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This paper presents BiqCrunch, an exact solver for binary quadratic optimization problems. BiqCrunch
is a branch-and-bound method that uses an original, efficient semidefinite-optimization-based bounding
procedure. It has been successfully tested on a variety of well-known combinatorial optimization problems,
such as Max-Cut, Max-k-Cluster, and Max-Independent-Set. The code is publicly available online; a web
interface and many conversion tools are also provided.
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1. INTRODUCTION: BINARY QUADRATIC PROBLEMS AND SOLVERS
1.1. Binary quadratic optimization problems
We consider binary quadratic optimization problems, i.e., (nonconvex) optimization
problems with a quadratic objective, quadratic constraints, and 0–1 variables. A binary
quadratic problem with mI inequality constraints and mE equality constraints has the
following mathematical formulation:

maximize zTS0z + sT0 z
subject to zTSiz + sTi z ≤ ai, i ∈ {1, . . . ,mI}

zTSiz + sTi z = ai, i ∈ {mI + 1, . . . ,mI +mE}
z ∈ {0, 1}n

(1)

where the Si’s are real symmetric n× n matrices (possibly Si = 0), the si’s are vectors
in Rn, and the ai’s are real numbers. Many optimization problems in the sciences,
operations research, or engineering are expressed as binary quadratric problems, such
as, in medicine [Iasemidis et al. 2001], in physics [Liers et al. 2005], in space allocation
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[Anjos and Vannelli 2008], in computer vision [Joulin et al. 2010], or in computational
biology [Engau et al. 2012].

Three examples of classical combinatorial optimization problems that can be ex-
pressed as problem (1) are Max-Cut, Max-k-Cluster, and Max-Independent-Set. In the
Max-Cut problem (see, e.g., [Goemans and Williamson 1995; Rendl et al. 2010]), we
are given an edge-weighted graph with n vertices, and the objective is to maximize the
total weight of the edges between a subset of vertices and its complement; this problem
can be stated as:

(Max-Cut)
maximize

∑
ij wijzi(1− zj)

subject to z ∈ {0, 1}n. (2)

In the Max-k-Cluster problem, we are given an edge-weighted graph with n vertices
and a natural number k, and the objective is to find a subgraph of k nodes having
maximum total edge weight; this problem can be stated as:

(Max-k-Cluster)
maximize 1

2

∑
ij wijzizj

subject to
∑n
i=1 zi = k

z ∈ {0, 1}n.
(3)

In the Max-Independent-Set (MIS) problem (see, e.g., [Zhao et al. 1998]), we are given
a graph G = (V,E) with vertex weights wi, and the objective is to maximize the total
weight of the vertices in an independent set (a set S of vertices having no two vertices
joined by an edge in E); this problem can be stated as:

(MIS)
maximize

∑
i wizi

subject to zizj = 0, ∀(i, j) ∈ E
z ∈ {0, 1}n.

(4)

These three problems, and more generally binary quadratic problems, are NP-hard
and are often difficult to solve in practice.

This article introduces BiqCrunch, an exact solver for general binary quadratic (biq)
optimization problems. Extensive numerical experiments show that BiqCrunch is the
current state-of-the-art for several difficult binary quadratic optimization problems.
The source code is available online and distributed under the GNU General Public
License, version 3.

The remainder of the introduction sketches the existing solvers and the contribu-
tions of BiqCrunch. The mathematical foundations of BiqCrunch are presented in
Section 3, its algorithmic description in Section 4, and finally advanced techniques
for improving its performance in Section 5. Further information is available on the
BiqCrunch website:

http://lipn.univ-paris13.fr/BiqCrunch/

1.2. Existing solvers for binary quadratic optimization
Binary quadratic programming is included in the broader class of mixed-integer non-
linear programming [Bussieck et al. 2010; D’Ambrosio and Lodi 2011; Burer and
Letchford 2012]. Thus problem (1) could be handled directly by using mixed-integer
nonlinear programming solvers, such as the commercial solvers BARON [Sahinidis
2013], LocalSolver, Gurobi, and IBM/CPLEX, as well as the noncommercial solvers
SCIP [Achterberg 2009] and Bonmin [Bonami et al. 2008]. However these mixed-
integer nonlinear programming solvers do not fully exploit the quadratic form of the
objective function and the constraints in problem (1), except in preprocessing phases.

In contrast, another widely used technique for solving binary quadratic problems
is to add linearization variables to formulate problem (1) as a binary linear program-
ming problem; see, e.g., [Sherali and Adams 1990]. The advantage of this approach is
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the possibility of using all the available efficient tools for integer linear programming.
However, for hard combinatorial problems, it is often necessary to go beyond standard
linear bounds and work with tighter bounds. For example, for graph problems that are
very sparse, linear-based solvers that take advantage of the sparsity and the geomet-
ric properties of underlying problems usually perform well; however for small dense
problems, they can perform poorly.

The quadratic nature of the objective function and the constraints of problem (1) im-
plies that we can use semidefinite relaxations of problem (1) to get tight bounds (see,
e.g., [Shor 1987; Goemans and Williamson 1995; Poljak et al. 1995; Lemaréchal and
Oustry 1999]). Currently, there are three types of semidefinite-based solvers for binary
quadratic problems. The first type is semidefinite branch-and-bound methods special-
ized for solving specific subclasses of problems (1), such as the semidefinite solver
of [Armbruster et al. 2012] for graph bisection problems, and the Biq Mac solver of
[Rendl et al. 2010] for the Max-Cut problem (2). The second type of semidefinite-based
solvers is the quadratic convex reformulation for mixed-integer quadratic problems
[Billionnet and Elloumi 2007; Billionnet et al. 2009; Galli and Letchford 2014] which
uses semidefinite bounds at the root node to give a boost to linear programming based
branch-and-bound methods.

The third type of semidefinite-based solvers are standard branch-and-bound meth-
ods replacing linear programming solvers with semidefinite programming solvers,
such as SCIP-SDP [Mars 2013; Gally et al. 2016]. SCIP-SDP solves general mixed-
integer semidefinite programming (MISDP) problems, which implies that it is able to
solve generic binary quadratic problems after making a suitable transformation of the
problem to an MISDP. SCIP-SDP uses a standard branch-and-bound approach where
bounds are obtained by solving the SDP relaxation that is obtained by simply relaxing
the integer constraints—this SDP relaxation is then solved by a standard SDP solver,
such as an interior-point method. SCIP-SDP must use several safe-guards against fail-
ures to solve the SDP relaxation due to the loss of strict feasibility that can occur when
branching, and is limited to solving only small to medium sized problems.

1.3. BiqCrunch, a free solver for binary quadratic problems
In this article, we introduce BiqCrunch, an open-source code for solving binary
quadratic optimization problems to optimality. BiqCrunch is a branch-and-bound al-
gorithm using generic or specific heuristics to compute lower-bounds and an original
adaptive bounding procedure to compute upper-bounds. The bounding procedure au-
tomatically adjusts several parameters to efficiently produce a wide range of tightness
levels from rough bounds to tight semidefinite-quality bounds.

BiqCrunch is of particular interest for solving hard problems which are very difficult
to solve using linear-bounds. BiqCrunch therefore complements the currently available
software packages mentioned in the previous section. Generally speaking, the set of
problems for which linear-bounds underperform are the problems best-suited for the
BiqCrunch solver. Compared to other semidefinite-based solvers, BiqCrunch offers a
flexible and efficient bounding procedure that can produce a range of bounds with a
varying degree of tightness.

