
| spinlock-ls   | 29    | 39       | 26      | 30            | 35           | 26     | 26       | 63      | 26        | 30        | 35   | 16         | 30         | 30        | 30     | 30       | 48      | 30          | 22          | 43      | 30           | 48       |             | 26     | 13        | 26   | 57      | 33      |
| ticket        | 29    | 35       | 9       | 26            | 26           | 32     | 32       | 63      | 26        | 22        | 35   | 32         | 30         | 26        | 30     | 26       | 48      | 22          | 13          | 26      | 39           | 30       | 26          |        | 22        | 0    | 39      | 29      |
| ticket-ls     | 19    | 22       | 30      | 26            | 39           | 26     | 32       | 68      | 26        | 26        | 22   | 11         | 35         | 39        | 22     | 26       | 52      | 26          | 26          | 35      | 48           | 43       | 39          | 30     |           | 30   | 52      | 33      |
| ttas          | 24    | 35       | 4       | 26            | 22           | 37     | 26       | 63      | 26        | 17        | 35   | 32         | 30         | 26        | 30     | 30       | 52      | 17          | 17          | 30      | 35           | 30       | 26          | 4      | 26        |      | 30      | 28      |
| ttas-ls       | 19    | 17       | 9       | 17            | 13           | 21     | 16       | 42      | 13        | 13        | 4    | 5          | 22         | 22        | 9      | 22       | 30      | 9           | 13          | 17      | 22           | 30       | 17          | 13     | 4         | 9    |         | 17      |
| average       | 25    | 33       | 27      | 29            | 28           | 32     | 28       | 62      | 22        | 22        | 26   | 28         | 32         | 32        | 29     | 23       | 45      | 25          | 15          | 33      | 36           | 39       | 33          | 26     | 26        | 26   | 49      |         |

Table 9: For each pair of locks (*rowA*, *colB*) at the optimized number of nodes, score of lock A vs lock B: percentage of applications for which lock A performs at least 5% better than B (**A-64 machine**).

|               |      | Better |      |      | Worse | 1    |
|---------------|------|--------|------|------|-------|------|
| Lock          | A-64 | A-48   | I-48 | A-64 | A-48  | I-48 |
| ahmes         | 36%  | 40%    | 52%  | 25%  | 28%   | 25%  |
| alock-ls      | 30%  | 42%    | 37%  | 33%  | 25%   | 32%  |
| backoff       | 30%  | 29%    | 23%  | 27%  | 33%   | 45%  |
| c-bo-mcs_spin | 38%  | 47%    | 46%  | 29%  | 25%   | 15%  |
| c-bo-mcs_stp  | 31%  | 25%    | 38%  | 28%  | 44%   | 25%  |
| clh-ls        | 34%  | 46%    | 32%  | 32%  | 32%   | 38%  |
| clh_spin      | 33%  | 38%    | 33%  | 28%  | 34%   | 37%  |
| clh_stp       | 18%  | 11%    | 8%   | 62%  | 72%   | 71%  |
| c-ptl-tkt     | 35%  | 44%    | 54%  | 22%  | 26%   | 13%  |
| c-tkt-tkt     | 38%  | 42%    | 51%  | 22%  | 27%   | 15%  |
| hmcs          | 36%  | 50%    | 52%  | 26%  | 21%   | 17%  |
| hticket-ls    | 33%  | 45%    | 42%  | 28%  | 25%   | 17%  |
| malth_spin    | 25%  | 36%    | 31%  | 32%  | 37%   | 35%  |
| malth_stp     | 26%  | 20%    | 28%  | 32%  | 53%   | 36%  |
| mcs-ls        | 29%  | 43%    | 35%  | 29%  | 22%   | 26%  |
| mcs_spin      | 37%  | 38%    | 36%  | 23%  | 33%   | 23%  |
| mcs_stp       | 22%  | 23%    | 20%  | 45%  | 59%   | 52%  |
| mcs-timepub   | 32%  | 38%    | 34%  | 25%  | 34%   | 29%  |
| partitioned   | 41%  | 42%    | 38%  | 15%  | 32%   | 23%  |
| pthread       | 28%  | 33%    | 34%  | 33%  | 43%   | 35%  |
| pthreadadapt  | 29%  | 34%    | 34%  | 36%  | 38%   | 36%  |
| spinlock      | 29%  | 35%    | 20%  | 39%  | 44%   | 49%  |
| spinlock-ls   | 33%  | 41%    | 38%  | 33%  | 30%   | 31%  |
| ticket        | 29%  | 23%    | 17%  | 26%  | 44%   | 53%  |
| ticket-ls     | 33%  | 40%    | 28%  | 26%  | 24%   | 35%  |
| ttas          | 28%  | 28%    | 24%  | 26%  | 34%   | 44%  |
| ttas-1s       | 17%  | 27%    | 20%  | 49%  | 42%   | 52%  |

Table 10: For each lock, at the optimized number of nodes, mean of the fraction of applications for which the lock is better (resp. worse) than other locks (**all ma-chines**).

never yields better performance than *B*. The results at max nodes (not shown due to lack of space) exhibit similar trends as the ones at opt nodes. Besides, we make the same observations (both at opt nodes and max nodes) on the A-48 and I-48 machines (see the companion technical report [18]).

#### 5.2.4 Are all locks potentially harmful?

Our goal is to determine, for each lock, if there are applications for which it yields substantially lower performance than other locks and to quantify the magnitude of such performance gaps. Table 11 displays, for the A-64 machine, the performance gain brought by the best lock with respect to each of the other locks for each application at max nodes (top part) and at the optimized number of nodes for each lock (bottom part). For example, the top part of the table shows that for the dedup application, the best lock (0%, here Spinlock-LS) is 598% better than the Alock-LS lock. The gray cells highlight values greater than 15%. Thus, for each lock in a column, the number of grey cells corresponds to the number of applications for which the lock is beaten by a gap of 15% or more by the best lock(s) for this application. In addition, Table 12 displays, for each machine, the fraction of applications that are significantly hurt by a given lock.

