
HAL Id: hal-01486214
https://hal.science/hal-01486214

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delaying decisions in variable concern hierarchies
Jörg Kienzle, Gunter Mussbacher, Philippe Collet, Omar Alam

To cite this version:
Jörg Kienzle, Gunter Mussbacher, Philippe Collet, Omar Alam. Delaying decisions in variable concern
hierarchies. 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, Oct 2016, Amsterdam, Netherlands. �10.1145/2993236.2993246�. �hal-01486214�

https://hal.science/hal-01486214
https://hal.archives-ouvertes.fr

Delaying Decisions in Variable Concern Hierarchies

Jörg Kienzle
Gunter Mussbacher

McGill University, Montreal, Canada
{Joerg.Kienzle |

Gunter.Mussbacher}@mcgill.ca

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
Philippe.Collet@unice.fr

Omar Alam
Trent University,

Peterborough, Canada
omaralam@trentu.ca

Abstract
Concern-Oriented Reuse (CORE) proposes a new way of
structuring model-driven software development, where mod-
els of the system are modularized by domains of abstraction
within units of reuse called concerns. Within a CORE con-
cern, models are further decomposed and modularized by
features. This paper extends CORE with a technique that
enables developers of high-level concerns to reuse lower-
level concerns without unnecessarily committing to a spe-
cific feature selection. The developer can select the func-
tionality that is minimally needed to continue development,
and reexpose relevant alternative lower-level features of the
reused concern in the reusing concern’s interface. This effec-
tively delays decision making about alternative functionality
until the higher-level reuse context, where more detailed re-
quirements are known and further decisions can be made.
The paper describes the algorithms for composing the vari-
ation (i.e., feature and impact models), customization, and
usage interfaces of a concern, as well as the concern’s real-
ization models and finally an entire concern hierarchy, as is
necessary to support delayed decision making in CORE. The
approach is evaluated on a crisis management case study.

1. Introduction
Every decision made during software development, from
high-level, architectural choices down to platform-specific
implementation choices, determines how well the software
complies with the requirements it was initially set out to
fulfill. This situation is complicated further because require-
ments often change. Non-functional requirements are often
not known until the execution platform has been determined,
and can vary drastically depending on last-minute imple-
mentation choices. In the context of Software Product Line
(SPL) development [23], different products might have to

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright © ACM [to be supplied]. . . $15.00

adhere to different non-functional requirements. Finally, for
adaptive systems, the changing context in which the software
operates imposes different requirements as well.

The problem of incomplete or varying requirements is
accentuated further in the context of software reuse [18;
19]. The goal of a reusable entity is to be reused multiple
times in different contexts [28]. For reusable entities that
are provided as part of a library, the contexts in which they
are going to be used are typically not known in advance.
Hence the precise requirements for the entity, in particular
the non-functional ones, are unknown or variable at best.
Therefore, following some previous works on variability
and composition [15; 27; 28], we advocate that a versatile
reusable entity should be designed in such a way that it
encapsulates several functional and implementation variants.
This would allow a developer to choose the variant that best
fits the specific functional and non-functional requirements
of the context in which the reusable entity is being reused.

Unfortunately, even if a reusable entity has been designed
to enable adaptation of the encapsulated functionality to any
context of reuse imaginable, the entity’s reuse potential is
still limited if the decision to use a specific variant of the
reusable entity needs to be made prematurely. This is, e.g.,
the case with variable components [27], where a component
must be completely configured to be reused. However, de-
termining the best variant of a reusable entity is only possi-
ble when all requirements are known. This is far from be-
ing the case when developing a piece of software that is it-
self reusable, since again it is not known in what context the
reusable entity will be used in the future. Therefore, not all
decisions required to reuse a variant should be made when
the entity is reused. To maximize reuse, we need to allow a
developer of a reusable entity to delay decision making with-
out holding up development when reusing other entities until
additional requirements for decision making are known.

In this paper, we propose an approach for delaying deci-
sions during software development that enables this reuse
potential. The approach combines ideas from variability
modelling and configuration, model-driven engineering, and
advanced separation of concerns, and internally relies heav-
ily on software composition to incrementally generate more
specific versions of the reusable entities whenever additional

decisions are made. Concretely, we show how we integrated
support for delayed decision making into Concern-Oriented
Reuse (CORE) [2], and present, based on well-defined inter-
faces, the composition algorithms required for incrementally
adapting reusable entities as additional decisions are made.