The BiqCrunch solver is available as:

— an open-source code for solving problem (1);
— specific versions of the software for different standard combinatorial problems;
— a simple online interface.

The BiqCrunch solver is written in C (and uses a Fortran library). The distribution
also includes converters and heuristics written in C and Python. The code is developed
using established numerical tools, namely: basic linear algebra functions in LAPACK
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[Anderson et al. 1999] or the Intel Math Kernel Library (MKL), the nonlinear op-
timization routine L-BFGS-B [Zhu et al. 1997; Morales and Nocedal 2011], and the
branch-and-bound platform BOB [Le Cun et al. 1995].

We have conducted extensive computational tests on classical NP-hard combinato-
rial problems, known to be difficult to solve even for many medium-sized instances.
Results on Max-Cut and Max-k-Cluster are available in [Krislock et al. 2014] and
[Krislock et al. 2016], respectively, and the BiqCrunch website reports the latest re-
sults available on other problems. These computational results provide strong evidence
that BiqCrunch is among the best solvers for solving to optimality combinatorial op-
timization problems that can be formulated using quadratic terms. For example, for
Max-Cut, BiqCrunch (or more precisely its precursor code) has been compared to the
state-of-the-art Biq Mac solver, and has been shown to have a more efficient bound-
ing procedure (in that it attains tighter upper bounds in much less time; see [Krislock
et al. 2014, Fig.1]) and to be more robust to solve problems exactly (see [Krislock et al.
2014, Fig.2]).

1.4. Outline of the paper
The goal of this paper is to accompany the public release of the BiqCrunch code by
providing a complete description of the solver and how to use it.

We first present some basic information and examples on how to use BiqCrunch in
Section 2; a complete description is available in the user manual that is distributed
with BiqCrunch. The mathematical foundations of BiqCrunch are presented in Sec-
tion 3 where we will recall the standard strengthened semidefinite bounds for prob-
lem (1) and, motivated by the desire to have semidefinite quality bounds without
the inherent computational cost of the standard bounds, we will describe the origi-
nal semidefinite bounds that are used in BiqCrunch. The two main algorithmic in-
gredients are then described in Section 4: the generic heuristic for computing feasible
solutions (i.e., lower bounds) and the efficient procedure for computing upper bounds.
In addition, we provide an analysis of the theoretical convergence of the semidefinite
bounding procedure. Finally, in Section 5, we discuss the parameters of the code and
the advanced use of BiqCrunch.

2. BIQCRUNCH IN PRACTICE, EXAMPLES, ILLUSTRATIONS
The latest version of the BiqCrunch code is available from the BiqCrunch webpage.
Installation instructions are included with the source code. We have made the instal-
lation straightforward, only requiring a C compiler, a Fortran compiler, and either
LAPACK or the Intel MKL.

Once BiqCrunch has been installed, it can be run from the command-line as follows.

$ biqcrunch [-v 1] <INSTANCE> <PARAMETERS>

The optional parameter -v is the verbosity; <INSTANCE> is the input file in the
BiqCrunch format; <PARAMETERS> is a parameters file which can be one of the files
provided with the code, or a user’s own file.

This section provides some information about the format of the input file (in Sec-
tion 2.1) and examples on how to use BiqCrunch (in Sections 2.2 and 2.3). We refer to
the user manual for complete information on installing and running BiqCrunch, and
to Section 5 for a discussion of the parameters.

2.1. Matrix formulation and input file format
We describe briefly here the matrix formulation of the binary quadratic problem (1)
on which the BiqCrunch input file format is based. First we introduce the usual in-
ner product of two matrices and the associated norm (sometimes called the Frobenius
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norm), respectively defined by

〈X,Y 〉 = trace(XTY ) =
∑
ij

XijYij and ‖X‖F =
√
〈X,X〉 =

√∑
ij

X2
ij .

Since zTSiz = 〈Si, zzT 〉, this inner product allows us to rewrite the quadratic terms
zTSiz + sTi z of problem (1) as linear terms 〈Qi, Z〉 where

Z =

[
zzT z
zT 1

]
and Qi =

[
Si

1
2si

1
2s
T
i 0

]
.

Thus, the binary quadratic problem (1) can be reformulated as:
maximize 〈Q0, Z〉
subject to 〈Qi, Z〉 ≤ ai, i ∈ {1, . . . ,mI}

〈Qi, Z〉 = ai, i ∈ {mI + 1, . . . ,mI +mE}

Z =

[
zzT z
zT 1

]
, z ∈ {0, 1}n .

(5)

Note that the objective function and the constraints are now linear with respect to Z,
and that the only non-convexity of the problem lies in the form of Z, which is a rank-
one matrix with 0–1 entries.

BiqCrunch requires the objective value of (5) to be integer for any feasible solution.
This corresponds to having integers on the diagonal of Q0 and integers divided by two
on the off-diagonal entries ofQ0. BiqCrunch takes advantage of this feature by pruning
the branch-and-bound search tree when the computed bound is strictly less than β+1,
where β is the objective value of the current best feasible solution; see Section 4.1. To
use BiqCrunch with fractional data, one should first multiply the coefficients by the
smallest common denominator to make them integers.

The matrix formulation in problem (5) is used in the input format of the solver. The
BiqCrunch format is similar to the widely used sparse SDPA format in semidefinite
optimization; see [Yamashita et al. 2012]. Roughly speaking, it consists of specifying
general parameters (m, n, type of constraints, etc.) and describing the matrices Qi in a
sparse matrix format. The BiqCrunch solver stores the input problem matrices in this
sparse format in memory to keep its memory requirements small. The main difference
between the BiqCrunch format and the sparse SDPA format is that the first line of a
BiqCrunch input file indicates if the problem is a maximization problem (using +1) or
a minimization problem (using −1). Moreover the BiqCrunch format uses a block of
size n + 1 to represent the positive semidefinite matrix and a diagonal block of slack
variables (for inequality constraints). The BiqCrunch file format is fully described and
illustrated in the user manual. We also give an example in the next section.

To write a BiqCrunch file, a user would need to have a good understanding of the
SDP relaxation and how to write it in SDPA format. This was a major barrier to being
able to use BiqCrunch before we created an lp2bc converter. To simplify the use of
BiqCrunch, we provide two types of converters to the BiqCrunch format:

(1) A converter from the so-called LP format to the BiqCrunch format: lp2bc.
(2) Specific converters for each problem class; for example mc2bc to convert Max-Cut

problems and kc2bc to convert Max-k-Cluster problems.

These conversion tools are described in the user manual. In the next two sections, we
give examples of the use of BiqCrunch to solve a generic problem specified in the LP
format, and a Max-Cut problem specified in a standard sparse format.

Let us emphasize that BiqCrunch works directly on problem (5) given by theQi’s and
ai’s. This is in contrast with CPLEX (version 12.1) and Gurobi (version 5.6), which both
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preprocess the entries and in particular convexify binary quadratic problems to work
with positive semidefinite matrices. Such automatic reformulations or convexifications
are not always efficient as they can negatively affect the solution process. (Smarter
convexifications use semidefinite optimization, as exploited in [Billionnet and Elloumi
2007; Billionnet et al. 2009]). In BiqCrunch there is no reformulation phase and no
data preprocessing phase. The user has complete control over the problem and the
way it is modeled. We give some advice on how to enhance the problem formulation in
Section 5.3.