On the three machines, we observe that, both at max

| Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ahmcs                                                                                                                                                  | alock-ls                                                                                                                                                  | backoff                                                                                                                                                                                                                                               | c-bo-mcs_spin                                                                                                                                                                                                                | c-bo-mcs_stp                                                                                                                         | clh-ls                                                                                                                                                                                | clh_spin                                                                                                                                                                                                                                                                                                                                                                | clh-stp                                                                                                                                           | c-ptl-tkt                                                                                                                                                              | c-tkt-tkt                                                                                                                                                  | hmcs                                                                                                                                                           | hticket-ls                                                                                                                                                                   | malth_spin                                                                                                                                                                 | malth_stp                                                                                                                                   | mcs-ls                                                                                                                          | mcs_spin                                                                                                                                                                                                                                                                    | mcs_stp                                                                                                                                              | mcs-timepub                                                                                                                                       | partitioned                                                                                                                                                                   | pthread                                                                                                                                           | pthreadadapt                                                                                                                                               | spinlock                                                                                                                                                  | spinlock-ls                                                                                                                                 | ticket                                                                                                                                             | ticket-ls                                                                                                                                                                 | ttas                                                                                                                                                          | ttas-ls                                                                                                                                            |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| dedup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                      | 598                                                                                                                                                       | 4                                                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                          | 137                                                                                                                                  | 970                                                                                                                                                                                   | 575                                                                                                                                                                                                                                                                                                                                                                     | 576                                                                                                                                               | 27                                                                                                                                                                     | 11                                                                                                                                                         | 145                                                                                                                                                            | 130                                                                                                                                                                          | 130                                                                                                                                                                        | 129                                                                                                                                         | 123                                                                                                                             | 127                                                                                                                                                                                                                                                                         | 128                                                                                                                                                  | 105                                                                                                                                               | 14                                                                                                                                                                            | 6                                                                                                                                                 | 2                                                                                                                                                          | 2                                                                                                                                                         | 0                                                                                                                                           | 4                                                                                                                                                  | 0                                                                                                                                                                         | 5                                                                                                                                                             | 579                                                                                                                                                |           |
| facesim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 298                                                                                                                                                    | 701                                                                                                                                                       | 323                                                                                                                                                                                                                                                   | 107                                                                                                                                                                                                                          | 25                                                                                                                                   | 680                                                                                                                                                                                   | 687                                                                                                                                                                                                                                                                                                                                                                     | 52                                                                                                                                                | 333                                                                                                                                                                    | 224                                                                                                                                                        | 234                                                                                                                                                            | 273                                                                                                                                                                          | 531                                                                                                                                                                        | 40                                                                                                                                          | 771                                                                                                                             | 710                                                                                                                                                                                                                                                                         | 52                                                                                                                                                   | 0                                                                                                                                                 | 685                                                                                                                                                                           | 56                                                                                                                                                | 44                                                                                                                                                         | 572                                                                                                                                                       | 6                                                                                                                                           | 719                                                                                                                                                | 340                                                                                                                                                                       | 368                                                                                                                                                           | 409                                                                                                                                                |           |
| ferret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 329                                                                                                                                                    | 297                                                                                                                                                       | 10                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                           | 0                                                                                                                                    | 261                                                                                                                                                                                   | 312                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                 | 286                                                                                                                                                                    | 228                                                                                                                                                        | 255                                                                                                                                                            | 291                                                                                                                                                                          | 196                                                                                                                                                                        | 0                                                                                                                                           | 349                                                                                                                             | 317                                                                                                                                                                                                                                                                         | 0                                                                                                                                                    | 4                                                                                                                                                 | 314                                                                                                                                                                           | 0                                                                                                                                                 | 1                                                                                                                                                          | 10                                                                                                                                                        | 0                                                                                                                                           | 331                                                                                                                                                | 84                                                                                                                                                                        | 9                                                                                                                                                             | 11                                                                                                                                                 |           |
| fluidanimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                      | 301                                                                                                                                                       | 0                                                                                                                                                                                                                                                     | 57                                                                                                                                                                                                                           | 65                                                                                                                                   | -                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                 | 35                                                                                                                                                                     | 14                                                                                                                                                         | 72                                                                                                                                                             | -                                                                                                                                                                            | 36                                                                                                                                                                         | 95                                                                                                                                          | 50                                                                                                                              | 40                                                                                                                                                                                                                                                                          | 94                                                                                                                                                   | 50                                                                                                                                                | 14                                                                                                                                                                            | 5                                                                                                                                                 | 12                                                                                                                                                         | 26                                                                                                                                                        | 0                                                                                                                                           | 17                                                                                                                                                 | 15                                                                                                                                                                        | 9                                                                                                                                                             | 201                                                                                                                                                |           |
| fmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                     | 37                                                                                                                                                        | 15                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                            | 26                                                                                                                                   | 38                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                | 30                                                                                                                                                                     | 0                                                                                                                                                          | 35                                                                                                                                                             | 32                                                                                                                                                                           | 16                                                                                                                                                                         | 14                                                                                                                                          | 32                                                                                                                              | 2                                                                                                                                                                                                                                                                           | 0                                                                                                                                                    | 0                                                                                                                                                 | 14                                                                                                                                                                            | 25                                                                                                                                                | 23                                                                                                                                                         | 2                                                                                                                                                         | 25                                                                                                                                          | 15                                                                                                                                                 | 27                                                                                                                                                                        | 17                                                                                                                                                            | 34                                                                                                                                                 |           |
| histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                      | 2                                                                                                                                                         | 8                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                            | 4                                                                                                                                    | 3                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                | 2                                                                                                                                                                      | 0                                                                                                                                                          | 2                                                                                                                                                              | 0                                                                                                                                                                            | 0                                                                                                                                                                          | 1                                                                                                                                           | 5                                                                                                                               | 1                                                                                                                                                                                                                                                                           | 14                                                                                                                                                   | 1                                                                                                                                                 | 4                                                                                                                                                                             | 19                                                                                                                                                | 2                                                                                                                                                          | 18                                                                                                                                                        | 3                                                                                                                                           | 11                                                                                                                                                 | 5                                                                                                                                                                         | 8                                                                                                                                                             | 12                                                                                                                                                 |           |
| linear regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32                                                                                                                                                     | 228                                                                                                                                                       | 24                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                           | 108                                                                                                                                  | 57                                                                                                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                      | 62                                                                                                                                                | 0                                                                                                                                                                      | 52                                                                                                                                                         | 28                                                                                                                                                             | 11                                                                                                                                                                           | 17                                                                                                                                                                         | 0                                                                                                                                           | 49                                                                                                                              | 46                                                                                                                                                                                                                                                                          | 56                                                                                                                                                   | 3                                                                                                                                                 | 39                                                                                                                                                                            | 15                                                                                                                                                | 0                                                                                                                                                          | 83                                                                                                                                                        | 15                                                                                                                                          | 32                                                                                                                                                 | 9                                                                                                                                                                         | 19                                                                                                                                                            | 49                                                                                                                                                 |           |
| matrix multiply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                      | 559                                                                                                                                                       | 5                                                                                                                                                                                                                                                     | 26                                                                                                                                                                                                                           | 7                                                                                                                                    | 18                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                 | 24                                                                                                                                                                     | 136                                                                                                                                                        | 608                                                                                                                                                            | 642                                                                                                                                                                          | 5                                                                                                                                                                          | 3                                                                                                                                           | 639                                                                                                                             | 27                                                                                                                                                                                                                                                                          | 2                                                                                                                                                    | 0                                                                                                                                                 | 33                                                                                                                                                                            | 3                                                                                                                                                 | 3                                                                                                                                                          | 5                                                                                                                                                         | 637                                                                                                                                         | 3                                                                                                                                                  | 633                                                                                                                                                                       | 5                                                                                                                                                             | 630                                                                                                                                                |           |
| mysald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                     | -                                                                                                                                                         | -                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                            | 30                                                                                                                                   | -                                                                                                                                                                                     | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                 | -                                                                                                                                                                      | -                                                                                                                                                          | -                                                                                                                                                              | -                                                                                                                                                                            | -                                                                                                                                                                          | 0                                                                                                                                           | -                                                                                                                               | -                                                                                                                                                                                                                                                                           | 7                                                                                                                                                    | 173                                                                                                                                               | -                                                                                                                                                                             | 97                                                                                                                                                | 102                                                                                                                                                        | -                                                                                                                                                         | -                                                                                                                                           | -                                                                                                                                                  | -                                                                                                                                                                         | -                                                                                                                                                             | -                                                                                                                                                  |           |
