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Abstract In this paper, we study second-order differentiability properties of probability functions. We
present conditions under which probability functions involving nonlinear systems and Gaussian (or Stu-
dent) multi-variate random vectors are twice continuously differentiable. We provide an expression for
their Hessian that can be useful in numerical methods for solving probabilistic constrained optimization
problems.
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1 Introduction

Given a mapping g : Rn×R
m → R

k and a random vector ξ ∈ R
m, a probability function ϕ : Rn → [0, 1]

is defined by
ϕ(x) := P[g(x, ξ) ≤ 0], for all x ∈ R

n. (1)

Such functions are used to model uncertainty as probability constraints ϕ(x) ≥ p, with a user-defined
safety level p ∈ (0, 1). Probability constrained optimization problems appear in fields such as energy,
telecommunications, network expansion, mineral blending, chemical engineering; see, e.g., [1,9,15,22,25].
For a comprehensive overview on the theory and the applications of probabilistic constraints, we refer
to [17, 18, 20].

The numerical treatment of the probabilistic constraints by optimization algorithms opens several ques-
tions, as convexity of the level set {x ∈ R

n : ϕ(x) ≥ p} and smoothness of ϕ. Both (generalized) convexity
(see e.g. [11,12,17,18,23]) and smoothness of ϕ have been the topic of several investigations. Regarding
differentiability, the important results summarized in [21] prove that ϕ is continuously differentiable un-
der the assumptions that {z ∈ R

m : g(x, z) ≤ 0} is compact in a neighbourhood of x. Weaker conditions
are shown to be sufficient in presence of special structure, for example separability of g(x, ξ) = ξ−h(x),
see [10]. For the general case of a nonlinear function g, the compactness assumption can also be replaced
by growth conditions on the gradient ∇xg, as recently developed by [24] in presence of Gaussian multi-
variate random vectors. To our knowledge, second-order differentiability has not been investigated yet –
except for a specific case, given in the appendix of [25].
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In this work, we study second-order differentiability of the probabilistic functions in the general frame-
work of [24]. We prove that ϕ is twice continuously differentiable around a trial point x̄, under growth
conditions on ∇2g(x) the Hessian of g at x. We derive a general expression of ∇2ϕ(x) the Hessian of ϕ
at x, as an integral with respect to the uniform distribution on the sphere. By Deàk’s sampling scheme
of the sphere [4, 5], we can then approximate ∇2ϕ(x) as well as ϕ(x) and ∇ϕ(x) simultaneously.

This expression of Hessians of probability functions could be useful to develop and analyze second-order
methods for solving probabilistically constrained optimization problems. As shown for example in [26],
first order optimization methods dealing with probabilistic constraints spend most time evaluating the
gradients of the probability functions. Since we show here that Hessians are available at the same
computational cost, second order methods (see e.g. [14]) could be considered, and this could speed
up the overall resolution scheme. This may be particularly so for SQP methods that have only been
investigated recently in this context, in [3].

Here is the outline of this short paper. Section 2 presents notation, background, and our second-order
differentiability result. Then section 3 develops the technical lemmas leading to the proof of our result;
this part relies heavily on the analysis of [24] regarding first-order differentiability. Finally section 4
presents examples and extensions.

2 (Second-order) differentiability under growth conditions

In this paper, we consider the general framework of [24] where g is a continuously differentiable function,
convex with respect to the second argument, and ξ is a multivariate non-degenerate Gaussian random
vector in R

m. Without loss of generality1, we can assume that ξ ∼ N (0, R) is centered and with an
arbitrary positive definite correlation matrix R. Note that the set M(x) = {z ∈ R

m : g(x, z) ≤ 0} is
convex so (Lebesgue) measurable and that ξ admits a density (with respect to the Lebesgue measure).
Consequently the probability function ϕ is well-defined by (1).

Without additional assumptions though, ϕ is not differentiable in general (see a counterexample in [24,
section 2]). The approach of [24] to get differentiability roughly requires to control the derivatives of g
when z escapes to infinity. Specifically, the key assumption taken from [24] is the following first-order
exponential growth condition, that we extend here to a second-order growth condition. This framework
allows for many applications; see the examples in [24] and in the forthcoming section 4. Let us formalize
here the two growth condition that will appear repeatedly in this paper.

Assumptions 1 (exponential growth conditions)

(i) The mapping g satisfies the first order exponential growth condition at x̄:

‖∇xg (x, z)‖ ≤ δ exp (‖z‖) for all x ∈ U and all z such that ‖z‖ ≥ C, (2)

for a neighbourhood U of x̄ and constants C, δ > 0. The norm ‖·‖ is the usual euclidian norm in R
n.