2.2. Example with the LP converter
We give an illustration of running BiqCrunch on a simple test problem, using the con-
verter from the human-readable LP format of IBM/CPLEX to the BiqCrunch format.
Consider the binary quadratic problemmaximize z1z2 + 2z1z3

subject to z1 + z2 + z3 ≤ 2
(z1, z2, z3) ∈ {0, 1}3

whose optimal solution is (1, 0, 1). We describe this problem in the LP format as a file
called example.lp containing the following lines:

maximize
z1*z2 + 2 z1*z3

subject to
z1 + z2 + z3 <= 2

binary
z1 z2 z3

end

The lp2bc converter is called by the command line

$ lp2bc.py example.lp > example.bc

and generates the following file in BiqCrunch format1:

# List of binary variables:
# 1: z1
# 2: z2
# 3: z3
1 = max problem
1 = number of constraints
2 = number of blocks
4, -1
2.0
0 1 1 2 0.5
0 1 1 3 1.0
1 1 1 4 0.5
1 1 2 4 0.5
1 1 3 4 0.5
1 2 1 1 1.0

1 The BiqCrunch format is similar to the sparse SDPA format and defines the problem by specifying the
coefficient matrices Qi, which constraints are inequalities, and the right-hand-side values ai of all the con-
straints. For a complete description of the BiqCrunch format, see the BiqCrunch User’s Guide which is
available on the BiqCrunch website.
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We solve now the problem using BiqCrunch (with default parameters) by executing

$ biqcrunch example.bc generic.param

We obtain the following command-line output:

Output file: example.bc.output
Input file: example.bc
Parameter file: generic.param
Node 0 Feasible solution 2
Nodes = 1
Root node bound = 2.84
Maximum value = 2
Solution = { 1 3 }
CPU time = 0.0074 s

This output reports the result of running of BiqCrunch on this instance. At the root
node of the branch-and-bound search tree, the computed bound is 2.84, and, since the
optimal value is integer, this gives an effective upper-bound of 2. The generated so-
lution was z1 = z3 = 1 and z2 = 0 with objective value 2, which proves that it is an
optimal solution. Thus there was only one node in the branch-and-bound search. More
detailed output information is given in the output file.

2.3. Example with the Max-Cut converter
We give an illustration of using BiqCrunch to solve a Max-Cut problem on a simple
graph, using the converter mc2bc to create a BiqCrunch input file from a graph file. Let
us consider the following graph, drawn in the figure and described in a file graph.txt.
The first line of graph.txt records the number of nodes and number of edges in the
graph and the following lines record the list of edges, each written as the triple i j wij .
Note that each edge in this graph has a weight of 1.

7 12
1 2 1
1 3 1
1 5 1
2 5 1
2 6 1
3 4 1
3 5 1
3 6 1
4 6 1
4 7 1
5 6 1
6 7 1

1

2
3

4

5
6

7

Using the mc2bc converter, we compute a maximal cut for this graph using BiqCrunch
as follows:

$ mc2bc.py graph.txt > maxcut.bc
$ biqcrunch maxcut.bc maxcut.param

BiqCrunch returns the following output giving us a maximum cut which we have rep-
resented in the figure. The nine edges between the black nodes and the white nodes
are a maximal cut.
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Output file: maxcut.bc.output
Input file: maxcut.bc
Parameter file: maxcut.param
Node 0 Feasible solution 9
Nodes = 1
Root node bound = 9.91
Maximum value = 9
Solution = { 1 4 5 6 }
CPU time = 0.0075 s

1

2
3

4

5
6

7

3. MATHEMATICAL FOUNDATIONS OF BIQCRUNCH
In this section, we give a theoretical description of the bounds used by BiqCrunch. We
start by recalling some basic facts about semidefinite bounds in Section 3.1, then we
present the special semidefinite bounds used by BiqCrunch in Section 3.2.

We refer the interested reader to the books [Saigal et al. 2000] and [Anjos and
Lasserre 2012] for more information, including historical perspectives, about semidef-
inite programming in the context of combinatorial optimization.

3.1. Semidefinite relaxation
We first introduce some notation and briefly describe the standard semidefinite bound
for the binary quadratic problem (1) written as its matrix form as problem (5). The
presentation of bounds in the next section becomes more straightforward when the
problem is reformulated using {−1, 1} variables. We apply the change of variables be-
tween z ∈ {0, 1}n and x ∈ {−1, 1}n defined by z = 1

2 (x + e), where e is the vector of all
ones. This can be written as[

z
1

]
= U

[
x
1

]
with U =

[
1
2In

1
2e

0 1

]
and therefore, in the matrix formulation (5)

Z = UXUT where X =

[
xxT x
xT 1

]
.

Since U is invertible, this transformation works the opposite way as well. Observe now
that the binary constraints xi ∈ {−1, 1} (or x2i = 1) can be formulated as diag(xxT ) = e.
A formulation in {−1, 1} variables of problem (5) is

maximize 〈UTQ0U,X〉
subject to 〈UTQiU,X〉 ≤ ai, i ∈ {1, . . . ,mI}

〈UTQiU,X〉 = ai, i ∈ {mI + 1, . . . ,mI +mE}
diag(X) = e

X =

[
xxT x
xT 1

]
.

(6)

In BiqCrunch, the matrices UTQiU are formed directly fromQi when reading the data,
without explicitly forming the matrix U .

Let us now simplify notation by introducing a ∈ RmI , b ∈ RmE+n+1 and the two
mappings

A : Sn+1 → RmI and B : Sn+1 → RmE+n+1

to gather all the inequality constraints of problem (6) as A(X) ≤ a and all the equality
constraints as B(X) = b (those defined by UTQiU together with the diagonal con-
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straints). Defining Q = UTQ0U , problem (1) can be written as the following optimiza-
tion problem with respect to X positive semidefinite (denoted X � 0) and rank-one:

maximize 〈Q,X〉
subject to A(X) ≤ a

B(X) = b
X � 0
rank(X) = 1.

(7)

The basic semidefinite relaxation of this problem is then obtained by dropping the
rank-one constraint on X: 

maximize 〈Q,X〉
subject to A(X) ≤ a

B(X) = b
X � 0.

(8)

Since problem (1) is equivalent to problem (7), the optimal value of problem (8) provides
an upper bound on the optimal value of problem (1). As in linear programming, we can
further tighten the bound by adding valid inequalities to problem (7) before relaxing.
There exist many problem-dependent or generic inequality families in our framework;
see, e.g., the textbook [Deza and Laurent 1997] or early references as [Barahona et al.
1989; Helmberg and Rendl 1998].

In BiqCrunch, we use the triangle inequalities, defined for 1 ≤ i < j < k ≤ n+ 1 by

Xij +Xik +Xjk ≥ −1,

Xij −Xik −Xjk ≥ −1,

−Xij +Xik −Xjk ≥ −1,

−Xij −Xik +Xjk ≥ −1.

These inequalities correspond to the fact that for x ∈ {−1, 1}n+1, it is not possible to
have exactly one of three products {xixj , xixk, xjxk} equal to −1, nor is it possible to
have all three of the products equal to −1. These inequalities are particularly inter-
esting in our framework, for two reasons. There are 4

(
n+1
3

)
of them, which is large but

still manageable. Given X, we can evaluate all of them and efficiently find the most vi-
olated ones. Moreover, they are known to give good results for semidefinite relaxations
in general (see, e.g., [Helmberg and Rendl 1998; Roupin 2004; Armbruster et al. 2012]).