| ocean cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                                                                                                                                     | 18                                                                                                                                                        | 37                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                           | 16                                                                                                                                   | 27                                                                                                                                                                                    | 38                                                                                                                                                                                                                                                                                                                                                                      | 38                                                                                                                                                | 24                                                                                                                                                                     | 29                                                                                                                                                         | 29                                                                                                                                                             | 15                                                                                                                                                                           | 23                                                                                                                                                                         | 27                                                                                                                                          | 27                                                                                                                              | 43                                                                                                                                                                                                                                                                          | 32                                                                                                                                                   | 0                                                                                                                                                 | 24                                                                                                                                                                            | 11                                                                                                                                                | 19                                                                                                                                                         | 129                                                                                                                                                       | 5                                                                                                                                           | 55                                                                                                                                                 | 5                                                                                                                                                                         | 38                                                                                                                                                            | 81                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                     | 28                                                                                                                                                        | 20                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                           | 0                                                                                                                                    | 25                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                | 12                                                                                                                                                                     | 28                                                                                                                                                         | 16                                                                                                                                                             | 10                                                                                                                                                                           | 20                                                                                                                                                                         | 22                                                                                                                                          | 14                                                                                                                              | 36                                                                                                                                                                                                                                                                          | 37                                                                                                                                                   | 11                                                                                                                                                | 20                                                                                                                                                                            | 31                                                                                                                                                | 27                                                                                                                                                         | 118                                                                                                                                                       | 0                                                                                                                                           | 25                                                                                                                                                 | 2                                                                                                                                                                         | 20                                                                                                                                                            | 03                                                                                                                                                 | Ma        |
| becaninep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65                                                                                                                                                     | 60                                                                                                                                                        | 155                                                                                                                                                                                                                                                   | <i>1</i> 6                                                                                                                                                                                                                   | 357                                                                                                                                  | 61                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                | 40                                                                                                                                                                     | 20                                                                                                                                                         | 50                                                                                                                                                             | 30                                                                                                                                                                           | 38                                                                                                                                                                         | 0                                                                                                                                           | 14                                                                                                                              | 58                                                                                                                                                                                                                                                                          | 214                                                                                                                                                  | 23                                                                                                                                                | 15                                                                                                                                                                            | 110                                                                                                                                               | 30                                                                                                                                                         | 252                                                                                                                                                       | 75                                                                                                                                          | 110                                                                                                                                                | 23                                                                                                                                                                        | 157                                                                                                                                                           | 112                                                                                                                                                | X         |
| pca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47                                                                                                                                                     | 29                                                                                                                                                        | 251                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                           | 664                                                                                                                                  | 25                                                                                                                                                                                    | 40<br>51                                                                                                                                                                                                                                                                                                                                                                | 511                                                                                                                                               | 20                                                                                                                                                                     | 24                                                                                                                                                         | 41                                                                                                                                                             | 39                                                                                                                                                                           | 10                                                                                                                                                                         | 26                                                                                                                                          | 45                                                                                                                              | 50                                                                                                                                                                                                                                                                          | 526                                                                                                                                                  | 15                                                                                                                                                | 45                                                                                                                                                                            | 206                                                                                                                                               | 59<br>69                                                                                                                                                   | 591                                                                                                                                                       | 128                                                                                                                                         | 120                                                                                                                                                | 17                                                                                                                                                                        | 241                                                                                                                                                           | 229                                                                                                                                                | 100       |
| pca_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/                                                                                                                                                     | 12                                                                                                                                                        | 231                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                           | 1                                                                                                                                    | 12                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                 | 0                                                                                                                                                                      | 24                                                                                                                                                         | 41                                                                                                                                                             | 0                                                                                                                                                                            | 10                                                                                                                                                                         | 12                                                                                                                                          | 1/                                                                                                                              | 1                                                                                                                                                                                                                                                                           | 01                                                                                                                                                   | 15                                                                                                                                                | 1                                                                                                                                                                             | 200                                                                                                                                               | 00                                                                                                                                                         | 1                                                                                                                                                         | 22                                                                                                                                          | 120                                                                                                                                                | 10                                                                                                                                                                        | 241                                                                                                                                                           | 71                                                                                                                                                 | les       |
| radiosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                     | 12                                                                                                                                                        | 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                            | 21-                                                                                                                                  | 15                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                       | 21-                                                                                                                                               | 25                                                                                                                                                                     | 1                                                                                                                                                          | 2                                                                                                                                                              | 20                                                                                                                                                                           | 50                                                                                                                                                                         | 12                                                                                                                                          | 10                                                                                                                              | 12                                                                                                                                                                                                                                                                          | 91                                                                                                                                                   | 4.4                                                                                                                                               | 1                                                                                                                                                                             | 5(7                                                                                                                                               | 2(7                                                                                                                                                        | 21-                                                                                                                                                       | 200                                                                                                                                         | (14                                                                                                                                                | 19                                                                                                                                                                        | 0                                                                                                                                                             | /1                                                                                                                                                 |           |
| radiosity_II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        | 47                                                                                                                                                        | 520                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                           | 2K<br>21-                                                                                                                            | 50                                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                      | 2K                                                                                                                                                | 33                                                                                                                                                                     | 43                                                                                                                                                         | 3                                                                                                                                                              | 20                                                                                                                                                                           | 39                                                                                                                                                                         | 05                                                                                                                                          | 02                                                                                                                              | 12                                                                                                                                                                                                                                                                          | 2K                                                                                                                                                   | 44                                                                                                                                                | 10                                                                                                                                                                            | 220                                                                                                                                               | 102                                                                                                                                                        | 2K                                                                                                                                                        | 110                                                                                                                                         | 412                                                                                                                                                | 195                                                                                                                                                                       | 62J                                                                                                                                                           | 1K                                                                                                                                                 |           |
| s_raytrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                      | 24                                                                                                                                                        | 330                                                                                                                                                                                                                                                   | 1/                                                                                                                                                                                                                           | 2K<br>21-                                                                                                                            | 9                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                      | 1 K                                                                                                                                               | 8                                                                                                                                                                      | 27                                                                                                                                                         | 18                                                                                                                                                             | 38                                                                                                                                                                           | 20                                                                                                                                                                         | 04                                                                                                                                          | 10                                                                                                                              | 0                                                                                                                                                                                                                                                                           | 1 K                                                                                                                                                  | 15                                                                                                                                                | 122                                                                                                                                                                           | 230                                                                                                                                               | 122                                                                                                                                                        | /14                                                                                                                                                       | 118                                                                                                                                         | 412                                                                                                                                                | 223                                                                                                                                                                       | 354                                                                                                                                                           | 4/1                                                                                                                                                |           |
| s_raytrace_II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                      | 82                                                                                                                                                        | IK                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                           | 3K                                                                                                                                   | 90                                                                                                                                                                                    | 8/                                                                                                                                                                                                                                                                                                                                                                      | 3K                                                                                                                                                | 08                                                                                                                                                                     | 109                                                                                                                                                        | 0                                                                                                                                                              | 104                                                                                                                                                                          | 84                                                                                                                                                                         | 291                                                                                                                                         | 99                                                                                                                              | 69                                                                                                                                                                                                                                                                          | 3K                                                                                                                                                   | 111                                                                                                                                               | 157                                                                                                                                                                           | 039                                                                                                                                               | 333                                                                                                                                                        | 2K                                                                                                                                                        | 428                                                                                                                                         | 813                                                                                                                                                | 332                                                                                                                                                                       | 1K                                                                                                                                                            | IK                                                                                                                                                 |           |
| ssl_proxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                      | 18                                                                                                                                                        | 532                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                            | IK                                                                                                                                   | 47                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                      | 879                                                                                                                                               | 9                                                                                                                                                                      | 41                                                                                                                                                         | 379                                                                                                                                                            | 20                                                                                                                                                                           | 16                                                                                                                                                                         | 35                                                                                                                                          | 43                                                                                                                              | 47                                                                                                                                                                                                                                                                          | 900                                                                                                                                                  | 29                                                                                                                                                | 36                                                                                                                                                                            | 293                                                                                                                                               | 153                                                                                                                                                        | IK                                                                                                                                                        | 249                                                                                                                                         | 2/1                                                                                                                                                | 85                                                                                                                                                                        | 539                                                                                                                                                           | 735                                                                                                                                                |           |
| streamcluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                     | 24                                                                                                                                                        | 153                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                           | 63                                                                                                                                   | -                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                 | 7                                                                                                                                                                      | 13                                                                                                                                                         | 3                                                                                                                                                              | -                                                                                                                                                                            | 210                                                                                                                                                                        | 1k                                                                                                                                          | 183                                                                                                                             | 118                                                                                                                                                                                                                                                                         | 979                                                                                                                                                  | 6                                                                                                                                                 | 0                                                                                                                                                                             | 90                                                                                                                                                | 133                                                                                                                                                        | 505                                                                                                                                                       | 33                                                                                                                                          | 290                                                                                                                                                | 166                                                                                                                                                                       | 177                                                                                                                                                           | 395                                                                                                                                                |           |
| streamcluster_ll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                                                                                                                     | 6                                                                                                                                                         | 188                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                           | 55                                                                                                                                   | -                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                 | 0                                                                                                                                                                      | 17                                                                                                                                                         | 6                                                                                                                                                              | -                                                                                                                                                                            | 234                                                                                                                                                                        | 1k                                                                                                                                          | 202                                                                                                                             | 133                                                                                                                                                                                                                                                                         | 1k                                                                                                                                                   | 34                                                                                                                                                | 13                                                                                                                                                                            | 77                                                                                                                                                | 102                                                                                                                                                        | 518                                                                                                                                                       | 65                                                                                                                                          | 263                                                                                                                                                | 139                                                                                                                                                                       | 155                                                                                                                                                           | 411                                                                                                                                                |           |