The outline of the paper is as follows. Section 2 illustrates
the idea of delayed decision on a running example, while
introducing the main concepts of CORE and positioning the
proposed approach with respect to the main areas of related
work. Section 3 details the different composition algorithms
used to support delayed decision making. Section 4 presents
reuse/decision delaying metrics gathered when designing a
case study crisis management system. Section 5 elaborates
on related work, and the last section draws the conclusions.

2. Synopsis of CORE
This section presents an overview of Concern-Oriented
Reuse (CORE) [2], a new reuse paradigm that we have ex-
tended in this paper with support for delaying decisions, and
illustrates the main concepts of CORE and the need for sup-
porting delayed decision making with a running example.

2.1 Background on CORE
In CORE, software development is structured around mod-
ules called concerns that provide a variety of reusable solu-
tions for recurring software development issues. Techniques
from Model-Driven Engineering (MDE), SPL engineering,
and software composition (in particular aspect-orientation)
allow concerns to form modular units of reuse that encapsu-
late a set of software development artifacts, i.e., models and
code, describing all properties of a domain of interest during
software development in a versatile, generic way [2]. The
models within a concern can span multiple phases of soft-
ware development and levels of abstraction (from require-
ments, analysis, architecture, and design models to code).
Concerns decompose software into reusable units according
to some points of interest [10; 21] and may have varying
scopes, e.g., encapsulating several authentication choices,
communication protocols, or design patterns.

The main premise of CORE is that recurring develop-
ment concerns are made available in a concern library, which
eventually should cover most recurring software develop-
ment needs. Similar to class libraries in modern program-
ming languages, this library should grow as new develop-
ment concerns emerge, and existing concerns should contin-
uously evolve as alternative architectural, algorithmic, and
technological solutions become available. Applications are
built by reusing existing concerns from the library when-
ever possible, following a well-defined reuse process sup-
ported by clear interfaces. The same idea is applied to the
development of concerns as well: high-level/more specific
concerns can reuse low-level/more generic concerns to real-
ize the functionalities they encapsulate. In the end, the soft-
ware architecture of software developed with CORE takes
the form of a concern hierarchy (directed, acyclic graph),
thus supporting hierarchical modularity [5].

Crisis
Management

System (CMS)

Resource
Management

Authorization
Concern

Authentication
Concern

Association
Concern

Workflow
Concern

Networking
Concern

... ...

...

...

...... Optimization
Concern

Legend
Reuse Dependency

Figure 1. Partial Concern Hierarchy of the CMS

Throughout this paper, we use a product line of crisis
management systems (CMS) as proposed in [17] to illus-
trate concern hierarchies, delaying of decisions, and com-
position algorithms that support delayed decision making.
Crisis management involves identifying, assessing, and han-
dling a crisis situation. A CMS facilitates this process by
allocating and manages resources, and providing access to
relevant information to authorized users in a timely and reli-
able manner. Figure 1 depicts parts of the concern hierarchy
of the CMS case study that is presented further in Section 4.

2.2 Running Example: Resource Management
Resource management (RM) is required in many business
applications. For example, in the CMS, resources such as
vehicles and emergency personnel need to be tracked and as-
signed to tasks, e.g., rescue missions. Because RM is a recur-
ring functionality needed in many applications, a developer
might want to design and implement the RM functionality
within a reusable artifact, i.e., within a concern. This con-
cern will have to represent the diverse usage of such a func-
tionality and to implement the needed variants internally.

Moreover, to accelerate the development of the concern,
the developer should in turn be able to reuse existing design
concerns from the concern library while tailoring them for
the specific reuse context. For example, the library provides
a concern Association whose functionality could be config-
ured and used to associate tasks with resources.

The following subsections highlight the need for delaying
decisions by means of this use case: Resource Management
reusing Association. We explain the CORE reuse process
from the perspective of the developer of RM, and in doing
so motivate the different composition algorithms that are
required to support delaying of decisions. The details of the
different algorithms are then presented in Section 3.

2.3 Capturing the Features of RM
A CORE concern organizes all relevant variations/choices
that are available for reuse in form of a feature model [14],
taking this de facto standard for variability modelling.