(ii) The mapping g satisfies the second order exponential growth condition at x̄ if it is twice continuously
differentiable at x̄ and

∥

∥∇2g (x, z)
∥

∥ ≤ δ exp (‖z‖) for all x ∈ U and all z such that ‖z‖ ≥ C, (3)

for a neighbourhood U of x̄ and constants C, δ > 0. Here the norm of the Hessian refers to the
operator norm induced by the usual euclidian norm of Rn.

1 Since we do not assume complex structure on g, the general case reduces to the normal centered case, as follows.
Let ξ̃ ∼ N (µ,Σ) be a general multi-variate Gaussian random vector with mean µ and covariance matrix Σ. We define
g̃(x, z) = g(x,Dz + µ) and observe that ξ = D−1(ξ̃ − µ) ∼ N (0, R), where D is the diagonal matrix with Dii = Σii

1/2.
We see that that P[g(x, ξ̃) ≤ 0] = P[g̃(x, ξ) ≤ 0] and that neither convexity in the second argument of g, nor its continuous
differentiability properties are perturbed by such a transformation.
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Throughout this paper, we consider the Cholesky decomposition of R, i.e., R = LLT. We consider now
the spherical-radial decomposition of ξ (e.g., [8, 16])

ξ = ηLζ

with two independent random vectors: ζ having a uniform distribution over the Euclidian unit sphere
S
m−1 in R

m and η having a chi-distribution with m degrees of freedom. We denote by µζ the uniform
measure over the unit sphere Sm−1 and by µη the measure related to the chi-distribution with m degrees
of freedom. With the factor κ := 21−

m
2 /Γ (m2 ) > 0, the density associated to µη and its first derivative are

χ (y) = κym−1e−y2/2 and χ′(y) = κ
(

(m− 1)− y2
)

ym−2e−y2/2, (4)

and the associated cumulative function is denoted Fχ. The mapping ϕ of (1) admits the following
description as an integral

ϕ(x) =

∫

{r≥0,v∈Sm−1: g(x,rLv)≤0}

χ(r) dr dµζ(v).

Given this description, the importance of studying the rays {r ≥ 0, v ∈ S
m−1 : g(x, rLv) ≤ 0} becomes

apparent. One can visualize a given v ∈ S
m−1 as a direction along which we will investigate the length

of a beam cutting the set M(x). Since the set M(x) is convex, such a beam can intersect the boundary
of M(x) at most twice. Under the additional assumption that 0 ∈ intM(x), such a beam intersects
the boundary at most once. We will set aside these directions, called finite or relevant directions by
introducing the following set-valued mapping F : Rn

⇒ S
m−1,

F (x) =
{

v ∈ S
m−1 : ∃r > 0, g(x, rLv) = 0

}

. (5)

For an appropriate couple x ∈ R
n and v ∈ F (x), the equation g(x, rLv) = 0 with respect to r can

be solved locally around (x̄, v). This is exploited in the following nice alternative representation of ϕ,
obtained as a consequence of Lemmas 3.1(4) and 3.3(1) of [24].

Theorem 1 (Integral representation) In the above-described context, consider a point x̄ such that
g (x̄, 0) < 0. Then ϕ can be expressed in a neighbourhood of x̄ as

ϕ (x) =

∫

v∈F (x)

Fχ (ρ
x,v (x, v)) dµζ(v) +

∫

v 6∈F (x)

dµζ(v). (6)

where F is the set-valued function defined in (5), and ρx,v is the real-valued function defined implicitly
around (x, v) by the equation g(x, rLv) = 0 with respect to r.

We notice that the condition g(x̄, 0) < 0 is not very restrictive as it holds in particular if ϕ(x̄) ≥ 1
2 under

a Slater assumption on g; see [24, Proposition 3.11]. From the integral expression of this theorem, we see
that differentiating ϕ involves differentiating under the integral a function defined implictly. The main
result of [24] gives general conditions that allow this differentiation.

Theorem 2 (First-order differentiability) Let the assumption of Theorem 1 hold. Assume further-
more that g satisfies the first order exponential growth condition at x̄ (Assumption 1(i)). Then, ϕ is
continuously differentiable on U , and for all x ∈ U

∇ϕ (x) = −

∫

v∈F (x)
w=ρx,v(x,v)Lv

χ (ρx,v (x, v))∇xg (x,w) α(x, v, w) dµζ(v).

where α is the real-valued function defined by α(x, v, w) := 1/ 〈∇zg (x,w) , Lv〉.
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We mention that, by [24, Theorem 3.14], the growth condition of this theorem can be replaced by the
condition that the set {z : g(x̄, z) ≤ 0} is bounded (and in this case, ρx,v is in fact independent from
(x, v) and F (x̄) = S

m−1 by [24, Lemma 3.12]).

In this short paper, we establish that a similar differentiability result holds at the second-order; more
precisely here is our main second-order differentiability result.