Ideally we would like to add all the triangle inequalities to problem (8) to get the
tightest possible bound of this type. However, the cost of doing so is very high, so the
relaxation incorporating all the triangle inequalities is rarely used (see, e.g., the nu-
merical comparisons of [Roupin 2004]). In BiqCrunch we iteratively identify a subset
of useful inequalities, as in [Rendl et al. 2010]. The idea is to select the most promis-
ing active inequalities using the current approximate solution. The management of
inequalities will be precisely described in Algorithm 2.

For a subset of triangle inequalities I, we let AI : Sn → R|I| be the corresponding
linear function describing the inequalities in this subset. We end up with the following
strengthened SDP relaxation of problem (1):

(SDPI)


maximize 〈Q,X〉
subject to A(X) ≤ a

B(X) = b
AI(X) ≥ −e
X � 0.

(9)
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Note that the maximum is finite and attained if the problem is feasible. This follows
from the fact the feasible set is included in the set of correlation matrices (X � 0 and
diag(X) = e) which is well-known to be compact (see, e.g., [Malick 2007, Theorem 1] or
more complete studies as [Laurent and Poljak 1995; Laurent and Poljak 1996]).

3.2. BiqCrunch adjustable semidefinite bounds
In this section, we define and sketch the main properties of the semidefinite bounds
that are used by BiqCrunch. We refer to [Malick and Roupin 2013] for the background,
the motivation and the theory behind the family of adjustable semidefinite bounds.

Recall that the nonnegative part X+ of a symmetric matrix X is computable via an
eigenvalue decomposition X = V Diag(σ)V T (with the vector of eigenvalues σ ∈ Rn,
and an orthogonal matrix V ∈ Rn×n) by

X+ = V Diag(max{σ, 0})V T .
Note that X+ is the orthogonal projection of X onto the set of positive semidefinite
matrices [Higham 1988]. The nonpositive part X− is defined similarly. We will need
the following property:

〈X,X+〉 = ‖X+‖2F . (10)

Let I be a set of inequalities and define Ω := RmI
+ × RmE+n+1 × R|I|+ . For any dual

variables (λ, µ, ν) ∈ Ω, we define the positive semidefinite matrix

XI(λ, µ, ν) := [Q−A∗(λ)−B∗(µ) +A∗I(ν)]+ (11)

whereA∗,B∗, andA∗I are the adjoints of the linear operatorsA,B, andAI representing
the constraints. For example, for λ ∈ RmI ,

A∗(λ) =

mI∑
i=1

λiU
TQiU.

Furthermore, for a parameter α > 0, we introduce the function FαI (λ, µ, ν) defined for
(λ, µ, ν) ∈ Ω by

FαI (λ, µ, ν) :=
1

2α
‖XI(λ, µ, ν)‖2F + aTλ+ bTµ+ eT ν +

α

2
(n+ 1)2. (12)

Up to a change of sign and a slight change of notation, FαI corresponds to the function Θ
in [Malick and Roupin 2013]. Using the current notation, Theorem 3 of [Malick and
Roupin 2013] reads as follows.

THEOREM 3.1. For a set of inequalities I, a parameter α > 0, and any (λ, µ, ν) ∈ Ω,
we have that FαI (λ, µ, ν) is an upper bound on the optimal value of the semidefinite
relaxation (9) and therefore on the optimal value of the binary quadratic problem (1).

The question now is how to choose parameters to get these bounds FαI (λ, µ, ν) as
tight as possible. For fixed α and I, the tightest bounds can be obtained by minimizing
FαI over (λ, µ, ν) ∈ Ω. The smoothness of FαI is the key property that allows it to be
efficiently minimized. Theorem 2 of [Malick and Roupin 2013] states that the function
FαI is convex and differentiable on Ω, and we have explicit expressions of its partial
gradients. In particular, if X = 1

αXI(λ, µ, ν), then we have

∇λFαI (λ, µ, ν) = a−A (X) ,

∇µFαI (λ, µ, ν) = b−B (X) , (13)
∇νFαI (λ, µ, ν) = e+AI (X) .
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Thus, we can minimize FαI using any first-order optimization algorithm that can han-
dle nonnegativity constraints. We could also use the so-called second-order semismooth
Newton method [Qi and Sun 1993] since it is possible to show that ∇FαI is semismooth
using properties of the projection [·]+ (see, e.g., [Bolte et al. 2008; Hiriart-Urruty and
Malick 2012]).

For its simplicity and robustness, BiqCrunch uses a quasi-Newton method (more
specifically, a projected BFGS with Wolfe line-search), which lies between first-order
and second-order methods. The properties guaranteeing convergence (see, e.g., [Bon-
nans et al. 2003, Theorem 4.9]) hold here, as FαI is convex and differentiable with
Lipschitz gradient.

LEMMA 3.2. For given α and I, the gradient ∇FαI , as an operator from Ω to
RmI+mE+n+1, is Lipschitz continuous with Lipschitz constant L/α, where L is a con-
stant that depends on the norms of A, B and AI and their adjoints.

PROOF. We will use the standard inner product norms for each space with the as-
sociated operator norm (that is the largest singular value of the operator); all these
norms are denoted ‖·‖. Consider (λ, µ, ν) and (λ′, µ′, ν′) in Ω, and let X = XI(λ, µ, ν)
and X ′ = XI(λ′, µ′, ν′). Observe by equation (13) that we have

∇FαI (λ, µ, ν)−∇FαI (λ′, µ′, ν′) =
1

α

(
A (X −X ′) +B (X −X ′) +AI (X −X ′)

)
which yields, with the constant N = max {‖A‖, ‖B‖, ‖AI‖},

‖∇FαI (λ, µ, ν)−∇FαI (λ′, µ′, ν′)‖ ≤ 3N

α
‖X −X ′‖ . (14)

From [Hiriart-Urruty and Lemaréchal 2001, Eq. (3.1.6)], we have

‖X −X ′‖ ≤ ‖A∗(λ− λ′) +B∗(µ− µ′) +A∗I(ν − ν′)‖ .
Using the fact that (u+ v + w)2 ≤ 3(u2 + v2 + w2) for all u, v, w ∈ R, we have

‖X −X ′‖2 ≤ 3
(
‖A∗‖2 ‖λ− λ′‖2 + ‖B∗‖2 ‖µ− µ′‖2 + ‖A∗I‖

2 ‖ν − ν′‖2
)

≤ 3N2 ‖(λ, µ, ν)− (λ′, µ′, ν′)‖2 ,
since the operators and their adjoints have the same norm. Combining this with equa-
tion (14), we end up with

‖∇FαI (λ, µ, ν)−∇FαI (λ′, µ′, ν′)‖ ≤ 3
√

3N2

α
‖(λ, µ, ν)− (λ′, µ′, ν′)‖ ,

which is the desired inequality with L = 3
√

3N2.

In addition to minimizing FαI for fixed α and I, we have two ways to get tighter
bounds. Firstly, adding violated triangle inequalities to I enlarges the space Ω which
allows us to further minimize FαI . Secondly, decreasing the parameter α also yields
tighter bounds. Theorem 4 of [Malick and Roupin 2013] shows that α controls the
tightness of the bound, in that smaller values of α give tighter bounds. In practice,
special attention should be paid to decreasing α, since Lemma 3.2 relates α to the
smoothness of FαI , indicating that when α is small, the gradient can have a sharp
behavior, and therefore minimizing FαI could become ill-conditioned.