The feature model expresses the closed variability that
the designer of the concern encapsulated within the concern
similar to what is done in software product lines for a spe-
cific application domain. This part of the concern can be
directly related to what was proposed for variable compo-
nents [27] or more recently with variable modules [15].

Allocation Search

Association

KeyIndexed

Resource Management

Optimal

HashMap Database

Search reuses Association
 <KeyIndexed reexpose
 ThreadSafe, HashMap,
 Database>

ThreadSafe

Allocation Search

Resource Management

Optimal

a) Before Composition b) After Composition

KindLegend
: Optional
: Mandatory

: OR
: XOR

Figure 2. Resource Management Feature Model

Figure 2(a) shows the feature model for our RM concern.
The main functionality of RM is to keep track of the avail-
ability of resources. Resources can be allocated to tasks, in
which case they are marked as unavailable until they are re-
leased again. This functionality is provided in the mandatory
feature Allocation. When each resource may exhibit differ-
ent capabilities, RM offers the possibility to search for avail-
able resources with desired capabilities in the optional fea-
ture Search. An np-complete algorithm that determines the
optimal solution for assigning resources with capabilities to
tasks is provided as part of the feature Optimal.

2.4 Reusing the Association Concern
In the design/implementation (called the realization in CORE
terminology) of the different features of RM, our developer
needs to maintain data structures that associate resources
with tasks, resources with capabilities, etc. Since dealing
with such relationships is a recurring software design con-
cern, our developer browses the concern library and discov-
ers the Association concern, and decides to reuse it.

Reusing the solutions encapsulated inside a CORE con-
cern is streamlined by a well-defined reuse process that is
based on three steps: 1) choosing the desired solution among
the available alternatives (see Section 2.4.1), 2) adapting the
provided realization of the chosen solution to the specific
reuse context (see Section 2.4.2), and 3) using the chosen,
adapted realization for your own purpose (see Section 2.4.3).

2.4.1 Step 1: Choosing the Desired Variant
The developer who realizes the Allocation feature of RM first
needs to know what different solutions the Association con-
cern provides. To this aim, the developer consults the fea-
ture model of Association (left side of Figure 3), which lists
the available solutions encapsulated by Association. Further-
more, Association also provides the list of non-functional
goals that differentiate among the possible solutions (right
side of Figure 3). To determine the most appropriate solu-
tion to be reused in the context of RM, the developer inter-
acts with the variation interface of Association. Whenever
the developer selects features in the variation interface, the
developer is informed about the non-functional impacts of
his choice with the help of relative satisfaction values shown
next to the goals (e.g., 100% for Increase Performance).

It turns out that for realizing the Allocation feature of
RM, the link between Task and Resource can be realized
by any of the variants of Association. Which variant is best,

 Kind ✓

DatabaseHashSet TreeSet

 Ordered ✓

 ArrayList ✓ LinkedList HashMap

 Association ✓

ThreadSafe

Increase
Performance

Decrease
Cost

Increase Fault
Tolerance

Decrease
Memory Use

100%

100%

100%

0%Unordered KeyIndexed

Evaluation for
feature selection
ArrayList

✓ = selected

Figure 3. Variation Interface of Association

however, depends on the context in which RM is eventually
used. E.g., the choice of ArrayList would yield the best
performance and lowest memory usage of the encapsulated
variants at no cost (the resulting satisfaction values of this
choice are shown in Figure 3). However, in a multithreaded
program, a correct association solution that connects tasks
and resources must deal with concurrent access (optional
feature ThreadSafe), which impacts performance negatively,
and hence should only be chosen when necessary. Finally,
a choice of Database, while increasing cost and memory
usage and decreasing performance, would store resource
allocations persistently and hence increase fault tolerance.

Since our developer does not know whether the appli-
cations that are going to reuse RM are going to be multi-
threaded or not, or whether in their context saving cost has
higher importance than increasing fault tolerance, it is im-
possible to make the right decision at this point. With the
approach we are proposing in this paper, the developer can
now defer decisions that cannot be made at the moment of
reuse to a later time. The precise rules for deferring of deci-
sions are explained in Section 3.3. Essentially, the developer
makes the decisions that can be made at this point by a) se-
lecting features that are absolutely needed, b) de-selecting
features that cannot be applied in this reuse context, and c)
deferring any optional or alternative choices to a later point.
Without the ability to defer the reuse decision, the developer
would be forced to select a variation with limited knowledge,
making it likely that the decision turns out to be subopti-
mal when RM is reused. This clearly illustrates that some
decisions should be delayed while handling variability be-
tween reusable artifacts. This is notably not possible in vari-
able components proposed by van der Storm [27], in which
a component must be fully configured before reuse.