Theorem 3 (Second-order differentiability) Let the assumption of Theorem 1 hold. Assume fur-
thermore that g satisfies the exponential growth conditions at x̄ (Assumption 1 (i) and (ii)). Then ϕ is
twice continuously differentiable on a neighbourhood U of x̄ and for all x ∈ U

∇2ϕ (x) =

∫

v∈F (x)
w=ρx,v(x,v)Lv

[

χ′ (ρx,v (x, v)) ∇xg(x,w)∇xg(x,w)
T

+ χ (ρx,v (x, v)) ∇xg(x,w)(∇xzg(x,w)Lv)
T

− χ (ρx,v (x, v))α(x, v, w) vTLT∇zzg(x,w)Lv∇xg(x,w)∇xg(x,w)
T (7)

− χ (ρx,v (x, v))α(x, v, w)−1 ∇xxg(x,w)

+ χ (ρx,v (x, v)) vTLT∇zxg(x,w)∇xg(x,w)
T

]

α(x, v, w)2dµζ(v).

Evaluating the Hessian ∇2ϕ (x) with the above integral expression can be done while evaluating ϕ(x) and
∇ϕ(x) by Deàk’s sampling method [5]. For each sampled point v ∈ S

m−1, we try to solve the equation
g(x, rLv) = 0 explicitly or approximately (by a Newton-Raphson algorithm for instance). If there is a
solution r > 0 (i.e., v ∈ F (x)) then we evaluate the integrand; else (i.e., v 6∈ F (x)) the term does not
contribute to the approximated integral. This procedure does not add significant computational cost on
top of evaluating ϕ(x) and ∇ϕ(x). Note that this is quite different from [25, Lemma 2], where the given
expression of the Hessian (of a simple probability function) has a computing cost O(m) times higher
than the computing cost of the gradient.

3 Proof of second-order differentiability

This section provides several auxiliary developments that lead us to the proof of Theorem 3. We consider
a given fixed, but arbitrary, point x̄ ∈ R

n such that g(x̄, 0) < 0. The bulk of the work consists in studying
the second-order differentiability of the function e : Rn × S

m−1 → [0, 1] defined by for all x ∈ R
n and

v ∈ S
m−1

e(x, v) := µη({r ≥ 0 : g(x, rLv) ≤ 0}) =

∫

{r≥0: g(x,rLv)≤0}

χ(r) dr (8)

We start by giving more details on the implicit ray function ρx̄,v and the expressions of its first and
second order derivatives (when v ∈ F (x̄)).

Lemma 1 (Implicit ray function) If v̄ ∈ F (x̄) (where F is defined as in (5)), then there exist
neighbourhoods U of x̄ and V of v̄ as well as a twice continuously differentiable function ρx̄,v̄ : U ×V →
R+ satisfying the equivalence

g(x, rLv) = 0 ⇐⇒ r = ρx̄,v̄(x, v) for all (x, v, r) ∈ U × V × R+.

Moreover for all (x, v) ∈ U × V and for w = ρx̄,v̄(x, v)Lv

∇xρ
x̄,v̄ (x, v) = −α(x, v, w)∇xg(x,w) (9)

∇xxρ
x̄,v̄ (x, v) = α(x, v, w)2∇xg(x,w)(∇xzg(x,w)Lv)

T

− α(x, v, w)3vTLT∇zzg(x,w)Lv∇xg(x,w)∇xg(x,w)
T (10)

− α(x, v, w)∇xxg(x,w) + α(x, v, w)2
(

vTLT∇zxg(x,w)∇xg(x,w)
T
)

.
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Proof The existence and smoothness of ρx̄,v̄ comes from applying the implicit function theorem. The
details are in the proof of [24, Lemma 3.2], which also provides the expression of the gradient. We focus
here on the calculation of the second order derivative. To this end let us consider h(x, v) = α(x, v, w)−1 =
〈∇zg(x, ρ

x̄,v̄(x, v)Lv), Lv〉. Then for any k = 1, ..., n we have the following derivative formula:

∂h

∂xk
(x, v) =

∂

∂xk
(

m
∑

j=1

∂g

∂zj
(x, ρx̄,v̄(x, v)Lv)(Lv)j) =

m
∑

j=1

∂2g

∂xk∂zj
(x, ρx̄,v̄(x, v)Lv)(Lv)j

+

m
∑

j=1

(Lv)j

m
∑

ℓ=1

∂2g

∂zℓ∂zj
(x, ρx̄,v̄(x, v)Lv)(Lv)ℓ

∂ρx̄,v̄

∂xk
(x, v)

= (∇xzg(x,w)Lv)k − α(x, v, w)vTLT∇zzg(x,w)Lv
∂g

∂xk
(x,w).