The semidefinite bounding procedure presented in the next section efficiently com-
bines these three levers (minimizing FαI , adding inequalities, and decreasing α). Its
convergence analysis is studied in Section 4.4. Later in Section 5.1, practical advice is
given on how to adjust key parameters to compute bounds efficiently (with a good ratio
of tightness to computing time).
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4. ALGORITHMIC DESCRIPTION OF BIQCRUNCH
BiqCrunch is a branch-and-bound algorithm, implemented using the branch-and-
bound platform BOB [Le Cun et al. 1995] which automatically handles the manage-
ment of subproblems. The BOB platform only requires the following functionalities to
be implemented:

(1) a bounding procedure (producing an upper bound),
(2) a heuristic for generating a feasible solution (producing a lower bound),
(3) a method for generating subproblems (branching).

In this section, we provide details about how each of these are implemented in
BiqCrunch. We consider the binary quadratic subproblem of the current node of the
branch-and-bound tree (with a slight abuse of notation, we consider it to be problem (1)
and use the same notation as before). At iteration k of the bounding procedure, the al-
gorithm brackets the optimal value as

βk ≤ optimal value of the binary quadratic problem ≤ Fk, (15)

where βk is the best lower bound given by the heuristics (described in Section 4.2), and
Fk is the upper bound of the bounding procedure (described in Section 4.1). Using the
fact that we know that the optimal value of problem (1) is integer, we have that

if Fk < βk + 1, then we prune the node of the branch-and-bound tree, (16)

since all feasible solutions of the subproblem have an objective value no better than βk.
If this is not the case, we need to explore the branch-and-bound tree further. The differ-
ent branching strategies that are available in BiqCrunch are described in Section 4.3.
Finally, Section 4.4 provides a theoretical analysis of the convergence of our semidefi-
nite bounding procedure.

4.1. Semidefinite bounding procedure
We first turn our attention to the bounding procedure used by BiqCrunch and its com-
putational aspects. We start by emphasizing that no SDP problem is solved during the
bounding procedure, which is a major difference compared to semidefinite-based pro-
cedures used by other software packages, such as Biq Mac or SCIP-SDP. Our bounding
procedure can be very fast to run if the node is easy to prune, but is also able to provide
tighter more expensive bounds if necessary.

The key numerical ingredient of the bounding procedure of BiqCrunch is the al-
gorithm that minimizes the bounding function (12) for a given set of inequalities I
and a given tightness parameter α. We use the projected quasi-Newton software L-
BFGS-B [Zhu et al. 1997; Morales and Nocedal 2011] (with default parameters, ex-
cept for nitermax, minNiter, and maxNiter; see Section 5.1). The quasi-Newton solver
calls a subroutine that computes the value of the bounding function (12) and its gra-
dient (13) at the current point (λ, µ, ν). This computation boils down to the compu-
tation of XI(λ, µ, ν) as defined in equation (11), which, in turn, reduces to comput-
ing the positive eigenvalues and corresponding eigenvectors of the symmetric matrix
[Q−A∗(λ)−B∗(µ) +A∗I(ν)] for which we use the routine DSYEVR of the package MKL
(or LAPACK, if MKL is not available). Note that the eigendecomposition computed here is
also used in the heuristic for computing feasible solutions (see Section 4.2).

The semidefinite bounding procedure of BiqCrunch is described in Algorithm 1.
Given a set of inequalities Ik−1 and tightness parameter αk, BiqCrunch runs a quasi-
Newton algorithm on Fαk

Ik−1
: it is warm-started from the previous (λk−1, µk−1, νk−1) and
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ALGORITHM 1: Semidefinite bounding algorithm of BiqCrunch
Data: alpha0 > 0; tol0 > 0; 0 < scaleAlpha, scaleTol < 1.
Initialize parameters: k ← 1, β1 ← −∞, ε1 ← tol0, α1 ← alpha0.
Initialize variables: I0 ← ∅, λ0 ← 0 ∈ RmE+n+1, µ0 ← 0 ∈ RmI , F0 ← +∞.

while Fk ≥ βk + 1 do
Minimize the function Fαk

Ik−1
using a quasi-Newton method:

Starting from (λk−1, µk−1, νk−1), compute (λk, µk, ν̂k) such that (17) holds.

if withCuts then
Run inequality update subroutine to get Ik (and associated multipliers νk).

end

Update the upper bound: Fk ← F
αk
Ik−1

(λk, µk, ν̂k) = F
αk
Ik (λk, µk, νk).

Update the lower bound: run the heuristic in Algorithm 3 to get β, and update
βk ← max{βk−1, β}

if Card(Ik − Ik−1) ≤ minCuts or αk has not changed for maxNAiter iterations then
αk+1 ← max{minAlpha, scaleAlpha · αk}, εk+1 ← max{minTol, scaleTol · εk}

else
αk+1 ← αk, εk+1 ← εk

end
k ← k + 1;

end
Run the heuristic in Algorithm 3.

it computes a solution (λk, µk, ν̂k) of `∞-tolerance εk:

max

{∥∥∥[a−A (Xk)
]
−

∥∥∥
∞
,
∥∥∥b−B (Xk)

∥∥∥
∞
,
∥∥∥[e+AI (Xk)

]
−

∥∥∥
∞

}
< εk, (17)

where Xk = 1
αk
XIk−1

(λk, µk, ν̂k). We stop the bounding procedure when the value of the
bound is less than βk + 1; in practice, we also stop it when it is likely that a bound
less than βk + 1 is not attainable within a reasonable amount of time. It is important
to note that the bounding procedure may be stopped anytime and will return a valid
upper-bound for problem (1) (by Theorem 3.1).

The remainder of the bounding procedure consists of updating parameters. Algo-
rithm 1 interlaces the decrease of αk and εk with the management of the set of inequal-
ities Ik (by Algorithm 2 that we describe below). The idea is to reduce the tightness
parameter αk when we can no longer make good progress by adding inequalities. We
reduce αk and εk when the number of violated triangle inequalities is lower than the
threshold minCuts, or when they have not been reduced for maxNAiter iterations.

Having a lot of enforced inequalities is both good and bad: the more inequalities the
better the bound, but on the other hand it increases the number of dual variables that
must be optimized over in the quasi-Newton method. BiqCrunch updates the set of en-
forced inequalities by Algorithm 2. First, it gets rid of εk-inactive triangle inequalities
for Xk (i.e., the indices i such that (ν̂k)i is zero and Ai(Xk) + 1 > εk). Second, it adds
a predefined number of the most violated inequalities to improve the bound as quickly
as possible. Once the set Ik is updated, Algorithm 2 generates νk such that

Xk =
1

αk
XIk(λk, µk, νk)

and

Fk = Fαk

Ik (λk, µk, νk) =
αk
2
‖Xk‖2 + aTλk + bTµk + eT νk +

αk
2

(n+ 1)2. (18)
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ALGORITHM 2: Inequality update subroutine of the bounding procedure
Data: (at iteration k of the bounding procedure) Ik−1, ν̂k, Xk, εk and Xk−1

Remove the triangle inequalities that are not εk-active:

I−k−1 ← {i ∈ Ik−1 : (ν̂k)i = 0 and Ai(Xk) + 1 > εk } .
Add the most-violated triangle inequalities:

Let i1, . . . , i` be the indices i 6∈ Ik−1 such that Ai(Xk) + 1 ≤ gapCuts < 0, ordered
such that Ai1(Xk) ≤ · · · ≤ Ai`(Xk). Let

I+k−1 ← {i1, . . . , iK} , where K = min{`, cuts}.