| vips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                                                                                                     | 38                                                                                                                                                        | 4                                                                                                                                                                                                                                                     | 333                                                                                                                                                                                                                          | 17                                                                                                                                   | -                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                 | 267                                                                                                                                                                    | 145                                                                                                                                                        | 101                                                                                                                                                            | -                                                                                                                                                                            | 177                                                                                                                                                                        | 0                                                                                                                                           | 28                                                                                                                              | 28                                                                                                                                                                                                                                                                          | 1                                                                                                                                                    | 3                                                                                                                                                 | 37                                                                                                                                                                            | 0                                                                                                                                                 | 2                                                                                                                                                          | 3                                                                                                                                                         | 1                                                                                                                                           | 16                                                                                                                                                 | 8                                                                                                                                                                         | 4                                                                                                                                                             | 10                                                                                                                                                 |           |
| volrend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                      | 28                                                                                                                                                        | 41                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                            | 34                                                                                                                                   | 16                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                      | 58                                                                                                                                                | 1                                                                                                                                                                      | 9                                                                                                                                                          | 0                                                                                                                                                              | 6                                                                                                                                                                            | 17                                                                                                                                                                         | 63                                                                                                                                          | 22                                                                                                                              | 26                                                                                                                                                                                                                                                                          | 47                                                                                                                                                   | 24                                                                                                                                                | 24                                                                                                                                                                            | 78                                                                                                                                                | 104                                                                                                                                                        | 161                                                                                                                                                       | 58                                                                                                                                          | 24                                                                                                                                                 | 16                                                                                                                                                                        | 51                                                                                                                                                            | 92                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                    | 10                                                                                                                                                        |                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                            |                                                                                                                                      | -                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | ~ ~                                                                                                                                               | -                                                                                                                                                                      | ~                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                              | -                                                                                                                                                                          | ~                                                                                                                                           | 0                                                                                                                               |                                                                                                                                                                                                                                                                             |                                                                                                                                                      | -                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                   | -                                                                                                                                                          |                                                                                                                                                           | ~                                                                                                                                           |                                                                                                                                                    | ~                                                                                                                                                                         |                                                                                                                                                               | ~ -                                                                                                                                                |           |
| water_nsquared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                                                                                                                                                     | 48                                                                                                                                                        | 2                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                            | 9                                                                                                                                    | 58                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                | 7                                                                                                                                                                      | 0                                                                                                                                                          | 14                                                                                                                                                             | 10                                                                                                                                                                           | 7                                                                                                                                                                          | 6                                                                                                                                           | 9                                                                                                                               | 3                                                                                                                                                                                                                                                                           | 2                                                                                                                                                    | 7                                                                                                                                                 | 4                                                                                                                                                                             | 6                                                                                                                                                 | 7                                                                                                                                                          | 0                                                                                                                                                         | 6                                                                                                                                           | 4                                                                                                                                                  | 6                                                                                                                                                                         | 4                                                                                                                                                             | 37                                                                                                                                                 |           |
| water_nsquared<br>water_spatial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94<br>97                                                                                                                                               | 48<br>49                                                                                                                                                  | 2<br>2                                                                                                                                                                                                                                                | 2<br>11                                                                                                                                                                                                                      | 9<br>7                                                                                                                               | 58<br>63                                                                                                                                                                              | 35<br>40                                                                                                                                                                                                                                                                                                                                                                | 35<br>39                                                                                                                                          | 7<br>4                                                                                                                                                                 | 0<br>5                                                                                                                                                     | 14<br>8                                                                                                                                                        | 10<br>4                                                                                                                                                                      | 7<br>8                                                                                                                                                                     | 6<br>5                                                                                                                                      | 9<br>5                                                                                                                          | 3<br>9                                                                                                                                                                                                                                                                      | 2<br>9                                                                                                                                               | 7<br>10                                                                                                                                           | 4<br>1                                                                                                                                                                        | 6<br>0                                                                                                                                            | 7<br>0                                                                                                                                                     | 0<br>2                                                                                                                                                    | 6<br>1                                                                                                                                      | 4<br>1                                                                                                                                             | 6<br>0                                                                                                                                                                    | 4<br>1                                                                                                                                                        | 37<br>41                                                                                                                                           |           |
| water_nsquared<br>water_spatial<br>dedup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94<br>97<br>-                                                                                                                                          | 48<br>49<br>378                                                                                                                                           | 2<br>2<br>10                                                                                                                                                                                                                                          | 2<br>11<br>199                                                                                                                                                                                                               | 9<br>7<br>193                                                                                                                        | 58<br>63<br>682                                                                                                                                                                       | 35<br>40<br>443                                                                                                                                                                                                                                                                                                                                                         | 35<br>39<br>436                                                                                                                                   | 7<br>4<br>36                                                                                                                                                           | 0<br>5<br>23                                                                                                                                               | 14<br>8<br>237                                                                                                                                                 | 10<br>4<br>183                                                                                                                                                               | 7<br>8<br>153                                                                                                                                                              | 6<br>5<br>152                                                                                                                               | 9<br>5<br>161                                                                                                                   | 3<br>9<br>160                                                                                                                                                                                                                                                               | 2<br>9<br>158                                                                                                                                        | 7<br>10<br>174                                                                                                                                    | 4<br>1<br>16                                                                                                                                                                  | 6<br>0<br>16                                                                                                                                      | 7<br>0<br>9                                                                                                                                                | 0<br>2<br>0                                                                                                                                               | 6<br>1<br>10                                                                                                                                | 4<br>1<br>3                                                                                                                                        | 6<br>0<br>10                                                                                                                                                              | 4<br>1<br>3                                                                                                                                                   | 37<br>41<br>451                                                                                                                                    |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94<br>97<br>-<br>2                                                                                                                                     | 48<br>49<br>378<br>4                                                                                                                                      | 2<br>2<br>10<br>6                                                                                                                                                                                                                                     | 2<br>11<br>199<br>0                                                                                                                                                                                                          | 9<br>7<br>193<br>6                                                                                                                   | 58<br>63<br>682<br>4                                                                                                                                                                  | 35<br>40<br>443<br>4                                                                                                                                                                                                                                                                                                                                                    | 35<br>39<br>436<br>12                                                                                                                             | 7<br>4<br>36<br>1                                                                                                                                                      | 0<br>5<br>23<br>0                                                                                                                                          | 14<br>8<br>237<br>4                                                                                                                                            | 10<br>4<br>183<br>2                                                                                                                                                          | 7<br>8<br>153<br>2                                                                                                                                                         | 6<br>5<br>152<br>8                                                                                                                          | 9<br>5<br>161<br>3                                                                                                              | 3<br>9<br>160<br>1                                                                                                                                                                                                                                                          | 2<br>9<br>158<br>7                                                                                                                                   | 7<br>10<br>174<br>4                                                                                                                               | 4<br>1<br>16<br>3                                                                                                                                                             | 6<br>0<br>16<br>7                                                                                                                                 | 7<br>0<br>9<br>13                                                                                                                                          | 0<br>2<br>0<br>7                                                                                                                                          | 6<br>1<br>10<br>3                                                                                                                           | 4<br>1<br>3<br>5                                                                                                                                   | 6<br>0<br>10<br>3                                                                                                                                                         | 4<br>1<br>3<br>4                                                                                                                                              | 37<br>41<br>451<br>6                                                                                                                               |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94<br>97<br>-<br>2<br>88                                                                                                                               | 48<br>49<br>378<br>4<br>47                                                                                                                                | 2<br>2<br>10<br>6<br>6                                                                                                                                                                                                                                | 2<br>11<br>199<br>0<br>29                                                                                                                                                                                                    | 9<br>7<br>193<br>6<br>0                                                                                                              | 58<br>63<br>682<br>4<br>37                                                                                                                                                            | 35<br>40<br>443<br>4<br>53                                                                                                                                                                                                                                                                                                                                              | 35<br>39<br>436<br>12<br>0                                                                                                                        | 7<br>4<br>36<br>1<br>89                                                                                                                                                | 0<br>5<br>23<br>0<br>106                                                                                                                                   | 14<br>8<br>237<br>4<br>82                                                                                                                                      | 10<br>4<br>183<br>2<br>92                                                                                                                                                    | 7<br>8<br>153<br>2<br>93                                                                                                                                                   | 6<br>5<br>152<br>8<br>0                                                                                                                     | 9<br>5<br>161<br>3<br>56                                                                                                        | 3<br>9<br>160<br>1<br>46                                                                                                                                                                                                                                                    | 2<br>9<br>158<br>7<br>0                                                                                                                              | 7<br>10<br>174<br>4<br>3                                                                                                                          | 4<br>1<br>16<br>3<br>55                                                                                                                                                       | 6<br>0<br>16<br>7<br>0                                                                                                                            | 7<br>0<br>9<br>13<br>0                                                                                                                                     | 0<br>2<br>0<br>7<br>7                                                                                                                                     | 6<br>1<br>10<br>3<br>0                                                                                                                      | 4<br>1<br>3<br>5<br>56                                                                                                                             | 6<br>0<br>10<br>3<br>41                                                                                                                                                   | 4<br>1<br>3<br>4<br>6                                                                                                                                         | 37<br>41<br>451<br>6<br>7                                                                                                                          |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94<br>97<br>-<br>2<br>88<br>-                                                                                                                          | 48<br>49<br>378<br>4<br>47<br>133                                                                                                                         | 2<br>2<br>10<br>6<br>6<br>0                                                                                                                                                                                                                           | 2<br>11<br>199<br>0<br>29<br>50                                                                                                                                                                                              | 9<br>7<br>193<br>6<br>0<br>51                                                                                                        | 58<br>63<br>682<br>4<br>37                                                                                                                                                            | 35<br>40<br>443<br>4<br>53                                                                                                                                                                                                                                                                                                                                              | 35<br>39<br>436<br>12<br>0<br>-                                                                                                                   | 7<br>4<br>36<br>1<br>89<br>35                                                                                                                                          | 0<br>5<br>23<br>0<br>106<br>14                                                                                                                             | 14<br>8<br>237<br>4<br>82<br>64                                                                                                                                | 10<br>4<br>183<br>2<br>92<br>-                                                                                                                                               | 7<br>8<br>153<br>2<br>93<br>28                                                                                                                                             | 6<br>5<br>152<br>8<br>0<br>27                                                                                                               | 9<br>5<br>161<br>3<br>56<br>39                                                                                                  | 3<br>9<br>160<br>1<br>46<br>25                                                                                                                                                                                                                                              | 2<br>9<br>158<br>7<br>0<br>26                                                                                                                        | 7<br>10<br>174<br>4<br>3<br>40                                                                                                                    | 4<br>1<br>16<br>3<br>55<br>14                                                                                                                                                 | 6<br>0<br>16<br>7<br>0<br>5                                                                                                                       | 7<br>0<br>9<br>13<br>0<br>12                                                                                                                               | 0<br>2<br>0<br>7<br>7<br>9                                                                                                                                | 6<br>1<br>10<br>3<br>0<br>0                                                                                                                 | 4<br>1<br>3<br>5<br>56<br>4                                                                                                                        | 6<br>0<br>10<br>3<br>41<br>3                                                                                                                                              | 4<br>1<br>3<br>4<br>6<br>3                                                                                                                                    | 37<br>41<br>451<br>6<br>7<br>83                                                                                                                    |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94<br>97<br>-<br>2<br>88<br>-<br>41                                                                                                                    | 48<br>49<br>378<br>4<br>47<br>133<br>35                                                                                                                   | 2<br>2<br>10<br>6<br>6<br>0<br>15                                                                                                                                                                                                                     | 2<br>11<br>199<br>0<br>29<br>50<br>3                                                                                                                                                                                         | 9<br>7<br>193<br>6<br>0<br>51<br>26                                                                                                  | 58<br>63<br>682<br>4<br>37<br>-<br>38                                                                                                                                                 | 35<br>40<br>443<br>4<br>53<br>-<br>21                                                                                                                                                                                                                                                                                                                                   | 35<br>39<br>436<br>12<br>0<br>-<br>19                                                                                                             | 7<br>4<br>36<br>1<br>89<br>35<br>30                                                                                                                                    | 0<br>5<br>23<br>0<br>106<br>14<br>0                                                                                                                        | 14<br>8<br>237<br>4<br>82<br>64<br>33                                                                                                                          | 10<br>4<br>183<br>2<br>92<br>-<br>32                                                                                                                                         | 7<br>8<br>153<br>2<br>93<br>28<br>16                                                                                                                                       | 6<br>5<br>152<br>8<br>0<br>27<br>14                                                                                                         | 9<br>5<br>161<br>3<br>56<br>39<br>32                                                                                            | 3<br>9<br>160<br>1<br>46<br>25<br>2                                                                                                                                                                                                                                         | 2<br>9<br>158<br>7<br>0<br>26<br>0                                                                                                                   | 7<br>10<br>174<br>4<br>3<br>40<br>0                                                                                                               | 4<br>1<br>3<br>55<br>14<br>14                                                                                                                                                 | 6<br>0<br>16<br>7<br>0<br>5<br>25                                                                                                                 | 7<br>0<br>9<br>13<br>0<br>12<br>23                                                                                                                         | 0<br>2<br>0<br>7<br>7<br>9<br>1                                                                                                                           | 6<br>1<br>10<br>3<br>0<br>0<br>25                                                                                                           | 4<br>1<br>3<br>5<br>56<br>4<br>15                                                                                                                  | 6<br>0<br>10<br>3<br>41<br>3<br>27                                                                                                                                        | 4<br>1<br>3<br>4<br>6<br>3<br>17                                                                                                                              | 37<br>41<br>451<br>6<br>7<br>83<br>34                                                                                                              |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94<br>97<br>2<br>88<br>-<br>41<br>0                                                                                                                    | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5                                                                                                              | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9                                                                                                                                                                                                                | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1                                                                                                                                                                                    | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2                                                                                             | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6                                                                                                                                            | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3                                                                                                                                                                                                                                                                                                                              | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11                                                                                                       | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6                                                                                                                               | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6                                                                                                                   | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1                                                                                                                     | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1                                                                                                                                    | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1                                                                                                                                  | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3                                                                                                    | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6                                                                                       | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4                                                                                                                                                                                                                                    | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4                                                                                                              | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5                                                                                                          | 4<br>1<br>3<br>55<br>14<br>14<br>6                                                                                                                                            | 6<br>0<br>7<br>0<br>5<br>25<br>2                                                                                                                  | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3                                                                                                                    | 0<br>2<br>0<br>7<br>7<br>9<br>1<br>9                                                                                                                      | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5                                                                                                      | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3                                                                                                             | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0                                                                                                                                   | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4                                                                                                                         | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5                                                                                                         |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2                                                                                                               | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12                                                                                                        | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24                                                                                                                                                                                                          | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11                                                                                                                                                                              | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0                                                                                        | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5                                                                                                                                       | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1                                                                                                                                                                                                                                                                                                                         | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35                                                                                                 | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4                                                                                                                          | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14                                                                                                             | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0                                                                                                                | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8                                                                                                                               | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5                                                                                                                             | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4                                                                                               | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10                                                                                 | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11                                                                                                                                                                                                                              | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39                                                                                                        | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14                                                                                                    | 4<br>1<br>3<br>55<br>14<br>14<br>6<br>4                                                                                                                                       | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>16                                                                                                      | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4                                                                                                               | 0<br>2<br>0<br>7<br>7<br>9<br>1<br>9<br>48                                                                                                                | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19                                                                                                | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22                                                                                                       | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0<br>15                                                                                                                             | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25                                                                                                                   | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30                                                                                                   |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9                                                                                                          | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83                                                                                                  | 2<br>2<br>10<br>6<br>0<br>15<br>9<br>24<br>5                                                                                                                                                                                                          | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22                                                                                                                                                                        | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7                                                                                   | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18                                                                                                                                 | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9                                                                                                                                                                                                                                                                                                                    | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3                                                                                            | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24                                                                                                                    | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23                                                                                                       | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83                                                                                                          | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348                                                                                                                        | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5                                                                                                                        | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3                                                                                          | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357                                                                          | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23                                                                                                                                                                                                                        | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2                                                                                                   | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0                                                                                               | 4<br>1<br>3<br>55<br>14<br>14<br>6<br>4<br>24                                                                                                                                 | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3                                                                                                       | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3                                                                                                          | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5                                                                                                                | 6<br>1<br>3<br>0<br>0<br>25<br>5<br>19<br>349                                                                                               | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3                                                                                                  | 6<br>0<br>3<br>41<br>3<br>27<br>0<br>15<br>343                                                                                                                            | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5                                                                                                              | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372                                                                                            |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-                                                                                                     | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83                                                                                                  | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5                                                                                                                                                                                                     | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22                                                                                                                                                                        | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31                                                                             | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18                                                                                                                                 | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-                                                                                                                                                                                                                                                                                                               | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-                                                                                       | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24                                                                                                                    | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23                                                                                                       | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83                                                                                                          | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-                                                                                                                   | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-                                                                                                                   | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0                                                                                     | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357                                                                          | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-                                                                                                                                                                                                                   | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8                                                                                              | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121                                                                                        | 4<br>1<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>-                                                                                                                            | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96                                                                                                 | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96                                                                                                    | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5                                                                                                                | 6<br>1<br>3<br>0<br>25<br>5<br>19<br>349                                                                                                    | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>-                                                                                             | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0<br>15<br>343                                                                                                                      | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5                                                                                                         | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372                                                                                            |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>frum<br>histogram<br>linear.regression<br>matrix_multiply<br>mysqld<br>ocean_cp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5                                                                                                | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0                                                                                        | $ \begin{array}{c c} 2 \\ 2 \\ 10 \\ 6 \\ 0 \\ 15 \\ 9 \\ 24 \\ 5 \\ - \\ 7 \\ \end{array} $                                                                                                                                                          | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12                                                                                                                                                             | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13                                                                       | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4                                                                                                                       | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2                                                                                                                                                                                                                                                                                                          | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4                                                                                  | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10                                                                                                         | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>-<br>12                                                                                            | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10                                                                                               | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11                                                                                                             | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9                                                                                                              | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21                                                                               | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0                                                                | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11                                                                                                                                                                                                             | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20                                                                                        | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14                                                                                  | 4<br>1<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>-<br>2                                                                                                                       | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7                                                                                            | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15                                                                                              | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14                                                                                                     | 6<br>1<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18                                                                                    | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>-<br>9                                                                                        |                                                                                                                                                                           | $ \begin{array}{c} 4 \\ 1 \\ 3 \\ 4 \\ 6 \\ 3 \\ 17 \\ 4 \\ 25 \\ 5 \\ - \\ 12 \\ \end{array} $                                                               | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10                                                                                        |           |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_cp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3                                                                                           | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1                                                                                   | $     \begin{array}{c}       2 \\       2 \\       10 \\       6 \\       6 \\       0 \\       15 \\       9 \\       24 \\       5 \\       - \\       7 \\       6 \\       6   \end{array} $                                                      | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17                                                                                                                                                       | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1                                                                  | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3                                                                                                                  | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3                                                                                                                                                                                                                                                                                                     | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12                                                                            | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0                                                                                                    | $\begin{array}{c} 0 \\ 5 \\ 23 \\ 0 \\ 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ - \\ 12 \\ 5 \\ \end{array}$                                                     | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0                                                                                          | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0                                                                                                        | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2                                                                                                         | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3                                                                          | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3                                                           | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10                                                                                                                                                                                                       | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10                                                                                  | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8                                                                             | $ \begin{array}{c} 4\\ 1\\ 16\\ 3\\ 55\\ 14\\ 14\\ 6\\ 4\\ 24\\ -\\ 2\\ 2\\ 2 \end{array} $                                                                                   | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4                                                                                       | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7                                                                                         | $ \begin{array}{c} 0\\ 2\\ 0\\ 7\\ 9\\ 1\\ 9\\ 48\\ 5\\ -\\ 14\\ 11\\ \end{array} $                                                                       | 6<br>1<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0                                                                               | 4<br>1<br>3<br>5<br>5<br>6<br>4<br>15<br>3<br>22<br>3<br>-<br>9<br>4                                                                               | $ \begin{array}{c} 6\\ 0\\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ -\\ 9\\ 2 \end{array} $                                                                                  | $ \begin{array}{c} 4 \\ 1 \\ 3 \\ 4 \\ 6 \\ 3 \\ 17 \\ 4 \\ 25 \\ 5 \\ -12 \\ 5 \\ 5 \\ 12 \\ 5 \\ 5 \\ 12 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$ | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5                                                                                   | Op        |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pcca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2                                                                                      | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4                                                                              | $ \begin{array}{c} 2\\ 2\\ 10\\ 6\\ 0\\ 15\\ 9\\ 24\\ 5\\ -\\ 7\\ 6\\ 6\\ \end{array} $                                                                                                                                                               | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13                                                                                                                                                 | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6                                                             | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>3<br>4                                                                                                   | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12                                                                                                                                                                                                                                                                                               | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41                                                                      | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10                                                                                              | $\begin{array}{c} 0 \\ 5 \\ \hline 23 \\ 0 \\ \hline 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ \hline 12 \\ 5 \\ 12 \\ \end{array}$                               | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4                                                                                     | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3                                                                                                   | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11                                                                                                   | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7                                                                     | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5                                                      | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12                                                                                                                                                                                                 | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47                                                                            | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13                                                                       | $ \begin{array}{c} 4 \\ 1 \\ 16 \\ 3 \\ 55 \\ 14 \\ 14 \\ 6 \\ 4 \\ 24 \\ - \\ 2 \\ 2 \\ 6 \\ \end{array} $                                                                   | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>17                                                                                 | 7<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12                                                                                        | $ \begin{array}{c} 0\\ 2\\ 0\\ 7\\ 9\\ 1\\ 9\\ 48\\ 5\\ -14\\ 11\\ 17\\ \end{array} $                                                                     | 6<br>1<br>3<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7                                                                               | $ \begin{array}{c} 4 \\ 1 \\ 3 \\ 5 \\ 56 \\ 4 \\ 15 \\ 3 \\ 22 \\ 3 \\ - \\ 9 \\ 4 \\ 7 \\ \end{array} $                                          | $ \begin{array}{c} 6\\ 0\\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ -\\ 9\\ 2\\ 0\\ \end{array} $                                                                            | $ \begin{array}{c} 4 \\ 1 \\ 3 \\ 4 \\ 6 \\ 3 \\ 17 \\ 4 \\ 25 \\ 5 \\ 12 \\ 5 \\ 8 \\ \end{array} $                                                          | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1                                                                              | Opt n     |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_ncp<br>pca<br>nca_ll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6                                                                                 | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5                                                                         | $     \begin{array}{c}       2 \\       2 \\       10 \\       6 \\       6 \\       0 \\       15 \\       9 \\       24 \\       5 \\       7 \\       6 \\       6 \\       51 \\     \end{array} $                                                | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49                                                                                                                                           | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54                                                       | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0                                                                                                        | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48                                                                                                                                                                                                                                                                                         | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100                                                               | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46                                                                                        | $\begin{array}{c} 0 \\ 5 \\ 23 \\ 0 \\ 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ - \\ 12 \\ 5 \\ 12 \\ 48 \\ \end{array}$                                         | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3                                                                                | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5                                                                                              | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53                                                                                             | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55                                                               | $ \begin{array}{r} 9 \\ 5 \\ 161 \\ 3 \\ 56 \\ 39 \\ 32 \\ 6 \\ 10 \\ 357 \\ - \\ 0 \\ 3 \\ 5 \\ 3 \\ 3 \end{array} $           | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46                                                                                                                                                                                           | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71                                                                      | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51                                                                 | $ \begin{array}{c} 4 \\ 1 \\ 16 \\ 3 \\ 55 \\ 14 \\ 14 \\ 6 \\ 4 \\ 24 \\ - \\ 2 \\ 2 \\ 6 \\ 45 \\ \end{array} $                                                             | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43                                                                           | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8                                                                              | $ \begin{array}{c} 0\\2\\\\ 0\\7\\\\ 9\\\\ 48\\\\ 5\\\\ -\\14\\\\11\\\\17\\\\53\end{array} $                                                              | 6<br>1<br>3<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17                                                                         | $ \begin{array}{c} 4\\1\\3\\5\\56\\4\\15\\3\\22\\3\\-\\9\\4\\7\\51\end{array} $                                                                    |                                                                                                                                                                           | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>-<br>12<br>5<br>8<br>53                                                                                   | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5                                                                         | Opt node  |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>pocean_ncp<br>pca_<br>pca_ll<br>radiosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10                                                                           | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9                                                                    | $     \begin{array}{c}       2 \\       2 \\       10 \\       6 \\       6 \\       0 \\       15 \\       9 \\       24 \\       5 \\       7 \\       6 \\       6 \\       51 \\       0 \\       0     \end{array} $                             | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0                                                                                                                                      | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54                                                       | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10                                                                                                  | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8                                                                                                                                                                                                                                                                                    | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0                                                          | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46<br>6                                                                                   | $\begin{array}{c} 0 \\ 5 \\ \hline 23 \\ 0 \\ 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ \hline 12 \\ 5 \\ 12 \\ 48 \\ 1 \\ \end{array}$                           | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7                                                                           | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5<br>9                                                                                         | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7                                                                                        | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10                                                         | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8                                            | $     \begin{array}{r}       3 \\       9 \\       160 \\       1 \\       46 \\       25 \\       2 \\       4 \\       11 \\       23 \\       - \\       11 \\       10 \\       12 \\       46 \\       1     \end{array} $                                             | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13                                                                | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51<br>0                                                            | $ \begin{array}{c} 4 \\ 1 \\ 16 \\ 3 \\ 55 \\ 14 \\ 14 \\ 6 \\ 4 \\ 24 \\ - \\ 2 \\ 2 \\ 6 \\ 45 \\ 1 \end{array} $                                                           | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0                                                                | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0                                                                         | $ \begin{array}{c} 0\\2\\\\ 0\\7\\\\ 9\\\\ 48\\\\ 5\\\\ -\\\\ 14\\\\ 11\\\\ 17\\\\ 53\\\\ 1 \end{array} $                                                 | 6<br>1<br>3<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10                                                                   | $ \begin{array}{c} 4\\1\\3\\5\\6\\4\\15\\3\\22\\3\\-\\9\\4\\7\\51\\0\end{array} $                                                                  | $ \begin{array}{c} 6\\ 0\\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ -\\ 9\\ 2\\ 0\\ 7\\ 9\\ 2\\ 0\\ 7\\ 9\end{array} $                                                       | $ \begin{array}{c} 4 \\ 1 \\ 3 \\ 4 \\ 6 \\ 3 \\ 17 \\ 4 \\ 25 \\ 5 \\ - \\ 12 \\ 5 \\ 8 \\ 53 \\ 0 \\ \end{array} $                                          | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11                                                                   | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_cp<br>pca<br>pca_ll<br>radiosity<br>radiosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0                                                                      | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31                                                              | $     \begin{array}{c}       2 \\       2 \\       2 \\       10 \\       6 \\       6 \\       0 \\       15 \\       9 \\       24 \\       5 \\       - \\       7 \\       6 \\       6 \\       51 \\       0 \\       75 \\       \end{array} $ | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0<br>9                                                                                                                                 | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53                                            | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32                                                                                            | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8<br>5                                                                                                                                                                                                                                                                               | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>180                                                   | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46<br>6                                                                                   | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>-<br>12<br>5<br>12<br>48<br>1<br>22                                                                | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7<br>3                                                                      | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28                                                                                   | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7<br>49                                                                                  | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59                                                   | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>8                                       | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1                                                                                                                                                                                      | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13                                                                | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51<br>0<br>22                                                      | 4<br>1<br>16<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>2<br>2<br>2<br>6<br>45<br>1<br>19                                                                                      | 6<br>0<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159                                                               | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0                                                                         | $ \begin{array}{c} 0\\2\\\\ 0\\\\ 7\\\\ 9\\\\ 48\\\\ 5\\\\ -\\\\ 14\\\\ 11\\\\ 17\\\\ 53\\\\ 1\\\\ 120\\\end{array} $                                     | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88                                                  | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>9<br>4<br>7<br>51<br>0<br>80                                                                  | $ \begin{array}{c} 6 \\ 0 \\ 10 \\ 3 \\ 41 \\ 3 \\ 27 \\ 0 \\ 15 \\ 343 \\ - \\ 9 \\ 2 \\ 0 \\ 7 \\ 9 \\ 49 \\ \end{array} $                                              | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>12<br>5<br>8<br>53<br>0<br>80                                                                        | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>5<br>10<br>5<br>1<br>5<br>11<br>83                                                      | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pca<br>pca_ll<br>radiosity_ll<br>s_rattrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94<br>97<br>2<br>888<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2                                                                | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31                                                              | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123                                                                                                                                                              | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0<br>9                                                                                                                                 | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74                                      | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9                                                                                       | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5                                                                                                                                                                                                                                                                          | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>180<br>0<br>123                                       | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46<br>6<br>1<br>5                                                                         | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>5<br>12<br>5<br>12<br>48<br>1<br>22                                                                | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7<br>3<br>5                                                                 | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19                                                                      | 7<br>8<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7<br>49<br>26                                                                                        | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53                                             | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14                                | $\begin{array}{c} 3\\ 9\\ \hline 160\\ 1\\ 46\\ 25\\ 2\\ 4\\ 11\\ 23\\ \hline \\ 10\\ 12\\ 46\\ 1\\ 1\\ 0\\ \end{array}$                                                                                                                                                    | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165                                                         | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51<br>0<br>22<br>12                                                | 4<br>1<br>16<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>2<br>2<br>6<br>45<br>1<br>19<br>10                                                                                     | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159<br>75                                                   | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94                                                            | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14<br>11<br>17<br>53<br>1<br>120                                                                       | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>45                                            | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>22<br>3<br>9<br>4<br>7<br>51<br>0<br>80                                                       | $ \begin{array}{c} 6 \\ 0 \\ 10 \\ 3 \\ 41 \\ 3 \\ 27 \\ 0 \\ 15 \\ 343 \\ - \\ 9 \\ 2 \\ 0 \\ 7 \\ 9 \\ 49 \\ 30 \\ \end{array} $                                        | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>53<br>0<br>80<br>12                                                             | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11<br>83<br>125                                               | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_ncp<br>pca<br>pca_ll<br>radiosity_ll<br>s_raytrace<br>s_raytrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94<br>97<br>-<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>2<br>6<br>10<br>0<br>0<br>2<br>2                                             | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6                                                    | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79                                                                                                                                                        | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0<br>9<br>16                                                                                                                           | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74                                | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7                                                                                  | 35<br>40<br>443<br>4<br>53<br>21<br>3<br>1<br>21<br>3<br>1<br>2<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4                                                                                                                                                                                                                                                               | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>180<br>123<br>157                                     | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46<br>6<br>1<br>5<br>5                                                                    | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>5<br>12<br>5<br>12<br>48<br>1<br>22<br>11                                                          | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7<br>3<br>5<br>0                                                            | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19                                                                      | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25                                                                      | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72                                       | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>5<br>3<br>8<br>42<br>14<br>9                      | $     \begin{array}{r}       3 \\       9 \\       160 \\       1 \\       46 \\       25 \\       2 \\       4 \\       11 \\       23 \\       - \\       11 \\       10 \\       12 \\       46 \\       1 \\       1 \\       0 \\       3 \\       3     \end{array} $ | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>150                                           | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51<br>0<br>22<br>12                                                | 4<br>1<br>16<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>2<br>2<br>6<br>45<br>1<br>19<br>10<br>6                                                                                | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>2<br>16<br>3<br>96<br>7<br>4<br>4<br>3<br>0<br>7<br>4<br>43<br>0<br>159<br>75<br>79                     | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94<br>74                                                      | 0<br>2<br>0<br>7<br>7<br>9<br>9<br>48<br>5<br>-<br>14<br>11<br>17<br>53<br>1<br>120<br>75                                                                 | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>845<br>48                                     | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>22<br>3<br>9<br>4<br>7<br>51<br>0<br>80<br>119<br>75                                          | $\begin{array}{c} 6 \\ 0 \\ \hline 10 \\ 3 \\ 41 \\ 3 \\ 27 \\ 0 \\ 15 \\ 343 \\ \hline 9 \\ 2 \\ 0 \\ 7 \\ 9 \\ 49 \\ 30 \\ 23 \end{array}$                              | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>53<br>0<br>80<br>121<br>76                                                      | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11<br>83<br>125<br>78                                         | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pca<br>pca_ll<br>radiosity_ll<br>s_raytrace_ll<br>s_l proxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94<br>97<br>-<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>9<br>-<br>5<br>3<br>2<br>2<br>6<br>10<br>0<br>0<br>2<br>2<br>3                                   | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4                                               | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79                                                                                                                                                        | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0<br>9<br>16<br>16                                                                                                                     | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74<br>23                          | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>9<br>7<br>5                                                                        | 35<br>40<br>443<br>4<br>53<br>21<br>3<br>1<br>2<br>2<br>3<br>12<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7                                                                                                                                                                                                                                                          | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>180<br>123<br>157<br>30                               | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>0<br>46<br>6<br>1<br>5<br>5<br>0                                                          | $\begin{array}{c} 0 \\ 5 \\ \hline 23 \\ 0 \\ 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ \hline 12 \\ 5 \\ 12 \\ 48 \\ 1 \\ 122 \\ 11 \\ 10 \\ 3 \\ \end{array}$   | $\begin{array}{c} 14\\ 8\\ \hline 237\\ 4\\ 82\\ 64\\ 33\\ 1\\ 0\\ 83\\ -\\ 10\\ 0\\ 4\\ 3\\ 7\\ 7\\ 3\\ 5\\ 0\\ 0\\ 0\\ \end{array}$                          | 10 4<br>183 2<br>92 -<br>32 1<br>8 348 -<br>11 0<br>3 348 -<br>11 0<br>3 5 9<br>9 28 19<br>11 0                                                                              | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>5<br>7<br>9<br>2<br>11<br>53<br>7<br>7<br>49<br>26<br>25<br>26                                                      | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>50<br>59<br>53<br>72<br>31                                 | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14<br>9<br>9                      | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9                                                                                                                                                                  | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>7<br>150<br>23                                | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>5<br>14<br>0<br>5<br>121<br>14<br>8<br>13<br>51<br>0<br>22<br>12<br>11                     | 4<br>1<br>3<br>55<br>14<br>4<br>4<br>24<br>2<br>2<br>2<br>6<br>45<br>1<br>19<br>10<br>6<br>7                                                                                  | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>2<br>16<br>3<br>96<br>7<br>4<br>4<br>3<br>0<br>7<br>4<br>4<br>3<br>0<br>7<br>5<br>7<br>95<br>79         | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27                                                | $\begin{array}{c} 0 \\ 2 \\ \hline \\ 0 \\ 7 \\ 7 \\ 9 \\ 9 \\ 48 \\ 5 \\ - \\ 14 \\ 11 \\ 17 \\ 53 \\ 1 \\ 120 \\ 75 \\ 20 \\ \end{array}$               | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>845<br>48                                     | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>9<br>4<br>7<br>7<br>51<br>0<br>80<br>119<br>75                                                | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0<br>15<br>343<br>9<br>2<br>0<br>7<br>1<br>9<br>9<br>2<br>0<br>0<br>7<br>9<br>9<br>9<br>9<br>9<br>30<br>23<br>15                    | 4<br>1<br>3<br>4<br>6<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>3<br>0<br>80<br>121<br>76<br>15                                   | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>5<br>10<br>5<br>1<br>15<br>11<br>83<br>125<br>78<br>16                                  | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear.regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pca<br>pca<br>pca_ll<br>radiosity_ll<br>s_raytrace_ll<br>ssl_proxy<br>straemoluctar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94<br>97<br>2<br>888<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2<br>2<br>3<br>11                                                | 48<br>49<br>3778<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4<br>9                                         | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6                                                                                                                                             | $\begin{array}{c} 2\\ 11\\ 199\\ 0\\ 29\\ 50\\ 3\\ 1\\ 11\\ 22\\ -\\ 12\\ 17\\ 13\\ 49\\ 0\\ 9\\ 16\\ 16\\ 12\\ 0\\ \end{array}$                                                                                             | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74<br>23<br>4                     | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7<br>5<br>5                                                                        | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7<br>7                                                                                                                                                                                                                                                           | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>4<br>12<br>41<br>100<br>0<br>180<br>0<br>123<br>157<br>30                               | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>0<br>46<br>6<br>1<br>5<br>5<br>0<br>8                                                     | $\begin{array}{c} 0 \\ 5 \\ \hline 23 \\ 0 \\ 106 \\ 14 \\ 0 \\ 6 \\ 14 \\ 23 \\ \hline 12 \\ 5 \\ 12 \\ 48 \\ 1 \\ 122 \\ 11 \\ 10 \\ 3 \\ 1 \end{array}$ | $\begin{array}{c} 14\\ 8\\ \hline 237\\ 4\\ 82\\ 64\\ 33\\ 1\\ 0\\ 83\\ -\\ 10\\ 0\\ 4\\ 3\\ 7\\ 7\\ 3\\ 5\\ 0\\ 0\\ 0\\ 7\\ 7\end{array}$                     | 10 4<br>183 2<br>92 -<br>32 1<br>8 348 -<br>11 0<br>3 348 -<br>9 28 19<br>11 0<br>0 28 19                                                                                    | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25<br>26<br>10                                                     | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>50<br>59<br>53<br>72<br>31                       | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>9            | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9<br>9                                                                                                                                                             | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>7<br>150<br>23<br>2                           | $\begin{array}{c} 7\\ 10\\ \hline 174\\ 4\\ 3\\ 40\\ 0\\ 5\\ 14\\ 0\\ 0\\ 121\\ 14\\ 8\\ 13\\ 51\\ 0\\ 22\\ 12\\ 11\\ 11\\ 5\\ \end{array}$       | $\begin{array}{c} 4 \\ 1 \\ \hline 16 \\ 3 \\ 55 \\ 14 \\ 14 \\ 6 \\ 4 \\ 24 \\ - \\ 2 \\ 2 \\ 6 \\ 45 \\ 1 \\ 19 \\ 10 \\ 6 \\ 7 \\ 7 \\ \end{array}$                        | 6<br>0<br>16<br>7<br>0<br>5<br>22<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159<br>75<br>79<br>57                                       | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>12<br>23<br>3<br>9<br>6<br>15<br>7<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27<br>7                      | 0<br>2<br>0<br>7<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14<br>11<br>17<br>53<br>1<br>120<br>75<br>20<br>2                                                 | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>845<br>48<br>40<br>2                          | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>9<br>4<br>7<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8                                     | 6<br>0<br>3<br>41<br>3<br>27<br>0<br>15<br>343<br>7<br>9<br>2<br>0<br>7<br>7<br>9<br>9<br>2<br>0<br>0<br>7<br>9<br>9<br>9<br>9<br>30<br>23<br>15<br>8                     | 4<br>1<br>3<br>4<br>6<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>5<br>5<br>5<br>3<br>0<br>80<br>121<br>76<br>7                                         | $\begin{array}{c} 37\\ 41\\ \hline \\ 451\\ 6\\ 7\\ 83\\ 34\\ 5\\ 30\\ 372\\ \hline \\ 10\\ 5\\ 1\\ 15\\ 11\\ 83\\ 125\\ 78\\ 16\\ 9\end{array}$   | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>fuidanimate<br>fluidanimate<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pca<br>pca<br>pca_ll<br>radiosity_ll<br>s_raytrace<br>s_raytrace<br>s_raytrace.ll<br>ssl_proxy<br>streamcluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94<br>97<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2<br>2<br>3<br>11                                                 | 48<br>49<br>3778<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4<br>9<br>29                                   | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6<br>31                                                                                                                                       | $\begin{array}{c} 2\\ 11\\ 199\\ 0\\ 29\\ 50\\ 3\\ 1\\ 11\\ 22\\ -\\ 12\\ 17\\ 13\\ 49\\ 0\\ 9\\ 16\\ 16\\ 16\\ 0\\ 0\\ 0 \end{array}$                                                                                       | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>4<br>23<br>4<br>9                 | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7<br>5<br>-                                                                        | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7<br>7                                                                                                                                                                                                                                                                     | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>4<br>12<br>41<br>100<br>0<br>123<br>157<br>30<br>-                                      | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>-<br>10<br>0<br>10<br>46<br>6<br>1<br>5<br>5<br>5<br>0<br>8<br>8                                                | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>5<br>12<br>48<br>1<br>22<br>48<br>1<br>22<br>11<br>10<br>3<br>1                                    | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7<br>3<br>5<br>0<br>0<br>0<br>7<br>7<br>28                                  | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19<br>11<br>0<br>-                                                      | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>-<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25<br>26<br>10<br>54                                                    | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72<br>31<br>10<br>0<br>47                | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>9<br>9       | 3<br>9<br>1600<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>100<br>12<br>466<br>1<br>1<br>0<br>3<br>9<br>9<br>1                                                                                                                                                     | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>150<br>23<br>2<br>39                          | $\begin{array}{c} 7\\ 10\\ 174\\ 4\\ 3\\ 40\\ 0\\ 5\\ 14\\ 0\\ 121\\ 14\\ 8\\ 13\\ 51\\ 0\\ 22\\ 12\\ 11\\ 11\\ 15\\ 5\\ 41\\ \end{array}$        | $\begin{array}{c} 4 \\ 1 \\ \hline \\ 16 \\ 3 \\ 55 \\ 14 \\ 14 \\ 6 \\ 4 \\ 24 \\ - \\ 2 \\ 2 \\ 6 \\ 45 \\ 1 \\ 19 \\ 10 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$ | 6<br>0<br>16<br>7<br>0<br>5<br>22<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159<br>75<br>79<br>75<br>79<br>712<br>236                   | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>12<br>23<br>3<br>4<br>15<br>7<br>7<br>12<br>8<br>0<br>114<br>96<br>0<br>114<br>94<br>74<br>27<br>7<br>55   | 0<br>2<br>0<br>7<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14<br>11<br>17<br>53<br>1<br>120<br>75<br>20<br>2<br>46                                           | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>7<br>17<br>10<br>88<br>45<br>48<br>40<br>2<br>2                                      | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>-<br>9<br>4<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8<br>8<br>33                          | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0<br>15<br>343<br>7<br>9<br>2<br>0<br>7<br>9<br>2<br>0<br>7<br>9<br>49<br>30<br>7<br>8<br>8<br>41                                   | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>53<br>0<br>80<br>121<br>76<br>15<br>7<br>31                                     | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11<br>5<br>11<br>83<br>125<br>78<br>16<br>9<br>9<br>35        | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_ncp<br>pca<br>pca<br>ll<br>radiosity<br>radiosity_ll<br>s_raytrace<br>s_raytrace<br>s_raytrace<br>streamcluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94<br>97<br>2<br>888<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2<br>2<br>3<br>111<br>30<br>0<br>4                               | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4<br>9<br>9<br>31<br>5<br>6<br>4<br>9<br>9<br>7 | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6<br>31<br>3                                                                                                                                  | 2<br>11<br>199<br>0<br>29<br>50<br>3<br>1<br>11<br>22<br>-<br>12<br>17<br>13<br>49<br>0<br>9<br>16<br>16<br>12<br>0<br>0<br>0<br>4                                                                                           | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74<br>23<br>4<br>9<br>7           | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7<br>5<br>-<br>-<br>-                                                              | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                            | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>123<br>157<br>30<br>-<br>-<br>-<br>-                  | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>24<br>24<br>24<br>0<br>0<br>10<br>0<br>0<br>10<br>0<br>46<br>6<br>1<br>1<br>5<br>5<br>0<br>8<br>8<br>15<br>2    | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>-<br>12<br>5<br>12<br>48<br>1<br>22<br>11<br>10<br>3<br>1<br>31<br>31                              | 14<br>8<br>237<br>4<br>82<br>64<br>33<br>1<br>0<br>83<br>-<br>10<br>0<br>4<br>3<br>7<br>3<br>5<br>0<br>0<br>7<br>28<br>5                                       | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19<br>11<br>0<br>-<br>-<br>-                                            | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>7<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25<br>26<br>10<br>54<br>2                                               | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72<br>31<br>10<br>47<br>2                | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>9<br>46<br>5 | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9<br>1<br>42<br>2                                                                                                                                                  | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>150<br>23<br>2<br>39<br>2                     | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>121<br>14<br>8<br>13<br>51<br>0<br>22<br>12<br>11<br>11<br>5<br>41<br>3                    | 4<br>1<br>16<br>3<br>55<br>14<br>4<br>4<br>4<br>24<br>2<br>2<br>6<br>45<br>1<br>19<br>10<br>6<br>7<br>7<br>7<br>7<br>27<br>27<br>2                                            | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>16<br>3<br>96<br>7<br>4<br>4<br>3<br>0<br>159<br>75<br>79<br>57<br>12<br>36<br>0                        | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27<br>7<br>55                                     | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14<br>11<br>120<br>75<br>20<br>2<br>46<br>4                                                            | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>7<br>17<br>10<br>88<br>45<br>48<br>40<br>2<br>2<br>0                                 | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>-<br>9<br>4<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8<br>33<br>3<br>2                     | 6<br>0<br>10<br>3<br>41<br>3<br>27<br>0<br>15<br>343<br>7<br>9<br>2<br>0<br>7<br>9<br>2<br>0<br>7<br>9<br>49<br>30<br>23<br>15<br>8<br>41<br>2                            | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>8<br>7<br>12<br>5<br>8<br>80<br>121<br>76<br>15<br>7<br>31<br>3                                      | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>5<br>10<br>5<br>1<br>1<br>5<br>11<br>83<br>125<br>78<br>16<br>9<br>35<br>5<br>5                | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>ferret<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_ncp<br>ocean_ncp<br>pca<br>pca.ll<br>radiosity_ll<br>s_raytrace<br>s_raytrace<br>s_raytrace<br>streamcluster_ll<br>vips<br>volved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94<br>97<br>2<br>888<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2<br>2<br>3<br>11<br>30<br>4<br>2                                | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>-<br>0<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4<br>9<br>29<br>7<br>4                          | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6<br>31<br>3<br>9                                                                                                                        | $\begin{array}{c} 2\\ 11\\ 199\\ 0\\ 29\\ 50\\ 3\\ 1\\ 11\\ 22\\ -\\ 12\\ 17\\ 13\\ 49\\ 0\\ 9\\ 16\\ 16\\ 12\\ 0\\ 0\\ 4\\ 2\end{array}$                                                                                    | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74<br>23<br>4<br>9<br>7<br>2      | 58<br>63<br>682<br>4<br>37<br>-<br>-<br>38<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7<br>5<br>-<br>-<br>-<br>-<br>3                                               | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                 | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>123<br>157<br>30<br>-<br>-<br>8                       | $\begin{array}{c} 7 \\ 4 \\ \hline 36 \\ 1 \\ 89 \\ 35 \\ 30 \\ 6 \\ 4 \\ 24 \\ - \\ 10 \\ 0 \\ 10 \\ 46 \\ 6 \\ 1 \\ 5 \\ 5 \\ 0 \\ 8 \\ 15 \\ 3 \\ 3 \\ \end{array}$ | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>5<br>12<br>5<br>12<br>48<br>1<br>22<br>11<br>10<br>3<br>1<br>31<br>3<br>2                          | $\begin{array}{c} 14\\ 8\\ 237\\ 4\\ 82\\ 64\\ 33\\ 1\\ 0\\ 83\\ -\\ 10\\ 0\\ 83\\ -\\ 10\\ 0\\ 4\\ 3\\ 7\\ 3\\ 5\\ 0\\ 0\\ 7\\ 28\\ 5\\ 0\\ \end{array}$      | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19<br>11<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>7<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25<br>26<br>10<br>54<br>2<br>5                                          | 6<br>5<br>1522<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72<br>31<br>10<br>47<br>2<br>8          | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>-<br>0<br>3<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>46<br>5<br>4 | 3<br>9<br>1600<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9<br>1<br>42<br>2<br>3                                                                                                                                            | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>150<br>23<br>2<br>39<br>3<br>7                | 7<br>10<br>174<br>4<br>3<br>40<br>0<br>5<br>14<br>0<br>5<br>121<br>14<br>8<br>13<br>51<br>0<br>22<br>12<br>11<br>11<br>5<br>1<br>41<br>3<br>4     | 4<br>1<br>16<br>3<br>55<br>14<br>4<br>4<br>24<br>2<br>2<br>2<br>6<br>45<br>1<br>19<br>10<br>6<br>7<br>7<br>7<br>27<br>3<br>3                                                  | 6<br>0<br>16<br>7<br>0<br>5<br>2<br>2<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>4<br>3<br>0<br>159<br>75<br>75<br>75<br>75<br>712<br>36<br>0       | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27<br>7<br>55<br>1<br>18                          | 0<br>2<br>0<br>7<br>9<br>1<br>9<br>48<br>5<br>-<br>14<br>11<br>120<br>75<br>20<br>2<br>46<br>4<br>23                                                      | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>45<br>48<br>40<br>2<br>2<br>0<br>12           | 4<br>1<br>3<br>5<br>56<br>4<br>15<br>3<br>22<br>3<br>7<br>9<br>4<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8<br>33<br>2<br>8                     | $\begin{array}{c} 6\\ 0\\ \hline \\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ \hline \\ 9\\ 2\\ 0\\ 7\\ 9\\ 2\\ 0\\ 7\\ 9\\ 49\\ 30\\ 23\\ 15\\ 8\\ 41\\ 2\\ 4\end{array}$    | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>53<br>0<br>80<br>121<br>76<br>15<br>7<br>31<br>3<br>10                          | 37<br>41<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>5<br>10<br>5<br>1<br>1<br>5<br>11<br>83<br>125<br>78<br>16<br>9<br>35<br>5<br>5                | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>fuidanimate<br>ffuidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_cp<br>ocean_ncp<br>pca<br>pca<br>pca_ll<br>radiosity_ll<br>s_raytrace_ll<br>ssl_proxy<br>streamcluster_ll<br>vips<br>volrend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94<br>97<br>-<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>9<br>-<br>5<br>3<br>2<br>6<br>6<br>10<br>0<br>0<br>2<br>2<br>3<br>111<br>300<br>4<br>2<br>2<br>4 | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>5<br>12<br>83<br>5<br>0<br>1<br>4<br>5<br>6<br>4<br>9<br>9<br>29<br>7<br>4<br>4               | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6<br>31<br>3<br>9<br>2                                                                                                                        | $\begin{array}{c} 2\\ 11\\ 199\\ 0\\ 29\\ 50\\ 3\\ 1\\ 11\\ 22\\ -\\ 12\\ 17\\ 13\\ 49\\ 0\\ 9\\ 16\\ 16\\ 12\\ 0\\ 0\\ 4\\ 2\\ 2\end{array}$                                                                                | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>74<br>23<br>4<br>9<br>7<br>2<br>0 | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>6<br>5<br>18<br>4<br>3<br>4<br>0<br>10<br>22<br>9<br>7<br>5<br>5<br>-<br>-<br>-<br>3<br>3<br>5                               | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>9<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                      | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>120<br>0<br>123<br>157<br>30<br>-<br>-<br>-<br>8<br>8<br>25       | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>24<br>-<br>10<br>0<br>10<br>46<br>6<br>1<br>5<br>5<br>0<br>8<br>15<br>3<br>3<br>7                               | 0<br>5<br>23<br>0<br>106<br>14<br>0<br>6<br>14<br>23<br>5<br>12<br>5<br>12<br>48<br>1<br>12<br>5<br>12<br>48<br>1<br>10<br>3<br>1<br>31<br>3<br>2<br>0     | $\begin{array}{c} 14\\ 8\\ 237\\ 4\\ 82\\ 64\\ 33\\ 1\\ 0\\ 83\\ -\\ 10\\ 0\\ 83\\ -\\ 10\\ 0\\ 4\\ 3\\ 7\\ 3\\ 5\\ 0\\ 0\\ 7\\ 28\\ 5\\ 0\\ 14\\ \end{array}$ | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19<br>11<br>0<br>-<br>-<br>1<br>10                                             | 7<br>8<br>153<br>2<br>93<br>28<br>16<br>1<br>5<br>5<br>7<br>9<br>2<br>11<br>53<br>7<br>9<br>2<br>11<br>53<br>7<br>49<br>26<br>25<br>26<br>10<br>54<br>2<br>5<br>7          | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72<br>31<br>10<br>47<br>2<br>8<br>6      | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>46<br>5<br>4<br>0           | 3<br>9<br>1600<br>1<br>46<br>25<br>2<br>4<br>111<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9<br>1<br>42<br>2<br>3<br>3                                                                                                                                      | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>150<br>23<br>2<br>39<br>3<br>7<br>2           | $\begin{array}{c} 7\\ 10\\ 174\\ 4\\ 3\\ 40\\ 0\\ 5\\ 14\\ 0\\ 121\\ 14\\ 8\\ 13\\ 51\\ 0\\ 22\\ 12\\ 11\\ 11\\ 5\\ 41\\ 3\\ 4\\ 7\end{array}$    | 4<br>1<br>16<br>3<br>55<br>14<br>14<br>6<br>4<br>2<br>2<br>2<br>6<br>4<br>5<br>1<br>19<br>10<br>6<br>7<br>7<br>7<br>27<br>3<br>3<br>4                                         | 6<br>0<br>16<br>7<br>0<br>5<br>2<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159<br>75<br>79<br>57<br>12<br>36<br>0<br>17<br>6            | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>96<br>15<br>7<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27<br>7<br>55<br>1<br>18<br>8<br>7           | $\begin{array}{c} 0\\ 2\\ \hline \\ 0\\ 7\\ 7\\ 9\\ 1\\ 9\\ 48\\ 5\\ -\\ 14\\ 11\\ 17\\ 53\\ 1\\ 120\\ 120\\ 75\\ 20\\ 2\\ 46\\ 4\\ 23\\ 0\\ \end{array}$ | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>45<br>48<br>40<br>2<br>2<br>0<br>12<br>2<br>6 | 4<br>1<br>3<br>5<br>5<br>6<br>4<br>15<br>3<br>22<br>3<br>3<br>22<br>3<br>4<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8<br>33<br>2<br>8<br>8<br>4 | $\begin{array}{c} 6\\ 0\\ \hline \\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ \hline \\ 9\\ 2\\ 0\\ 7\\ 9\\ 2\\ 0\\ 7\\ 9\\ 9\\ 30\\ 23\\ 15\\ 8\\ 41\\ 2\\ 4\\ 6\end{array}$ | 4<br>1<br>3<br>4<br>6<br>3<br>7<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>5<br>3<br>0<br>80<br>121<br>76<br>15<br>7<br>31<br>3<br>10<br>4                  | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11<br>83<br>125<br>78<br>16<br>9<br>35<br>5<br>15<br>5<br>127 | Opt nodes |
| water_nsquared<br>water_spatial<br>dedup<br>facesim<br>fuidanimate<br>fluidanimate<br>fluidanimate<br>fmm<br>histogram<br>linear_regression<br>matrix_multiply<br>mysqld<br>ocean_cp<br>ocean_cp<br>ocean_ncp<br>pca<br>pca<br>pca_ll<br>radiosity<br>radiosity_ll<br>s_raytrace<br>s_raytrace<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace.<br>s_raytrace | 94<br>97<br>-<br>2<br>88<br>-<br>41<br>0<br>2<br>9<br>-<br>5<br>3<br>2<br>6<br>10<br>0<br>2<br>2<br>3<br>111<br>30<br>4<br>2<br>9<br>94<br>94<br>97    | 48<br>49<br>378<br>4<br>47<br>133<br>35<br>5<br>12<br>83<br>6<br>1<br>4<br>5<br>9<br>31<br>5<br>6<br>4<br>9<br>29<br>7<br>4<br>48                         | 2<br>2<br>10<br>6<br>6<br>0<br>15<br>9<br>24<br>5<br>7<br>6<br>6<br>51<br>0<br>75<br>123<br>79<br>17<br>6<br>31<br>3<br>9<br>2<br>2                                                                                                                   | $\begin{array}{c} 2\\ 11\\ 199\\ 0\\ 29\\ 50\\ 3\\ 1\\ 11\\ 22\\ -\\ 12\\ 17\\ 13\\ 49\\ 0\\ 9\\ 16\\ 16\\ 16\\ 16\\ 12\\ 0\\ 0\\ 4\\ 2\\ 2\\ 11\\ 10\\ 12\\ 10\\ 10\\ 12\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$ | 9<br>7<br>193<br>6<br>0<br>51<br>26<br>2<br>0<br>7<br>31<br>13<br>1<br>6<br>54<br>1<br>53<br>74<br>23<br>4<br>9<br>7<br>2<br>9<br>7  | 58<br>63<br>682<br>4<br>37<br>-<br>38<br>6<br>5<br>18<br>6<br>5<br>18<br>-<br>4<br>3<br>4<br>0<br>10<br>32<br>9<br>7<br>7<br>5<br>-<br>-<br>3<br>5<br>8<br>5<br>8<br>5<br>8<br>5<br>2 | 35<br>40<br>443<br>4<br>53<br>-<br>21<br>3<br>1<br>21<br>3<br>1<br>2<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>4<br>7<br>-<br>-<br>-<br>4<br>8<br>5<br>5<br>4<br>4<br>7<br>1<br>-<br>-<br>2<br>3<br>12<br>48<br>8<br>5<br>5<br>4<br>4<br>3<br>12<br>4<br>5<br>3<br>12<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 35<br>39<br>436<br>12<br>0<br>-<br>19<br>11<br>35<br>3<br>-<br>4<br>12<br>41<br>100<br>0<br>123<br>157<br>30<br>-<br>-<br>-<br>-<br>8<br>35<br>20 | 7<br>4<br>36<br>1<br>89<br>35<br>30<br>6<br>4<br>24<br>24<br>-<br>10<br>0<br>10<br>46<br>6<br>1<br>5<br>5<br>0<br>8<br>15<br>3<br>3<br>7<br>4                          | $\begin{array}{c} 0\\ 5\\ 23\\ 0\\ 106\\ 14\\ 0\\ 6\\ 14\\ 23\\ 5\\ 12\\ 5\\ 12\\ 48\\ 1\\ 12\\ 22\\ 11\\ 10\\ 3\\ 1\\ 31\\ 3\\ 2\\ 0\\ 5\end{array}$      | $\begin{array}{c} 14\\ 8\\ 237\\ 4\\ 82\\ 64\\ 33\\ 1\\ 0\\ 83\\ -\\ 10\\ 0\\ 4\\ 3\\ 7\\ 3\\ 5\\ 0\\ 0\\ 7\\ 28\\ 5\\ 0\\ 14\\ 8\end{array}$                  | 10<br>4<br>183<br>2<br>92<br>-<br>32<br>1<br>8<br>348<br>-<br>11<br>0<br>3<br>5<br>9<br>28<br>19<br>11<br>0<br>-<br>-<br>-<br>1<br>10<br>0<br>4                              | $\begin{array}{c} 7 \\ 8 \\ 153 \\ 2 \\ 93 \\ 28 \\ 16 \\ 1 \\ 5 \\ 5 \\ 7 \\ 9 \\ 2 \\ 11 \\ 53 \\ 7 \\ 49 \\ 26 \\ 25 \\ 26 \\ 10 \\ 54 \\ 2 \\ 5 \\ 7 \\ 8 \end{array}$ | 6<br>5<br>152<br>8<br>0<br>27<br>14<br>3<br>4<br>3<br>0<br>21<br>3<br>7<br>55<br>10<br>59<br>53<br>72<br>31<br>10<br>47<br>2<br>8<br>6<br>5 | 9<br>5<br>161<br>3<br>56<br>39<br>32<br>6<br>10<br>357<br>5<br>3<br>8<br>42<br>14<br>9<br>9<br>9<br>9<br>46<br>5<br>4<br>9<br>5 | 3<br>9<br>160<br>1<br>46<br>25<br>2<br>4<br>11<br>23<br>-<br>11<br>10<br>12<br>46<br>1<br>1<br>0<br>3<br>9<br>9<br>1<br>42<br>2<br>3<br>3<br>0                                                                                                                              | 2<br>9<br>158<br>7<br>0<br>26<br>0<br>4<br>39<br>2<br>8<br>20<br>10<br>47<br>71<br>13<br>165<br>117<br>7<br>150<br>23<br>2<br>39<br>3<br>7<br>2<br>0 | $\begin{array}{c} 7\\ 10\\ 174\\ 4\\ 3\\ 40\\ 0\\ 5\\ 14\\ 0\\ 121\\ 14\\ 8\\ 13\\ 51\\ 0\\ 22\\ 11\\ 11\\ 5\\ 41\\ 3\\ 4\\ 7\\ 10\\ \end{array}$ | 4<br>1<br>16<br>3<br>55<br>14<br>14<br>6<br>4<br>24<br>2<br>2<br>6<br>45<br>1<br>9<br>10<br>6<br>7<br>7<br>7<br>27<br>3<br>3<br>4                                             | 6<br>0<br>16<br>7<br>0<br>5<br>25<br>2<br>2<br>16<br>3<br>96<br>7<br>4<br>17<br>43<br>0<br>159<br>75<br>79<br>57<br>12<br>36<br>0<br>17<br>6<br>0 | 7<br>0<br>9<br>13<br>0<br>12<br>23<br>3<br>4<br>3<br>3<br>4<br>3<br>96<br>15<br>7<br>12<br>8<br>0<br>114<br>94<br>74<br>27<br>7<br>55<br>1<br>18<br>7<br>0 | 0<br>2<br>0<br>7<br>7<br>9<br>48<br>5<br>-<br>14<br>11<br>120<br>120<br>75<br>20<br>2<br>46<br>4<br>23<br>0<br>2                                          | 6<br>1<br>10<br>3<br>0<br>0<br>25<br>5<br>19<br>349<br>-<br>18<br>0<br>7<br>17<br>10<br>88<br>845<br>48<br>40<br>2<br>2<br>0<br>12<br>6     | 4<br>1<br>3<br>5<br>5<br>6<br>4<br>15<br>3<br>22<br>3<br>2<br>2<br>3<br>9<br>4<br>7<br>51<br>0<br>80<br>119<br>75<br>19<br>8<br>33<br>2<br>8<br>4  | $\begin{array}{c} 6\\ 0\\ \hline \\ 10\\ 3\\ 41\\ 3\\ 27\\ 0\\ 15\\ 343\\ -\\ 9\\ 2\\ 0\\ 7\\ 9\\ 2\\ 0\\ 7\\ 9\\ 30\\ 23\\ 15\\ 8\\ 41\\ 2\\ 4\\ 6\\ 0\\ \end{array}$    | 4<br>1<br>3<br>4<br>6<br>3<br>17<br>4<br>25<br>5<br>5<br>7<br>12<br>5<br>8<br>53<br>0<br>80<br>121<br>76<br>15<br>7<br>31<br>3<br>10<br>4                     | 37<br>41<br>451<br>6<br>7<br>83<br>34<br>5<br>30<br>372<br>-<br>10<br>5<br>1<br>5<br>11<br>83<br>125<br>78<br>16<br>9<br>35<br>5<br>15<br>37       | Opt nodes |