Consequently for any k, i = 1, ..., n we get:

∂2ρx̄,v̄

∂xi∂xk
(x, v) = h(x, v)−2 ∂h

∂xk
(x, v)

∂g

∂xi
(x, ρx̄,v̄(x, v)Lv)− h(x, v)−1 ∂2g

∂xi∂xk
(x, ρx̄,v̄(x, v)Lv)

+ h(x, v)−1
m
∑

j=1

∂2g

∂zj∂xi
(x, ρx̄,v̄(x, v)Lv)(Lv)j

∂ρx̄,v̄

∂xk
(x, v) ,

which by substitution gives

∂2ρx̄,v̄

∂xi∂xk
(x, v) = h(x, v)−2 ∂g

∂xi
(x, ρx̄,v̄(x, v)Lv)(∇xzg(x, ρ

x̄,v̄(x, v)Lv)Lv)k

− h(x, v)−3vTLT∇zzg(x, ρ
x̄,v̄(x, v)Lv)Lv

∂g

∂xi
(x, ρx̄,v̄(x, v)Lv)

∂g

∂xk
(x, ρx̄,v̄(x, v)Lv)

− h(x, v)−1 ∂2g

∂xi∂xk
(x, ρx̄,v̄(x, v)Lv)

+ h(x, v)−2(vTLT∇zxg(x, ρ
x̄,v̄(x, v)Lv))i

∂g

∂xk
(x, ρx̄,v̄(x, v)Lv).

This can be written as (10). ⊓⊔

The second-order differentiability of e when v̄ ∈ F (x̄) follows immediately from the previous lemma
together with Corollary 3.5 of [24].

Lemma 2 (In relevant directions) If v̄ ∈ F (x̄), then there exist neighbourhoods U of x̄ and V of v̄
such that, for (x, v) ∈ U × V , the function e defined in (8) satisfies e(x, v) = Fχ(ρ

x̄,v̄(x, v)) as well as

∂e

∂xk
(x, v) = −α(x, v, w)χ(ρx̄,v̄(x, v))

∂g

∂xk
(x,w)

and is moreover twice continuously differentiable with partial derivative:

∂2e

∂xk∂xi
(x, v) = χ′(ρx̄,v̄(x, v))α(x, v, w)2

∂g

∂xk
(x,w)

∂g

∂xi
(x,w) + χ

(

ρx̄,v̄ (x, v)
) ∂2ρx̄,v̄

∂xk∂xi
(x, v),

where k, i ∈ {1, ..., n} are arbitrary and w = ρx̄,v̄(x, v)Lv.

We now show that Assumptions 1 yield that the exponentials of the χ-distribution make the Hessian of
e vanish when getting close to irrelevant directions (v̄ 6∈ F (x̄)).

Lemma 3 (Toward irrelevant directions) Let v̄ 6∈ F (x̄) and consider a sequence (xk, vk) → (x̄, v̄)
with vk ∈ F (xk). If g satisfies Assumption 1 (i) and (ii) at x̄, then

lim
k→∞

∇xxe(xk, vk) = 0.
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Proof By [24, Lemma 3.3], we have first that ρk := ρxk,vk(xk, vk) → ∞ when k → ∞, since xk → x̄ and
vk ∈ F (xk). Recall also that, by [24, Lemma 3.1(3)], there exists δ1 > 0 such that, on an appropriately
small neighbourhood of x̄,

〈∇zg (xk, ρkLvk) , Lvk〉 ≥ δ1 [ρ
xk,vk (xk, vk)]

−1 = δ1ρ
−1
k > 0.

Now note that, by Lemma 2, we have the upper bound:

‖∇xxe(xk, vk)‖ ≤

∣

∣

∣

∣

∣

χ′(ρk)

〈∇zg(xk, ρkLvk), Lvk〉
2

∣

∣

∣

∣

∣

‖∇xg(xk, ρkLvk)‖
2
+ χ(ρk) ‖∇xxρ

xk,vk(xk, vk)‖ . (11)

By using the growth condition for k sufficiently large and the expressions of (4), we can bound the first
term (which we call Ak for short) by

Ak ≤ δ2δ−2
1 ρ2kκ

{

(m− 1)− ρ2k
}

[ρk]
m−2e−[ρk]

2/2e2‖L‖ρk

= δκδ−2
1 κ

{

(m− 1)− ρ2k
}

[ρk]
me2‖L‖ρke−[ρk]

2/2,

which allows us to show that limk→∞ Ak = 0 since ρk := ρxk,vk(xk, vk) → ∞ and yαeye−y2/2 → 0 for
y → ∞, where α > 0 is arbitrary. We bound the second term in (11) by using the second order growth
condition:

χ(ρxk,vk (xk, vk)) ‖∇xxρ
xk,vk(xk, vk)‖

≤ κδδ−1
1

[

δ−1
1 ρ2k ‖L‖ e

2‖L‖ρk [ρk]
m−1e−[ρk]

2/2 + δ−2
1 ρ3k ‖L‖

2
e3‖L‖ρk [ρk]

m−1e−[ρk]
2/2

+ρke
‖L‖ρk [ρk]

m−1e−[ρk]
2/2 + δ−1

1 ρ2k ‖L‖ e
2‖L‖ρk [ρk]

m−1e−[ρk]
2/2
]

.