Update the set of inequalities: Ik ←
(
Ik−1 \ I−k−1

)
∪ I+k−1.

Initialize the multipliers for added inequalities to zero:

for each i ∈ Ik, (νk)i ←

{
(ν̂k)i if i ∈ Ik−1,

0 if i 6∈ Ik−1.

4.2. Heuristics: options and generic semidefinite heuristic
BiqCrunch uses heuristics for generating feasible solutions for problem (1). The best
feasible solution found provides the lower bound βk in (15). This lower bound is used
to prune parts of the branch-and-bound search tree according to the rule (16).

BiqCrunch allows the use of three types of heuristics:

(1) root-node heuristic (called once before starting the branch-and-bound method),
(2) bound heuristic (called each iteration of the bounding procedure),
(3) node heuristic (called at the end of bounding procedure).

These three type of heuristics can all be the same or be completely different; they
can also depend on the type of problem that is being solved. We include several spe-
cific heuristics in the BiqCrunch release for Max-Cut, Max-k-cluster, and Maximum-
Independent-Set. Users can also specify their own heuristics for their problems of in-
terest as explained in Section 5.2. By default, the generic BiqCrunch solver uses an
empty heuristic for the root-node heuristic and a semidefinite heuristic for both the
bound heuristic and the node heuristic.

The generic semidefinite heuristic of BiqCrunch is presented in Algorithm 3. It is
based on the celebrated Goemans-Williamson heuristic for Max-Cut [Goemans and
Williamson 1995] using randomly generated hyperplans and a factorization of the op-
timal semidefinite solution computed by the bounding procedure, called X̂ here. From a
factorization X̂ = WWT with W ∈ R(p+1)×m and a random unit vector v ∈ Rm, a {0, 1}-
vector z is generated from the sign of the inner-product of v with the ith row of W . Then
the feasibility of this {0, 1}-vector z for problem (1) is tested. The best lower bound is
updated if z is both feasible and improves the objective value. Note that, contrary to
[Goemans and Williamson 1995], we do not need to compute a Cholesky factorization
of X̂, since a factorization is already available from the bounding procedure (which
computes an eigendecomposition of the matrix, see Section 4.1). Since this process is
computationally inexpensive, this is repeated for several random v and different z.

At the end of the semidefinite heuristic, we also add a simple “1-opt” local-search.
This local-search routine returns a solution that is locally optimal, in the sense that
changing any variable from zero to one, or from one to zero, does not result in a better
feasible solution. Note that for some problems (Max-k-Cluster for example), this local-
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search does not make sense since it cannot produce feasible points; in this case, a
parameter local search allows us to disable it.

ALGORITHM 3: Generic semidefinite heuristic for finding feasible solutions

Data: a positive semidefinite matrix X =WWT , a vector ẑ ∈ {0, 1}n and its objective value β
for many iterations do

Generate a random unit vector v
for i = 1, . . . , n do

if zi is a fixed variable then
zi ← fixed value of zi

else

zi ←

{
0, if vT rowi(W ) < 0

1, otherwise
end

end
Test of improvement:
if z is feasible for problem (1) and zTS0z + sT0 z > β then

ẑ ← z and β ← zTS0z + sT0 z
end

end
if ẑ is feasible for problem (1) then

while ẑ is not locally optimal do
ẑ ← a strictly better local solution

end
end

4.3. Branching strategies
BiqCrunch provides three branching strategies, each of which can be selected by
changing the value of the parameter branchingStrategy in the input parameter file.
The branching rule uses the optimal semidefinite solution given by the semidefinite
bounding procedure, as follows. First we extract the last column x̂ of X̂ and define
ẑ = 1

2 (x̂ + e). Then we choose a variable zi to branch on, using one of the following
three strategies:

(1) least-fractional: a variable zi for which ẑi is furthest from 1
2 is selected;

(2) most-fractional: a variable zi for which ẑi is closest to 1
2 is selected;

(3) closest-to-one: a variable zi for which ẑi is closest to 1 is selected.

The most-fractional branching strategy is used as the default in BiqCrunch.
Branching on variable zi creates two new subproblems, one where zi is fixed to 0 and

the other where zi is fixed to 1. These subproblems correspond to nodes in the branch-
and-bound search tree. When branching occurs, two nodes are created and added to
this search tree. The BOB branch-and-bound platform [Le Cun et al. 1995] automat-
ically selects the subproblem having the weakest bound to be the next subproblem to
branch on; in the case of a tie, BOB selects the subproblem that is lower in the search
tree (i.e., having more variables fixed); if the subproblem is already near the bottom of
the search tree (i.e., where all variables are fixed), BOB switches to a depth-first-search
traversal of that subtree.
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4.4. Convergence of the semidefinite bounding procedure
In this section, we study the theoretical convergence of Algorithm 1, the semidefinite
bounding procedure of BiqCrunch. We assume that it runs an infinite number of it-
erations: more precisely, we set maxNIter = +∞, minAlpha = 0, minTol = 0, and we
suppose that β is small enough that the loop will not stop. In this case, the two tight-
ness parameters vanish (αk → 0 and εk → 0 ). In addition, since the number of sets
of inequalities is finite, there exists a set of inequalities I that is visited an infinite
number of times. With this setting, the following theorem shows that the bounds Fk
converge (Property (i) ) and that we know the limit (Property (ii) ), under a technical
boundedness assumption. This result is related to Theorem 4 of [Malick and Roupin
2013] (which is a theoretical convergence of ideal bounds under a strict feasibility as-
sumption) and Theorem 1 of [Krislock et al. 2014] (which is a similar result for the
specific version of BiqCrunch for Max-Cut).

THEOREM 4.1. Let (Xk, λk, µk, νk, Ik, Fk)k be the sequence of iterates generated by
the bounding algorithm. Let I be a set of inequalities such that there exist infinitely
many Ik = I. Assume that the feasible set of the binary quadratic optimization prob-
lem (1) in nonempty, so that there exists an optimal solution to (1). Then the following
properties hold:

(i) The sequence of the bounds (Fk)k converges to F̄ , which is a bound for the optimal
value of (9), and a subsequence of the primal iterates (Xk)k converges to X̄, which is
feasible for (9).

(ii) If moreover the sequence of dual variables (λk, µk, νk)k is bounded, then F̄ is the
optimal value of (9), and X̄ is an optimal solution of (9).

PROOF. The assumption that the feasible set of the initial problem (1) is nonempty
yields that the feasible sets of its reformulations (6) and (7) and its relaxations (8)
and (9) are nonempty as well. For this proof, we denote byK the (infinite) set of indexes
such that Ik = I for k ∈ K.

Let us start the proof of Property (i) by noting that, from (17), the diagonal entries
of Xk for all k are bounded by ε1:

‖e− diag(Xk)‖∞ ≤ ‖b−B(Xk)‖∞ < εk ≤ ε1 for all k. (19)

Since Xk � 0, the determinant of its submatrix with indices {i, j} is nonnegative:

det

(
(Xk)ii (Xk)ij
(Xk)ij (Xk)jj

)
= (Xk)ii(Xk)jj − (Xk)2ij ≥ 0.