After the developer has made his selection (called a con-
figuration in CORE), a realization of the chosen variant is
created by composing the models encapsulated in the con-
cern that realize the selected features to yield a user-tailored
set of realization models of the concern for the specified
configuration. In our specific example, our developer would
simply select the mandatory features (Association and Kind),
and defer the decision for the remaining features. As a re-
sult, the realization models of Association and Kind are com-
posed. The algorithm that composes the realization models
of a concern according to a given configuration, taking into
account feature interactions and delayed decisions, if any, is
explained in Section 3.2 (Composing a Concern).

Variation Interface Definition: To support this first step
of the reuse process, every CORE concern provides a vari-

ation interface that expresses the closed variability offered
by the concern as in an SPL using a feature model as ex-
plained above. Additionally, the impacts of selecting a fea-
ture on non-functional goals and qualities are specified with
an impact model that is expressed using a variant of the
Goal-oriented Requirement Language (GRL) [11]. Support-
ing delayed decision making in CORE means allowing a de-
veloper to define partial configurations when reusing a con-
cern, which in turn has as a consequence that the reused con-
cern still exhibits variability. Hence, the variation interface
of the reused concern has to be composed with the varia-
tion interface of the reusing concern to allows its users to
complete the configuration. To this aim, Section 3.3 explains
how delayed decisions of reused concerns are reexposed in
the variation interface of a reusing concern by composing
the concerns’ feature models, and Section 3.4 presents de-
tails on how impacts of reused concerns are composed with
the impact model of the reusing concern.

2.4.2 Step 2: Adapting the User-Tailored Realization
The realization models encapsulated within a CORE con-
cern are written as generically as possible in order to maxi-
mize reuse. In other words, they often only partially define
structural and behavioural model elements to enable open
variability, i.e., adaptation to unforeseen contexts. Similar
to generic classes in object-orientation, developers can adapt
the functionality provided by a realization to a specific con-
text by completing the partial elements with context-specific
structure and behaviour. To do this, the developer has to cre-
ate mappings from the generic model elements of the reused
concern to model elements of the reusing concern.

For example, the customization interface of the design
class diagram realization for the variant <Association,Kind>
of Association contains two partial classes: |Data and
|Associated. Our developer proceeds by mapping them to
classes in the design class diagram that realizes Allocation
as follows: |Data → Task, |Associated → Resource.
Based on these mappings (called a customization in CORE),
the user-tailored generic realization models are adapted by
composing them with the reusing concern’s realization mod-
els. The algorithm that accomplishes this composition is
provided by the realization language (Compose Models).

Customization Interface Definition: To support this sec-
ond step of the CORE reuse process, every CORE realiza-
tion model provides a customization interface, which des-
ignates the generic, partially defined structural/behavioural
model elements that enable open variability and how many
times, minimally and maximally, these elements have to be
mapped to model elements in the reusing model. The rules
for composing customization interfaces of realization mod-
els are presented in Section 3.5.

2.4.3 Step 3: Using the Adapted Realization Models
The third and last step of the CORE reuse process is to ac-
cess the functionality, i.e., the structure and behaviour, of
the chosen, customized variant of the reused concern. In our

example, in the class diagram that realizes the feature Al-
location, thanks to the reuse of Association, the Task class
now has several public operations that can be used to add,
remove, and iterate through resource instances associ-
ated to a Task instance. It is therefore possible for our de-
veloper to design and implement, for example, an operation
allocate(Resource r) for the class Task. Allocate first
checks that the resource r is not already allocated. If not, it
sets r as allocated and then calls add, a functionality pro-
vided by the reused Association, to associate r with the task.

Thanks to the support for delaying of decisions, it was
possible for our developer to continue development, i.e., in
our case continue to design the functionality of Allocation,
although the decision of which realization eventually will
implement the association between tasks and resources has
not been made yet.

Usage Interface Definition: To support this third step of
the CORE reuse process, every CORE realization model
must provide a usage interface that designates the realiza-
tion model elements that can be accessed by the context in
which the concern is reused. Any realization model element
that has its visibility set to public is part of the usage inter-
face and can therefore be used. Other model elements remain
encapsulated within the concern. The rules for composing
usage interfaces are presented in Section 3.6.