The right-hand side can be seen to converge to zero following the above evoked arguments. ⊓⊔

We are now in position to establish the twice differentiability of e, which is the main technical lemma in
our way to Theorem 3.

Lemma 4 (Second derivative of the function e) If g satisfies the first and second order exponential
growth conditions at x̄, then there is a neighbourhood U of x̄ such that the mapping e is twice continuously
differentiable with respect to x on U . For x ∈ U and v 6∈ F (x), the gradient and Hessian of e are null,
and for v ∈ F (x), the gradient is given in Lemma 2 and the Hessian by

∇xxe(x, v) = α(x, v, w)2
(

χ′ (ρx,v (x, v)) ∇xg(x,w)∇xg(x,w)
T

+ χ (ρx,v (x, v)) ∇xg(x,w)(∇xzg(x,w)Lv)
T

− χ (ρx,v (x, v))α(x, v, w) vTLT∇zzg(x,w)Lv∇xg(x,w)∇xg(x,w)
T

− χ (ρx,v (x, v)) /α(x, v, w) ∇xxg(x,w)

+ χ (ρx,v (x, v)) vTLT∇zxg(x,w)∇xg(x,w)
T

)

,

where w = ρx,v(x, v)Lv. We have moreover that ∇xxe is continuous with respect to the couple (x, v).

Proof Fix i, ℓ ∈ {1, ..., n}. For any v ∈ F (x), the provided formula and differentiability statement follows
from Lemma 2. We focus here on the case v 6∈ F (x). We will show, by contradiction, that,

lim
t↑0

∂e
∂xℓ

(x+ tui, v)−
∂e
∂xℓ

(x, v)

t
= 0, (12)

where ui is the i-th canonical unit vector in R
n. In exactly the same way, one can also show that the

limit for t ↓ 0 equals zero too. Altogether, this will prove that e is twice differentiable at x and that
∂2e

∂xi∂xℓ
e(x, v) = 0.
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Notice first that, by [24, Corollary 3.8], we have ∂e
∂xℓ

(x, v) = 0. Negating (12) implies the existence of
some ε > 0 and a subsequence tk ↑ 0 such that

∣

∣

∣

∣

∣

∂e
∂xℓ

(x+ tkui, v)

tk

∣

∣

∣

∣

∣

≥ ε. (13)

This implies in particular that ∂e
∂xℓ

(x + tkui, v) 6= 0 and then v ∈ F (x + tkui), again by [24, Corollary

3.8]. We also have that g(x+ tkui, 0) < 0 for all large k. Now, for an arbitrary k, we define (recall that
tk < 0)

T := inf

{

τ ∈ [tk, 0] :
∂e

∂xℓ
(x+ τui, v) = 0

}

(≤ 0).

Due to ∂e
∂xℓ

(x, v) = 0 we have that T ≤ 0. On the other hand, ∂e
∂xℓ

(x+ tkui, v) 6= 0 and the continuity of

∇xe established in [24, Corollary 3.9] provides T > tk. We infer that ∂e
∂xℓ

(x+τui, v) 6= 0 for all τ ∈ [tk, T )
and, hence,

v ∈ F (x+ τui) ∀τ ∈ [tk, T ). (14)

But then, the function

β(τ ) :=
∂e

∂xℓ
(x+ τui, v)

is differentiable for all τ ∈ (tk, T ) by virtue of Lemma 2 and its derivative is given by

β′(τ ) =
n
∑

j=1

∂2e

∂xj∂xℓ
(x+ τui, v)ui(j) =

∂2e

∂xi∂xℓ
(x+ τui, v).

Therefore, the mean value theorem guarantees the existence of some τ∗k ∈ (tk, T ) such that

β′(τ∗k ) =
β(T )− β(tk)

T − tk
.

By continuity of ∇xe of [24, Corollary 3.9], we have that β(T ) = ∂e
∂xℓ

(x + Tui, v) = 0, whence, by
tk < T ≤ 0,

|β′(τ∗k )| =

∣

∣

∣

∣

∣

− ∂e
∂xℓ

(x+ tkui, v)

T − tk

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∂e
∂xℓ

(x+ tkui, v)

tk

∣

∣

∣

∣

∣

≥ ε,

where the last inequality is (13). Now, since k was arbitrarily fixed, we have constructed a sequence τ∗k
such that tk < τ∗k ≤ 0 such that

∣

∣

∣

∣

∂2e

∂xi∂xℓ
(x+ τui, v)

∣

∣

∣

∣

≥ ε ∀k. (15)