By (19), the diagonal entries (Xk)ii and (Xk)jj lie between [1− ε1, 1 + ε1], and therefore
we have (Xk)2ij ≤ (1 + ε1)2. The norm of Xk is thus bounded:

‖Xk‖2F =
∑

(Xk)2ij ≤ (1 + ε1)2(n+ 1)2 for all k. (20)

The boundedness of the subsequence (Xk)k∈K implies that we can further extract a
converging subsequence; we denote its limit by X̄. The closedness of the set of positive
semidefinite matrices yields that X̄ � 0. Notice also that (17) implies B

(
X̄
)
− b = 0,

[A
(
X̄
)
− a]− = 0, and [e + AI

(
X̄
)
]− = 0, since εk → 0. Thus we have that the limit

matrix X̄ is feasible for (9).
Let us now turn to the other part of Property (i), that (Fk)k converges to a bound

of (9). Fix k; we are going to show first that Fk+1 cannot be significantly larger than
Fk. Start by observing in Algorithm 2 that we have Fk+1 = F

αk+1

Ik (λk+1, µk+1, ν̂k+1),
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by definition of νk and Ik. This implies that Fk+1 ≤ F
αk+1

Ik (λk, µk, νk), since the quasi-
Newton algorithm with Wolfe line-search can only decrease the objective value (see
[Bonnans et al. 2003, Chap.1]). Using the definition (12) of the bounds, we then write

Fk+1 ≤
1

αk+1
‖XIk(λk, µk, νk)‖2 /2 + aTλk + bTµk + eT νk + αk+1(n+ 1)2/2

= Fαk

Ik (λk, µk, νk) +

(
1

αk+1
− 1

αk

)
‖XIk(λk, µk, νk)‖2 /2 + (αk+1 − αk)(n+ 1)2/2

= Fk +

(
α2
k

αk+1
− αk

)
‖Xk‖2 /2 + (αk+1 − αk)(n+ 1)2/2

If αk+1 = αk, this inequality is simply Fk+1 ≤ Fk. If αk+1 = scaleAlpha · αk, this reads

Fk+1 ≤ Fk +
αk
2

(1− scaleAlpha)

scaleAlpha

(
‖Xk‖2 − scaleAlpha(n+ 1)2

)
.

In both cases, this yields, using again (20),

Fk+1 ≤ Fk + Cαk with C =
1

2

(1− scaleAlpha)

scaleAlpha
(n+ 1)2

(
(1 + ε1)2 − scaleAlpha

)
> 0.

(21)
This bound on the growth of Fk enables us to argue, as follows, that the sequence
converges. Let us repeat the above bounding for ` > k: let k1, . . . , kp be the p indices
k ≤ ki < k+ ` such that αki+1 = scaleAlpha ·αki ; from repeated application of inequal-
ity (21), and using the fact that Fk+1 ≤ Fk when αk+1 = αk, we obtain

Fk+` ≤ Fk + C
(
αk1 + αk2 + · · ·+ αkp

)
= Fk + C

(
αk + scaleAlpha · αk + · · ·+ scaleAlphap−1 · αk

)
≤ Fk + C

(
1

1− scaleAlpha

)
αk.

Taking ` → +∞ and then k → +∞ above, we get lim supk→+∞ Fk ≤ lim infk→+∞ Fk,
hence the sequence (Fk)k converges; let us call its limit F̄ .

Recall now that Theorem 3.1 implies that Fk, for all k ∈ K, is an upper bound for (9)
(since Ik = I for k ∈ K). Since F̄ is obviously also the limit of the subsequence (Fk)k∈K ,
F̄ is an upper bound for (9) as well. Thus we have Property (i):

〈Q, X̄〉 ≤ the optimal value of (9) ≤ F̄ . (22)

We prove now Property (ii). We start by observing that, for a given k, we have by (10)

〈Q−A∗(λk)−B∗(µk) +A∗I(νk), Xk〉 = αk ‖Xk‖2

which in turn yields

〈Q,Xk〉 = αk ‖Xk‖2 + 〈A∗(λk), Xk〉+ 〈B∗(µk), Xk〉 − 〈A∗I(νk), Xk〉
= αk ‖Xk‖2 + λTkA(Xk) + µTkB(Xk)− νTk AI(Xk).

Combining this equation with (18), we get

Fk−〈Q,Xk〉 =
αk
2

((n+ 1)2−‖Xk‖2) +λTk (a−A(Xk)) +µTk (b−B(Xk)) + νTk (e+AI(Xk)).

(23)
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Notice that the three inner products in the above equation can be bounded with (17)
as follows:

|λTk (a−A(Xk))| ≤ ‖λk‖ εk, |µTk (b−B(Xk))| ≤ ‖µk‖ εk, and |νTk (e+AI(Xk))| ≤ ‖νk‖ εk.
We use now the additional assumption that the sequence (λk, µk, νk)k is bounded and
we conclude that the three terms vanish when k → +∞. Recall (20) which implies that
the term αk

2 ((n+ 1)2 − ‖Xk‖2) also goes to zero when k → +∞. Therefore, we can pass
to the limit in (23) when k → +∞ with k ∈ K and we get F̄ = 〈Q, X̄〉. Therefore, by
equation (22), F̄ is the optimal value of (9) and X̄ is optimal.

Property (ii) of this theorem says that, under a boundedness assumption, the bound-
ing procedure eventually solves the SDP relaxation (9) as Fk approximates the optimal
value andXk approximates an optimal solution. Thus this result theoretically supports
what we observe in practice: once a “good” set of inequalities is “identified,” the algo-
rithm solves the corresponding SDP relaxation. However, the bounding procedure is
not meant to be just another SDP solver: it combines fast initial iterations (αk large
for small k) and the ability to gain more and more tightness (αk small for large k). The
bounding procedure is therefore primarily designed to compute efficient bounds inside
a branch-and-bound routine; solving the SDP relaxation to optimality is not necessary.

It turns out that the bounding procedure has good observed convergence and returns
high-quality bounds within a reasonable amount of time. For the numerical illustra-
tions, we refer to experiments with specialized versions of BiqCrunch for Max-Cut in
[Krislock et al. 2014] and for Max-k-Cluster in [Krislock et al. 2016].

5. IMPROVING THE PERFORMANCE OF BIQCRUNCH
As described in the previous section, BiqCrunch can theoretically solve any binary
quadratic problem. In practice we can improve the performance of BiqCrunch for spe-
cific problems by:

(1) adjusting the parameters of BiqCrunch,
(2) providing specific heuristics to produce better feasible solutions,
(3) strengthening the problem formulation to obtain better upper bounds.

In the BiqCrunch package, we have provided different versions of BiqCrunch, each of
which has been adapted to solve specific problems with tailored heuristics and param-
eter files. In the rest of this section we discuss each of the above three items.

5.1. BiqCrunch parameters
The parameters of BiqCrunch are listed in Table I. These parameters are specified in
a biq crunch.param file that must be provided when running the solver. BiqCrunch
provides parameter files with the default parameters, as well as parameter files that
have been adjusted for Max-Cut, Max-k-Cluster, and Max-Independent-Set.

For most problems, these parameters do not need to be modified. Nevertheless, some
of them are crucial to the performance of BiqCrunch for specific instances. The most
important parameter is alpha0 which determines the initial value of αk in Algorithm 1.
For problems that do not require a semidefinite approach to obtain good bounds (for
instance when linear programming relaxations are known to be efficient), alpha0 could
be set to a higher value to reduce the computing time when evaluating each node. For
more difficult problems (when weak relaxations are not efficient), alpha0 should be set
to a lower value to have tighter initial bounds when evaluating each node.