2.5 Finalizing Delayed Decisions for Association
At some point during development, there will be additional
information available to complete decisions about optional
or alternative features that have been delayed at the moment
of reuse. For example, in our case, the realization of the
Search feature of the RM concern requires an association
between resources and tasks that is indexed by capabilities.
If selected, the Search feature therefore makes the additional
decision to select the feature KeyIndexed from Association,
and maps |Key → Capability (see Figure 4).

Eventually, the RM concern is, for example, reused in the
context of the CMS product line. The CMS is a system that is
highly concurrent, e.g., due to the fact that multiple missions
execute concurrently. It therefore is essential that RM, which
is reused in the Vehicle & Personnel feature realization,
can handle concurrency, which means that the Association
realization must be thread safe (which can be achieved by
selecting the feature ThreadSafe). Also, fault tolerance in
the context of a CMS is more important than saving costs,
and hence the feature Database is the best realization choice.
Figure 4 illustrates the incremental decision making for the
Association concern across features and concern boundaries.

To allow the user of RM to make decisions for the features
of Association that were delayed at the moment of reuse, the
remaining variability from the variation interface of Asso-
ciation is reexposed as variants in the variation interface of
RM. The feature model composition algorithm that achieves
this is explained in Section 3.3. To enable tradeoff analysis
on the impacts that the delayed decisions have, the impact

Association Concern

Step 1
Select/Delay

Step 2
Customize

Step 3
Use

Association,Kind

KeyIndexed|Data→
Task

|Associated→
Resource

|Key→
Capability

<<call>>
add,rem

ove

<<call>>
getValues

Crisis Management System

Vehicle &
Personnel

...

CMS

...

Co
m

po
se

 C
on

ce
rn

(S
ec

tio
n

3.
2)

Association

KeyIndexed

Kind ThreadSafe

......

Co
m

po
se

 H
ie

ra
rc

hy
(S

ec
tio

n
3.

1)
Resource Management

ResMgt

Opt

Alloc Search

...,
All

oc
,S

ea
rch

,Th
rea

d-
Sa

fe,
 D

ata
ba

se
, ..

. |Resource→
Car,Em

ployee,...
|Capability→

D
river,...

|Task→
RescueM

ission,...

<<call>>

allocateResources,...

Co
m

po
se

 V
I

(F
M

 S
ec

tio
n

3.
3,

 IM
 S

ec
tio

n
3.

4)

Co
m

po
se

 C
I (

Se
ct

io
n

3.
5)

Co
m

po
se

 U
I (

Se
ct

io
n

3.
6)

Co
m

po
se

 M
od

el
s

Co
m

po
se

 M
od

el
s

Figure 4. Overview of Composition in CORE

model of Association is composed with the impact model of
RM as explained in Section 3.4.

With these interface composition mechanisms in place,
variable concern hierarchies can be built, where one con-
cern reuses another concern, which reuses another concern,
etc... Delayed decisions from a low level can be made avail-
able at a higher level. At any level, a concern user can
make additional decisions about lower-level delayed deci-
sions, i.e., make optional features mandatory when required
by the current level, or remove optional features entirely in
case the corresponding realization is incompatible with the
realization of the current level. This goes on until at some
point all delayed decisions for a given reuse have been made.
In our example, this is the case for the Association reuse

Algorithm 1 Composing a Concern Hierarchy
1: function COMPOSEHIERARCHY(c,conf,cust)
2: rmc: COREModel = composeConcern(c,conf |c)
3: for all r 2 rmc.mR do
4: confr = composeConfigurations(conf |r.reuse.rC , r.selConf)
5: custr = composeCustomizations(cust|r.reuse.rC , r.comps)
6: rmr : COREModel = composeHierarchy(r.rC, confr , custr)
7: updateUsageInterface(rmr , custr)
8: rmc = composeModels(rmc,rmr ,custr)
9: return rmc

when building a specific application such as the CMS. Now,
a complete realization can be generated by re-composing the
Association concern according to the complete configura-
tion. The same is done for all other concern reuses. Even-
tually, the final application is built by composing the appli-
cation models, the final RM, final Association, and any other
finalized realization models of reused concerns as explained
in detail in Section 3.1 (Composing a Concern Hierarchy).