Since tk ↑ 0, we also have that τ∗k ↑ 0. Moreover, v ∈ F (x+ τ∗kui) by (14). Due to our assumption that g
satisfies the growth conditions at x, Lemma 3 yields that limk→∞ ∇xxe(xk, v) = 0 which contradicts (15)
and thus concludes about twice differentiability. Finally, the fact that the second order partial derivative
∇xxe is also continuous at (x, v) for any v ∈ S

m−1 can be shown as follows. For a given x and v ∈ F (x),
the provided formula of the Hessian holds true locally and continuity is evident. In contrast, if v 6∈ F (x),
assuming that ∇xxe(xk, vk) does not tend to zero along a sequence (xk, vk) → (x, v), means in particular
that ‖∇xxe(xk, vk)‖ ≥ ε for a given ε > 0. Consequently by the arguments above, vk ∈ F (xk). But then
this leads to a contradiction with Lemma 3. ⊓⊔

The proof of Theorem 3 about second-order differentiability of ϕ now follows from the previous result
after justifying the derivation under the integral.
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Proof (of Theorem 3) Theorem 1 gives the integral representation (6) of ϕ around x̄. Theorem 2 allows
us to obtain an integral representation for ∇ϕ(x) involving e. Indeed for a given k = 1, ..., n, we have

∂ϕ

∂xk
(x) =

∫

v∈Sm−1

∂e

∂xk
(x, v)dµζ(v), (16)

as a consequence of Theorem 2 and expressions of derivatives of e of Lemmas 2 and 4. Invoking again
Lemma 4, the second order partial derivative∇xxe of the function e exists and is continuous on U×S

m−1.
The continuity of ∇xxe on U × S

m−1 and compactness of Sm−1 guarantee that the function γ : U → R

γ(x) := max
v∈Sm−1

‖∇xxe(x, v)‖

is well-defined and continuous. Restricting U if necessary, we may assume that γ(x) ≤ 2γ(x̄) for all
x ∈ U . This together with µζ(S

m−1) = 1 for the law µζ of the uniform distribution on S
m−1 we infer

that the constant 2γ(x̄) is an integrable function on S
m−1 dominating ‖∇xxe(x, v)‖ on S

m−1 for all
x ∈ U . Now, Lebesgue’s dominated convergence theorem [13, Theorem 12.35, Corollary 12.36] allows to
differentiate (16) under the integral sign and provides continuity with respect to x. We have established

∇2ϕ (x) =

∫

v∈Sm−1

∇xxe(x, v)dµζ

which gives the desired expression by Lemma 4. ⊓⊔

4 Examples and extensions

We illustrate now our second-order differentiability result on some special examples: for chi-squared
random vectors in section 4.1 and for lognormal random vectors in section 4.2. Finally we show in
section 4.3 that results similar to Theorem 3 also hold with Student random vectors.

4.1 Chi-squared example

We consider here a linear probabilistic function

ϕ(x) = P (〈η, x〉 ≤ b) (17)

with b > 0 and a random vector η ∈ R
n whose components ηi are independent and have a χ2-distribution

with mi degrees of freedom. For each i = 1, . . . , n, we can write ηi =
∑mi

k=1 ξ
2
i,k, where mi is the degree

of freedom, and ξi,k ∼ N (0, 1) (for k = 1, . . . ,mi) are independent random variables. We consider the
Gaussian random vector of m = m1 + · · ·+mn dimensions

ξ := (ξ1,1, . . . , ξ1,m1
, . . . , ξn,1, . . . , ξn,mn

) ∼ N (0, I) .

We also introduce the function f : Rm → R
n defined by its components fi(z) =

∑mi

k=1 z
2
i,k (for z parti-

tioned as ξ above), and the function g : Rn × R
m → R defined by g(x, z) = 〈x, f(z)〉 − b. Thus, we are

in the situation of this paper as the probability function (17) writes

ϕ(x) = P (〈η, x〉 ≤ b) = P (〈f(ξ), x〉 ≤ b) = P (g(x, ξ) ≤ 0) .

We observe that g is C2, satisfies the first and second order growth conditions and is convex with
respect to z as soon as xi ≥ 0 for all i = 1, ..., n. We apply Theorem 3 at x̄ (such that x̄i > 0 for all
i = 1, ..., n) to establish that ϕ of (17) is C2 around x̄, and we can specify the integral expression of
the Hessian for this case as follows. We observe that the set {z ∈ R

m : g(x̄, z) ≤ 0} is bounded, so that
F (x̄) = S

m−1 by [24, Lemma 3.12]. We also dispose of an explicit ray function (for all (x, v)) as the
equation 〈f(rv), x〉 = b in r admits the solution

ρ(x, v) =
√

b/ 〈f(v), x〉.
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We readily compute the terms that appeared in the expression of Theorem 3, including

α(x, v, ρ(x, v)v) = 1/
(

2
√

b 〈f(v), x〉
)

and vT∇zzg(x, ρ (x, v) v)v = 2 〈f(v), x〉 .