Table 11: For each application, at max nodes (top part) and at the optimized number of nodes (bottom part), performance gain (in %) obtained by the best lock(s) with respect to each of the other locks. The grey background highlights cells for which the performance gains are greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine).

**nodes and at the optimal number of nodes, all locks are potentially harmful, yielding sub-optimal performance for a significant number of applications** (Table 12). We also notice that locks are significantly less harmful at the optimized number of nodes than at max nodes. This is explained by the fact that several of the locks create performance collapses at max nodes, which does not occur at the optimized number of nodes. Moreover, we observe that, for each lock, the performance gap to the best lock can be significant (Table 11).

#### 5.3 Additional observations

**Impact of the number of nodes.** Table 13 shows, for each application on the A-64 machine, the number of pairwise changes in the lock performance hierarchy when the number of nodes is modified. For example, in the case of the facesim application, there are 18% of the pairwise performance comparisons between locks that change when moving from a 1-node configuration to a 2-node configuration. Similarly, there are 95% of pairwise comparisons that change at least once when considering

|               | A-  | 64  | A-  | 48  | I-4 | 48  |
|---------------|-----|-----|-----|-----|-----|-----|
| Lock          | Max | Opt | Max | Opt | Max | Opt |
| ahmes         | 62% | 24% | 56% | 39% | 39% | 33% |
| alock-ls      | 87% | 39% | 61% | 39% | 58% | 58% |
| backoff       | 61% | 35% | 68% | 53% | 58% | 53% |
| c-bo-mcs_spin | 61% | 35% | 53% | 58% | 47% | 32% |
| c-bo-mcs_stp  | 71% | 38% | 80% | 65% | 55% | 45% |
| clh-ls        | 84% | 37% | 73% | 40% | 69% | 62% |
| clh_spin      | 84% | 32% | 60% | 47% | 62% | 56% |
| clh_stp       | 79% | 58% | 87% | 87% | 81% | 75% |
| c-ptl-tkt     | 52% | 30% | 53% | 42% | 47% | 26% |
| c-tkt-tkt     | 61% | 26% | 58% | 42% | 53% | 26% |
| hmcs          | 61% | 26% | 37% | 37% | 37% | 16% |
| hticket-ls    | 58% | 32% | 44% | 38% | 50% | 50% |
| malth_spin    | 78% | 43% | 63% | 53% | 53% | 53% |
| malth_stp     | 54% | 38% | 65% | 60% | 55% | 55% |
| mcs-ls        | 78% | 30% | 63% | 47% | 58% | 58% |
| mcs_spin      | 70% | 26% | 63% | 53% | 58% | 58% |
| mcs_stp       | 67% | 46% | 70% | 65% | 70% | 60% |
| mcs-timepub   | 42% | 25% | 65% | 55% | 50% | 50% |
| partitioned   | 61% | 26% | 68% | 47% | 63% | 47% |
| pthread       | 62% | 50% | 60% | 55% | 60% | 55% |
| pthreadadapt  | 58% | 38% | 55% | 50% | 55% | 50% |
| spinlock      | 65% | 39% | 68% | 58% | 63% | 53% |
| spinlock-ls   | 57% | 39% | 58% | 42% | 58% | 47% |
| ticket        | 74% | 39% | 79% | 63% | 74% | 63% |
| ticket-ls     | 65% | 39% | 58% | 47% | 63% | 47% |
| ttas          | 61% | 35% | 68% | 53% | 63% | 58% |
| ttas-1s       | 87% | 57% | 78% | 61% | 74% | 68% |

Table 12: For each lock, at max nodes and at the optimized number of nodes, fraction of the applications for which the lock is harmful (**all machines**).

the 1-node, 2-node, 4-node and 8-node configurations.

We observe that, for all applications, the lock performance hierarchy changes significantly according to the chosen number of nodes. Moreover, we observe the same trends on the A-48 and I-48 machines (see the companion technical report [18]).

|                   | % of pairwise changes between configurations |     |     |         |
|-------------------|----------------------------------------------|-----|-----|---------|
| Applications      | 1/2                                          | 2/4 | 4/8 | 1/2/4/8 |
| dedup             | 16%                                          | 6%  | 12% | 19%     |
| facesim           | 18%                                          | 38% | 81% | 95%     |
| ferret            | 0%                                           | 74% | 26% | 87%     |
| fluidanimate      | 5%                                           | 6%  | 24% | 32%     |
| fmm               | 33%                                          | 10% | 19% | 45%     |
| histogram         | 19%                                          | 32% | 24% | 55%     |
| linear_regression | 58%                                          | 40% | 57% | 95%     |
| matrix_multiply   | 16%                                          | 27% | 45% | 54%     |
| mysqld            | 33%                                          | 20% | 7%  | 40%     |
| ocean_cp          | 54%                                          | 53% | 72% | 94%     |
| ocean_ncp         | 52%                                          | 54% | 56% | 86%     |
| pca               | 44%                                          | 60% | 29% | 89%     |
| pca_11            | 31%                                          | 38% | 23% | 73%     |
| radiosity         | 11%                                          | 49% | 65% | 83%     |
| radiosity_11      | 66%                                          | 28% | 14% | 92%     |
| s_raytrace        | 1%                                           | 70% | 32% | 96%     |
| s_raytrace_ll     | 21%                                          | 69% | 24% | 99%     |
| ssl_proxy         | 62%                                          | 12% | 21% | 78%     |
| streamcluster     | 68%                                          | 21% | 32% | 88%     |
| streamcluster_ll  | 60%                                          | 28% | 31% | 90%     |
| vips              | 2%                                           | 3%  | 82% | 82%     |
| volrend           | 16%                                          | 27% | 44% | 85%     |
| water_nsquared    | 23%                                          | 24% | 13% | 52%     |
| water_spatial     | 12%                                          | 10% | 10% | 29%     |

Table 13: For each application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (**A-64 machine**).