The composition algorithms that come into play when
composing concern hierarchies with support for delayed de-
cision making are highlighted on the right hand side of Fig-
ure 4, and are explained in detail in the following section.

3. CORE Algorithms for Delaying Decisions
3.1 Composing a Concern Hierarchy
This subsection details the overarching composition algo-
rithm that flattens an entire concern hierarchy according to
a given configuration to generate a final realization model
where all concerns have been combined.

Figure 5 presents a simplified view of the CORE meta-
model. It clarifies the essential structure and properties of a
CORE concern related to composition, which in turn helps
to understand the description of the recursive algorithm that
flattens a concern hierarchy using a bottom-up traversal of
the reuse dependencies. For simplicity reasons, the pseu-
docode in Algorithm 1 describes how to perform the com-
position for a single type of realization model. In reality, the
composition algorithm is executed once for each type of re-
alization model used in the concern hierarchy.

We illustrate the execution of the algorithm with the sit-
uation in Figure 4 when the CMS wants to generate a final
realization model for the RM concern by calling COMPOSE-
HIERARCHY(RM ,<Alloc, Search, ThreadSafe, Database>,
{|Resource!Car,...}). As a first step (line 2), a user-tailored
realization model rm

c

corresponding to the selected features
of concern c, denoted by conf |

c

, is created by calling COM-
POSECONCERN(RM ,<Alloc,Search>) (see Algorithm 2 in
Section 3.2). The resulting model still contains reuses of
other concerns, e.g., Association. For each of the reuses,
the part of conf that relates to features of the reused con-
cern (conf |

Association

= <ThreadSafe,Database>) is com-
posed with the configuration of the reuse (<Association,
Kind, KeyIndexed>) in line 4 (see Algorithm 3 in Sec-
tion 3.3). Similarly, the customizations passed as a parameter
and the customizations of the reuse are composed (line 5)

 modelElements
0..*

1 from 1 to

realizes 0..*
0..*

selected 0..* reexposed

COREModelElementCompositioncomps
0..*

COREMapping

visibility: COREVisibilityType
partiality: COREPartialityType

COREModelElement

COREFeature

concern
public

<<enumeration>>
COREVisibilityType

COREModelComposition

 1 rC
1..*

models
COREConcern

COREFeatureModel

source
1

COREConfiguration

mR
0..*

1
featureModel

0..* realizedBy

reuses 0..* reuse 1 1 selConf

COREModel

COREReuse

mR
0..*

COREModelReuse

Figure 5. Composition in the CORE Metamodel

Algorithm 2 Composing a Concern
1: function COMPOSEMODELREUSES(r1,r2)
2: r.selConf composeConfigurations(r1.selConf, r2.selConf)
3: r.comps composeCustomizations(r1.comps, r2.comps)
4: return r

5: function COMPOSEMODELREUSESETS(R1,R2)
6: for all r2 2 R2 do
7: if 9r1 2 R1 | r1.reuse = r2.reuse then
8: r1 composeModelReuses(r1,r2)
9: else

10: R1 R1 [r2

11: return R1

12: function COMPOSECONCERN(c,conf)
13: RM: Set{COREModel} findRealizations(conf |c)
14: rmc: COREModel ;
15: for all rm 2 RM do
16: rmc composeModels(rmc,rm,;)
17: if rm.mR 6= ; then
18: rmc.mR composeModelReuseSets (rmc.mR, rm.mR)
19: return rmc

(see Algorithm 5 in Section 3.5), and then COMPOSE-
HIERARCHY is invoked recursively (line 6). The exact call
in our case would be COMPOSEHIERARCHY(Association,
<Association, Kind, KeyIndexed, ThreadSafe, Database>,
{|Data!Task, |Key!Capability, |Associated!Resource}).
Then, the usage interface of the resulting realization model
rm

Association

is updated according to information hiding
principles in line 7 (see Algorithm 6 in Section 3.6). Fi-
nally, the updated rm

Association

is composed with the user-
tailored realization model of RM rm

c

by calling COMPOSE-
MODELS, i.e., the composition algorithm provided by the
realization language (line 8).