Substituting these expressions in (7) and simplifying yields:

∇2ϕ(x) =

∫

v∈Sm−1

[

b χ′
(

√

b/ 〈f(v), x〉
)

+ 3
√

b 〈f(v), x〉 χ
(

√

b/ 〈f(v), x〉
) ] f(v)Tf(v)

4 〈f(v), x〉3
dµζ(v).

4.2 Multivariate log-normal distribution

We consider here the probabilistic function

ϕ(x) = P (〈η, x〉 ≤ h(x)) (18)

with a twice continuously differentiable h : Rm → R and a random vector η with a multivariate lognormal
distribution, i.e., the component-wise logarithm log η has a multivariate Gaussian distribution). Without
loss of generality we assume that ξ = log η ∼ N (0, R) for some correlation matrix R = LLT . Thus we
remark that the probabilistic function of (18) can be written as ϕ(x) = P[g(x, ξ) ≤ 0] with the function
g(x, z) = 〈x, ez〉−h(x), which is C2, satisfies the first and second order growth conditions, and is convex
with respect to z as soon as xi ≥ 0 for all i = 1, ...,m.

Let x̄ be such that x̄i > 0 for i = 1, . . . ,m and h(x̄) >
∑m

i=1 x̄i. This implies that g(x̄, 0) < 0 and we can
therefore apply Theorem 3, to get that ϕ of (18) is C2 around x̄ (more precisely, in a neighbourhood U
of x̄ such that g (x, 0) < 0 and xi > 0 for i = 1, . . . ,m). The expression of α and F instantiates as

α(x, v, w) =
(

m
∑

i=1

xie
ρx,v(x,v)(Lv)i(Lv)i

)−1
and F (x) = {v ∈ S

m−1 : ∃ i such that (Lv)i > 0}.

(19)
The integral expression of the Hessian then simplifies to

∇2ϕ (x) =

∫

v∈F (x)

(

χ′ (ρx,v (x, v))
[

eρ
x,v(x,v)Lv −∇h(x)

] [

eρ
x,v(x,v)Lv −∇h(x)

]T

+ χ (ρx,v (x, v))
[

eρ
x,v(x,v)Lv −∇h(x)

] [

diag(eρ
x,v(x,v)Lv)Lv

]T

−
χ (ρx,v (x, v))

α
(

x, v, ρx,v(x, v)
)vTLT diag(xeρ

x,v(x,v)Lv)Lv
[

eρ
x,v(x,v)Lv −∇h(x)

] [

eρ
x,v(x,v)Lv −∇h(x)

]T

+ χ (ρx,v (x, v))α
(

x, v, ρx,v(x, v)
)

∇2h(x)

+ χ (ρx,v (x, v))
[

vTLT diag(eρ
x,v(x,v)Lv)

] [

eρ
x,v(x,v)Lv −∇h(x)

]T )

α(x, v, w)2 dµζ(v).

Here, ez for a vector z has to be understood component-wise, diag(y) denotes the diagonal matrix with
vector y on the diagonal, and xez has to be understood as the components wise product.

The expression of F (x) in (19) is the main technical point to applying Theorem 3 to the example of
this section. For sake of completeness, let us provide a quick proof of this expression: we show by double
inclusion that, for all x ∈ U ,

S
m−1 \ F (x) =

{

v ∈ S
m−1 : Lv ≤ 0

}

. (20)

First, let x ∈ U and v ∈ S
m−1 with Lv ≤ 0; then for all r > 0

g(x, rLv) =
〈

erLv, x
〉

− h(x) ≤
〈

e0, x
〉

− h(x) = g (x, 0) < 0,

whence v /∈ F (x). Conversely, let x ∈ U and v /∈ F (x). Then,
〈

erLv, x
〉

< h(x) for all r > 0. Define

J := {i : (Lv)i > 0} and observe that
∑

i∈J xie
r(Lv)i is bounded from above independently of r. If

J 6= ∅, then this sum would tend to ∞ for r → ∞ which is a contradiction. Consequently, J = ∅, proving
Lv ≤ 0 and, thus, the reverse inclusion of (20).
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4.3 Second-order differentiability with Student’s law

The rationale of the proof of section 3 can be adapted to a similar context under slight changes in
conditions and analysis. In this section, we show for example that the second-order differentiability still
holds when the random vector ξ in (1) follows a multi-variate Student distribution, under a slightly
adapted growth condition on the Hessian of g.