**Impact of the machine.** Table 14 shows the number of pairwise lock inversions observed between the machines (both at max nodes and at the optimized number of nodes). More precisely, for a given application at a given node configuration, we check whether two locks are in the same order or not on the target machines.

We observe that **the lock performance hierarchy changes significantly according to the chosen machine**. Interestingly, we observe that there is approximately the same number of inversions between each pair of machines.

|         | A-64 | A-48 | A-64 |
|---------|------|------|------|
|         | vs.  | vs.  | vs.  |
| # nodes | A-48 | I-48 | I-48 |
| Max     | 38%  | 36%  | 38%  |
| Opt     | 30%  | 29%  | 31%  |

Table 14: For each pair of machines, at max nodes and at opt nodes, percentage of pairwise changes in the lock performance hierarchy (**all machines**).

A note on Phtread locks. The various results presented in this paper show that the current Linux Pthread locks perform well (i.e., are among the best locks) for a significant share of the studied applications, thus providing a different insight than recent results, which were mostly based on synthetic workloads [9]. Beyond the changes of workloads, these differences may also be explained by the continuous refinement of the Linux Pthread implementation. It is nevertheless important to note that on each machine, some locks stand out as the best ones for a higher fraction of the applications than Pthread locks. Finally, we note that Pthread adaptive locks perform slightly better than standard Pthread locks.

Impact of thread pinning. As explained in §3.2, all the above-described experiments were run without any restriction on the placement of threads, leaving the corresponding decisions to the Linux scheduler. However, in order to better control CPU allocation and improve locality, some developers and system administrators use pinning to explicitly restrict the placement of each thread to one or several core(s). The impact of thread pinning may vary greatly according to workloads and can yield both positive and negative effects [9, 27]. In order to assess the generality of our observations, we also performed the complete set of experiments with an alternative configuration in which each thread is pinned to a given node, leaving the scheduler free to place the thread among the cores of the node. Note that for an experiment with a *N*-node configuration, the complete application runs on exactly first N nodes of the machine. We chose thread-tonode pinning rather than thread-to-core pinning because we observed that the former generally provided better performance for our studied applications, especially the ones using more threads than cores. The detailed results of our experiments with thread-to-node pinning are available in the companion technical report [18]. Overall, we observe that **all the conclusions presented in the paper still hold with per-node thread pinning**.

#### 6 Related work

The design and implementation of the LiTL lock library borrows code and ideas from previous open-source toolkits that provide application developers with a set of optimized implementations for some of the mostestablished lock algorithms: Concurrency Kit [1], liblock [25, 24, 26], and libslock [9]. All of these toolkits require potentially tedious source code modifications in the target applications, even in the case of algorithms that have been specifically designed to lower this burden [3, 33, 36]. Moreover, among the above works, none of them provides a simple and generic solution for supporting Pthread condition variables. The authors of liblock [26] have proposed an approach but we discovered that it suffers from liveness hazards due to a race condition. Indeed, when a thread T calls pthread\_cond\_wait(), it is not guaranteed that the two steps (releasing the lock and blocking the thread) are always executed atomically. Thus, a wake-up notification issued by another thread may get interleaved between the two steps and T may remain indefinitely blocked.

Several research works have leveraged library interposition to compare different locking algorithms on legacy applications (e.g., Johnson et al. [21] and Dice et al. [14]) but, to the best of our knowledge, they have not publicly documented the design challenges to support arbitrary application patterns, nor disclosed the corresponding source code and the overhead of their interposition library has not been discussed.

Several studies have compared the performance of different multicore lock algorithms, either from a theoretical angle or based on experimental results [4, 33, 9, 24, 14]. In comparison, our study encompasses significantly more lock algorithms and waiting policies. Moreover, the bulk of these studies is mainly focused on characterization microbenchmarks while we focus instead on workloads designed to mimic real applications. Two noticeable exceptions are the work from Boyd-Wickizer et al. [4] and Lozi et al. [26] but they do not consider the same context as our study. The former is focused on kernel-level locking bottlenecks, and the latter is focused on applications in which only one or a few heavily contended critical sections have been optimized (after a profiling phase). For all these reasons, we make observations that are significantly different from the ones based on all the above-mentioned studies. Other synchronization-related studies like the one from Gramoli [16] have a different scope and focus on concurrent data structures, possibly based on other facilities than locks.

Finally, some tools have been proposed to facilitate the identification of locking bottlenecks in applications [35, 8, 26]. These publications are orthogonal to our work. We note that, among them, the profilers based on library interposition can be stacked on top of LiTL.

#### 7 Conclusion and future work

Optimized lock algorithms for multicore machines are abundant. However, there are currently no clear guidelines and methodologies helping developers to select the right lock for their workloads. In this paper, we have presented a broad study of 27 locks algorithms with 35 applications on Linux/x86. To perform that study, we have implemented LiTL, an interposition library allowing the transparent replacement of lock algorithms used for Pthread mutex locks. From our study, we draw several conclusions, including the following ones: at its optimized contention level, no single lock dominates for more than 52% of the lock-sensitive applications; any of the locks is harmful for at least several applications; for a given application, the best lock varies according to both the number of contending cores and the machine that executes the application. These observations call for further research on optimized lock algorithms, as well as tools and dynamic approaches to better understand and control their behavior.

The source code of LiTL and the data sets of our experimental results are available online [17].

#### Acknowledgments

We thank the anonymous reviewers and our shepherd, Tim Harris, for their insightful comments on ealier drafts of this paper. Dave Dice provided detailed answers for our questions on Malthusian locks. Baptiste Lepers provided valuable insights for some of the case studies. Pierre Neyron provided his help to set up experiments on the I-48 machine. Finally, this work has been partially supported by: LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), EmSoc Replicanos and AGIR CAEC projects of Université Grenoble-Alpes and GrenobleINP, and the INRIA/LIG Digitalis project.

#### References

[1] AL BAHRA, S. Concurrency Kit, 2015. http:// concurrencykit.org.

- [2] ANDERSON, T. E. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. *IEEE Transaction on Parallel and Distributed Systems* (Jan. 1990), 6–16.
- [3] AUSLANDER, M., EDELSOHN, D., KRIEGER, O., ROSEN-BURG, B., AND WISNIEWSKI, R. Enhancement to the MCS Lock for Increased Functionality and Improved Programmability. U.S. Patent Application Number 20030200457 (abandoned), October 2003.
- [4] BOYD-WICKIZER, S., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. Non-scalable Locks are Dangerous. In *Proceedings of the Linux Symposium* (Ottawa, Canada, July 2012).
- [5] CHABBI, M., FAGAN, M., AND MELLOR-CRUMMEY, J. High Performance Locks for Multi-level NUMA Systems. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'15) (2015), ACM.
- [6] CHABBI, M., AND MELLOR-CRUMMEY, J. Contentionconscious, Locality-preserving Locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'16) (2016), ACM.
- [7] CRAIG, T. S. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Tech. Rep. TR 93-02-02, University of Washington, 1993.
- [8] DAVID, F., THOMAS, G., LAWALL, J., AND MULLER, G. Continuously Measuring Critical Section Pressure with the Freelunch Profiler. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (2014), OOPSLA '14, ACM.
- [9] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Everything You Always Wanted to Know About Synchronization but Were Afraid to Ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP'13) (2013), ACM.
- [10] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'15) (2015), ACM.
- [11] DICE, D. Brief Announcement: A Partitioned Ticket Lock. In Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'11) (2011), ACM.
- [12] DICE, D. Malthusian Locks, november 2015. http:// arxiv.org/abs/1511.06035.
- [13] DICE, D., MARATHE, V. J., AND SHAVIT, N. Flat-Combining NUMA Locks. In Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'11) (2011), ACM.
- [14] DICE, D., MARATHE, V. J., AND SHAVIT, N. Lock Cohorting: A General Technique for Designing NUMA Locks. ACM Transactions on Parallel Computing 1, 2 (Feb. 2015), 13:1–13:42.
- [15] FATOUROU, P., AND KALLIMANIS, N. D. Revisiting the Combining Synchronization Technique. In *Proceedings of the 17th* ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP'12) (2012), ACM.
- [16] GRAMOLI, V. More Than You Ever Wanted to Know About Synchronization: Synchrobench, Measuring the Impact of the Synchronization on Concurrent Algorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'15) (2015), ACM.
- [17] GUIROUX, H., LACHAIZE, R., AND QUÉMA, V. LITL source code and data sets, 2016. https://github.com/ multicore-locks.

- [18] GUIROUX, H., LACHAIZE, R., AND QUÉMA, V. Multicore Locks: the Case is not Closed Yet. Technical report, 2016. Available from https://github.com/multicore-locks.
- [19] HE, B., SCHERER, W. N., AND SCOTT, M. L. Preemption Adaptivity in Time-published Queue-based Spin Locks. In Proceedings of the 12th International Conference on High Performance Computing (HiPC'05) (2005), Springer-Verlag.
- [20] HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR, M. Flat Combining and the Synchronization-Parallelism Tradeoff. In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'10) (2010), ACM.
- [21] JOHNSON, F. R., STOICA, R., AILAMAKI, A., AND MOWRY, T. C. Decoupling Contention Management from Scheduling. In Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'10) (2010), ACM.
- [22] KARLIN, A. R., LI, K., MANASSE, M. S., AND OWICKI, S. Empirical Studies of Competitve Spinning for a Shared-memory Multiprocessor. In *Proceedings of the Thirteenth ACM Sympo*sium on Operating Systems Principles (SOSP'91) (1991), ACM.
- [23] KYLHEKU, K. What is PTHREAD\_MUTEX\_ADAPTIVE\_NP?, 2014. http://stackoverflow.com/a/25168942.
- [24] LOZI, J.-P. Towards More Scalable Mutual Exclusion for Multicore Architectures. PhD thesis, UPMC, Paris, July 2014. http://www.i3s.unice.fr/~jplozi/ documents/lozi-phd-thesis.pdf.
- [25] LOZI, J.-P., DAVID, F., THOMAS, G., LAWALL, J., AND MULLER, G. Remote Core Locking: Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications. In *Proceedings of the 2012 USENIX Annual Technical Conference* (2012), USENIX Association.
- [26] LOZI, J.-P., DAVID, F., THOMAS, G., LAWALL, J., AND MULLER, G. Fast and Portable Locking for Multicore Architectures. ACM Transactions on Computer Systems 33, 4 (Jan. 2016), 13:1–13:62.
- [27] LOZI, J.-P., LEPERS, B., FUNSTON, J., GAUD, F., QUÉMA, V., AND FEDOROVA, A. The Linux Scheduler: A Decade of Wasted Cores. In Proceedings of the 11th European Conference on Computer Systems (EuroSys'16) (2016), ACM.
- [28] LUCHANGCO, V., NUSSBAUM, D., AND SHAVIT, N. A Hierarchical CLH Queue Lock. In Proceedings of the 12th International Conference on Parallel Processing (Euro-Par'06) (2006), Springer-Verlag.
- [29] MAGNUSSON, P. S., LANDIN, A., AND HAGERSTEN, E. Queue Locks on Cache Coherent Multiprocessors. In *Proceedings of* the 8th International Symposium on Parallel Processing (1994), IEEE Computer Society.
- [30] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algorithms for Scalable Synchronization on Shared-memory Multiprocessors. ACM Transactions on Computer Systems 9, 1 (Feb. 1991), 21–65.
- [31] OYAMA, Y., TAURA, K., AND YONEZAWA, A. Executing Parallel Programs with Synchronization Bottlenecks Efficiently. In Proceedings of the International Workshop on Parallel and Distributed Computing For Symbolic And Irregular Applications (PDSIA'99) (1999), World Scientific.
- [32] RADOVIC, Z., AND HAGERSTEN, E. Hierarchical Backoff Locks for Nonuniform Communication Architectures. In Proceedings of the 9th International Symposium on High-Performance Computer Architecture (HPCA'03) (2003), IEEE Computer Society.

- [33] SCOTT, M. L. Shared-Memory Synchronization. Morgan & Claypool Publishers, 2013.
- [34] SCOTT, M. L., AND SCHERER, W. N. Scalable Queue-based Spin Locks with Timeout. In Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPOPP'01) (2001), ACM.
- [35] TALLENT, N. R., MELLOR-CRUMMEY, J. M., AND PORTER-FIELD, A. Analyzing Lock Contention in Multithreaded Appli-

cations. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'10) (2010), ACM.

[36] WANG, T., CHABBI, M., AND KIMURA, H. Be My Guest — MCS Lock Now Welcomes Guests. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'16) (2016), ACM.