The gapCuts and cuts parameters are also important since they can be adjusted
to find the right trade-off between adding too many or too few cuts. Typically, we
want to avoid adding many cuts that are only violated by a small amount. By default
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Table I. BiqCrunch main parameters

parameter definition / role default value
alpha0 initial value of α 1e-1
scaleAlpha scaling value of α 0.5
minAlpha minimum value of α 5e-5
tol0 initial value of tolerance ε for L-BFGS-B 1e-1
scaleTol scaling value of tolerance ε for L-BFGS-B 0.95
minTol minimum value of the tolerance ε for L-BFGS-B 1e-2
nitermax maximum number of iterations per call of L-BFGS-B 2000
minNiter minimum number of L-BFGS-B calls 12
maxNiter maximum number of L-BFGS-B calls 100
maxNAiter maximum number of L-BFGS-B calls with fixed α 50
withCuts use the triangle inequalities 1
gapCuts minimum violation of added cuts (inequalities) -5e-2
cuts maximum number of cuts to add per iteration 500
minCuts minimum number of violated cuts to reduce α and ε 50
scaling pre-scale the constraints 1
heur 1 use the root-node heuristic 1
heur 2 use the bound heuristic 1
heur 3 use the node heuristic 1
seed random number generator seed 2016
local search use the local search 1

0: Branch on least-fractional variable
branchingStrategy 1: Branch on most-fractional variable 1

2: Branch on variable that is closest to one
root just evaluate root node (no branch-and-bound) 0
time limit limit on computing time (in seconds) 0 (i.e., no time limit)
soln value provided user is providing a known feasible solution value 0
soln value the value of a known feasible solution 0

BiqCrunch only adds at most cuts = 500 triangle inequalities each iteration that each
have a violation of at most gapCuts = −0.05.

We recommend to users who are looking for better performance to adjust the three
key parameters (alpha0, gapCuts, and cuts) in the following way: set the “root” param-
eter to 1 and use the verbose command-line option (“-v 1”), then do tests with different
instances of your problem and inspect the output files. A useful rule of thumb is that
if the values of the parameters nitermax or cuts are reached when evaluating the root
node then the three key parameters should be adjusted accordingly.

5.2. Problem-specific heuristics
The generic heuristic (described in Section 4.2) can be substituted with heuris-
tics tailored for specific problems. In the BiqCrunch directory, there are sev-
eral “problems/<PROBLEM>” folders for different optimization problems, and a
“problems/user” directory where users can create their own heuristics. For a new
heuristic to be called by BiqCrunch, one just has to create a directory in the problems/
directory that contains their heur.c file; upon compiling BiqCrunch, a biqcrunch exe-
cutable will be created in the location of the heur.c file. An example heur.c is given in
the problems/user directory.

5.3. Strengthening bounds with additional constraints
BiqCrunch does not perform any reformulation or preprocessing of the input prob-
lem. The user has complete control over the formulation of their problem. This allows
users to try different formulations of the same problem, such as adding redundant
constraints to strengthen the semidefinite relaxation and obtain tighter bounds.

Adding linear or quadratic constraints that are redundant for the binary quadratic
problem (1) does not change its set of optimal solutions, nor its optimal value, but may

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:20 N. Krislock et al.

result in tighter bounds. This is because, with each additional constraint the space
of dual multipliers Ω increases, resulting in possibly smaller upper bounds of prob-
lem (1). In this section, we discuss a set of strengthening constraints that we recom-
mend adding to the formulation of a problem to be solved by BiqCrunch.

Suppose problem (1) has a linear constraint sT z = a. For instance, the
∑n
i=1 zi = k

constraint in the Max-k-Cluster problem is an example of such a linear constraint. The
product constraints are the valid quadratic constraints generated from sT z = a:

zis
T z − zia = 0, i = 1, . . . , n.

Introducing quadratic constraints by multiplication is a well-known technique; see
[Sherali and Adams 1990] for the general approach and [Lovász and Schrijver 1991] for
the semidefinite case. It was shown [Faye and Roupin 2007] that adding any number of
redundant quadratic constraints results in semidefinite bounds that are never better
than the one obtained by adding these product constraints (see also [Helmberg et al.
2000] for an early study of this question). These product constraints therefore form an
optimal set of redundant quadratic constraints.

In practice, adding these constraints to the formulation of problem (1) often signifi-
cantly improves the tightness of the bounds computed by BiqCrunch and reduces the
overall computing time. As an illustration, we consider solving a problem with n = 20
binary variables, a random quadratic objective function, and the cardinality constraint∑n
i=1 zi = 10. First we solve the problem without the product constraints.

$ tools/lp2bc.py randprob.lp > randprob.bc
$ problems/generic/biqcrunch randprob.bc biq_crunch.param
Output file: randprob.bc.output
Input file: randprob.bc
Parameter file: biq_crunch.param
Node 0 Feasible solution 30
Node 1 Feasible solution 95
Node 1 Feasible solution 108
Node 2 Feasible solution 109
Nodes = 27
Root node bound = 113.54
Maximum value = 109
Solution = { 2 3 4 5 8 11 12 13 14 19 }
CPU time = 0.2050 s

Next we solve the same problem after having added the product constraints.

$ tools/lp2bc.py randprob_prod.lp > randprob_prod.bc
$ problems/generic/biqcrunch randprob_prod.bc biq_crunch.param
Output file: randprob_prod.bc.output
Input file: randprob_prod.bc
Parameter file: biq_crunch.param
Node 0 Feasible solution 30
Node 1 Feasible solution 109
Nodes = 1
Root node bound = 109.96
Maximum value = 109
Solution = { 2 3 4 5 8 11 12 13 14 19 }
CPU time = 0.0169 s

We notice that the root node bound is much tighter with the product constraints. In
this case, the root node bound was tight enough to be able to solve the problem without
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branching. On the other hand, without the product constraints, 27 nodes of the branch-
and-bound search tree are visited before solving the problem. Including such product
constraints often significantly improves the performance of BiqCrunch.

6. CONCLUSION
In this paper, we have introduced BiqCrunch, an exact solver for general binary
quadratic problems. The main feature of BiqCrunch is its ability to dynamically set
the tightness of its bounding procedure (node by node), using adjustable semidefinite
bounds. The bounding procedure automatically adjusts from cheap/poor bounds to ex-
pensive/good bounds as needed.

Since BiqCrunch uses high-quality bounds, the number of nodes visited throughout
the branch-and-bound process is relatively small. Thus, BiqCrunch can perform well
on problems which are difficult to solve by methods based on linear bounds. BiqCrunch
complements other exact methods by expanding on the types of problems that we
can now efficiently solve. BiqCrunch also complements heuristic methods by provid-
ing tight bounds that give an accurate measure of the suboptimality of the solutions
generated by such methods. BiqCrunch can also benefit from high-quality heuristic so-
lutions since having such solutions can further reduce the number branch-and-bound
nodes visited.

The source code for BiqCrunch is now publicly available. We hope it is a valuable
resource to those interested in solving binary quadratic problems. With feedback from
the community, we look forward to continuing to improve the code and expanding the
range of problems that can be efficiently solved by BiqCrunch. In particular, we aim at
exploiting structural properties of the problems and reducing the cost induced by the
eigenvalue decompositions computed during the bounding procedure.
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