Consider the probability function ϕ defined in (1) where ξ ∼ T (0, R, ν) has a standard multi-variate
Student distribution (with correlation matrix R = LLT and ν degrees of freedom). By [24, Theorem 4.4],
ϕ can be expressed as

ϕ(x) =

∫

v∈Sm−1

ẽ(x, v)dµζ(v) with ẽ(x, v) =

{

Fm,ν(m
−1 [ρx,v (x, v)]

2
) if v ∈ F (x)

1 else
, (21)

where Fm,ν(t) is the Fisher-Snedecor distribution function with density:

fm,ν(t) =

{

Γ (m/2+ν/2)
Γ (m/2)Γ (ν/2)m

m/2νν/2tm/2−1 (mt+ ν)−(m+ν)/2 t ≥ 0

0 t < 0
(22)

Theorem 4 Let the mapping g : Rn × R
m → R be twice continuously differentiable and convex in the

second argument. Assume moreover that g satisfies a first and second order polynomial growth condition
at x̄ (i.e., the exponential term in (3) is replaced with ‖z‖ℓ, and the one of (2) by ‖z‖κ and these
coefficients are related as follows ℓ+2κ < ν − 2). Then ϕ of (21) is twice continuously differentiable on
a neighbourhood U of x̄ and for all x ∈ U

∇2ϕ (x) =

∫

v∈F (x)
w=ρx,v(x,v)Lv

[

4
ρx,v (x, v)2 f ′

m,ν(m
−1ρx,v (x, v)2)

mfm,ν(m−1ρx,v (x, v)
2
)

∇xg(x,w)∇xg(x,w)
T

+ 2∇xg(x,w)∇xg(x,w)
T + 2ρx,v(x, v)∇xg(x,w)(∇xzg(x,w)Lv)

T

− 2ρx,v(x, v)α(x, v, w) vTLT∇zzg(x,w)Lv∇xg(x,w)∇xg(x,w)
T

− 2ρx,v(x, v)/α(x, v, w)∇xxg(x,w)

+ 2ρx,v(x, v)vTLT∇zxg(x,w)∇xg(x,w)
T

]

fm,ν

(

ρx,v (x, v)2

m

)

α(x, v, w)2

m
dµζ(v)

Proof The continuous differentiability is established in [24, Theorem 4.7]. We focus on the proof of the
second-order differentiability and, as remarked in [24], we only need to derive the equivalent of Lemma 3
for the Student setting. Following the arguments of Lemma 3, we have

‖∇xxẽ(xk, vk)‖ ≤

∣

∣

∣

∣

∣

4ρx,v (x, v)
2
f ′
m,ν(m

−1 [ρx,v (x, v)]
2
)

m2 〈∇zg(xk, ρxk,vk(xk, vk)Lvk), Lvk〉
2

∣

∣

∣

∣

∣

‖∇xg(xk, ρ
xk,vk(xk, vk)Lvk)‖

2

+

∣

∣

∣

∣

∣

2fm,ν(m
−1 [ρx,v (x, v)]2)

m 〈∇zg(xk, ρxk,vk(xk, vk)Lvk), Lvk〉
2

∣

∣

∣

∣

∣

‖∇xg(xk, ρ
xk,vk(xk, vk)Lvk)‖

2

+
2

m
ρx,v (x, v) fm,ν(m

−1 [ρx,v (x, v)]
2
) ‖∇xxρ

xk,vk(xk, vk)‖ .

Using the expression of f ′
m,ν(t) (for t ≥ 0)

f ′
m,ν(t) =

Γ (m/2 + ν/2)

Γ (m/2)Γ (ν/2)
mm/2νν/2tm/2−1 (mt+ ν)

−(m+ν)/2
((
m

2
− 1)t−1 −m

m+ ν

2
(mt+ ν)−1)

and the polynomial growth condition, we can bound the first term (Ak) as:

‖Ak‖ ≤ C̃1ρ
m+2κ
k (ρ2k + ν)−

m+ν
2 + C̃2ρ

m+2κ+2
k (ρ2k + ν)−

m+ν+2

2 ,
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for appropriate constants C̃1, C̃2 the last term tends to zero whenever κ < ν
2 and where ρk is short for

ρk := ρxk,vk(xk, vk). The second term (Bk) can be bounded by:

‖Bk‖ ≤ C̃3ρ
xk,vk(xk, vk)

m+2κ(ρxk,vk(xk, vk)
2 + ν)−

m+ν
2

which again tends to zero when k → ∞ as long as κ < ν
2 . Finally the last term (Ck) can be bounded by

using the second order polynomial growth condition as follows:

‖Ck‖ ≤ C̃4ρ
m
k (ρ2k + ν)−

m+ν
2 (2ρ1+κ+ℓ

k + ρ2+2κ+ℓ
k + ρℓk).

When ℓ+ 2κ < ν − 2, we also have ℓ < ν, 1 + κ + ℓ < ν and κ < ν
2 , so that this condition entails that

also ‖Ck‖ → 0, when k → ∞. We have thus established the equivalent of Lemma 3: the mapping ẽ has
the same properties as e. Consequently the remaining proofs carry forth. ⊓⊔

[2] [19] [7]
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