3.2 Composing a Concern
The COMPOSECONCERN algorithm shown in Algorithm 2
generates a user-tailored realization model of a given con-
cern according to a given configuration. The algorithm first
determines the realization models that need to be composed.
In CORE, feature realizations that have no interactions with
other feature realizations are associated with a single real-
ization model (see realizedBy link in Figure 5). To handle

resolvable feature interactions, additional realization models
can be defined by the concern designer that realize multiple
features, i.e., the ones for which they resolve the interaction.
In line 13, the FINDREALIZATIONS function returns the set
of realization models RM that realize the selected features
in conf, prioritizing feature interaction models, if any.

Next, an empty realization model rm
c

is created (line 14).
Successively, all chosen feature realization models rm in
RM are composed with rm

c

using the composition algo-
rithm provided by the realization language (line 16). The
model reuses of rm

c

are then merged with the model reuses
of rm, if any (COMPOSEMODELREUSESETS in line 18).

3.3 Composing Configurations and Feature Models
When defining a CORE configuration, we took the following
considerations into account:

C1 Choosing the best variant of a reused concern is only
possible once all desired system qualities are known.
These may not be known at intermediate levels in a con-
cern hierarchy.

C2 A concern encapsulates all possible variants that can be
useful in any context. When reused in a specific context,
some variants may not be applicable.

Configuration Rules: To support C1, we allow a concern
user to specify partial configurations, i.e., to select only the
minimally required features that the reusing concern needs
from the variable features of the reused concern. To support
C2, we allow a concern user to reexpose in the variation
interface of the reusing concern the features of the reused
concern that are also alternative realizations or potentially
useful optional features in the context of the reusing concern.
Any features of a reused concern that are neither selected
nor reexposed are deemed inapplicable realizations in the
context of the reusing concern.

Configuration Verification: The following rules ensure
that the union of the selected and reexposed features consti-
tutes a valid feature selection in the classical sense:
• General Rule: All ancestor features (from the parent of

a feature to the root) of a selected or reexposed feature
must either be mandatory, selected, or reexposed.

Algorithm 3 Composing a Configuration
1: function COMPOSECONFIGURATIONS(c1,c2)
2: conf.selected c1.selected [c2.selected

3: conf.reexposed c1.reexposed \ c2.reexposed

4: return conf

Algorithm 4 Feature Model Composition Algorithm
1: procedure COMPOSEFEATUREMODELS(freusing ,FM ,conf)
2: for all fi 2 FM | fi /2 (conf.selected [conf.reexposed) do
3: remove fi from FM

4: for all fi 2 FM | fi in XOR group do
5: if fi 2 conf.selected then
6: set fi to mandatory
7: for all fi 2 FM | fi in OR group do
8: if fi 2 conf.selected then
9: set fi to mandatory

10: else if fi 2 conf.reexposed then
11: if 9f | f 2 same OR group ^f 2 conf.selected then
12: set fi to optional
13: add root of FM as mandatory subfeature of freusing

• XOR Group Rule: If the parent of an XOR group is
mandatory, selected, or reexposed, then either exactly
one feature of the XOR group must be selected, or at
least 2 features of the XOR group reexposed.

• OR Group Rule: If the parent of an OR group is manda-
tory, selected, or reexposed, then either at least one of
the features of the OR group must be selected (other
features may be additionally reexposed), or at least two
reexposed.

• Requires and Excludes Rules: A feature that is required
by a selected feature has to also be selected. A feature
that is required by a reexposed feature has to be either
selected or reexposed. A feature that is excluded by a
selected feature is neither allowed to be selected nor
reexposed. A feature that is excluded by a reexposed
feature is not allowed to be selected.

Configuration Composition Algorithm: Algorithm 3 shows
the simple algorithm that composes two configurations by
calculating the union of the selected features (line 2) and the
intersection (line 3) of the reexposed features.

Feature Model Composition Algorithm: Algorithm 4
describes how to attach to the feature f

reusing

the feature
model of a reused concern configured with conf, eliminat-
ing features that are neither selected nor reexposed and ad-
justing the XOR and OR groups of the feature model, if
necessary. Figure 2(b) shows the result of running the fea-
ture model composition algorithm for RM and Association,
where the feature Search selects KeyIndexed and reexposes
ThreadSafe, HashMap and Database.

3.4 Composing Impact Models
Impact models make it possible to compare configurations
of a concern with respect to a set of qualities. For instance,
Figure 6 shows the impact model of the Association concern
dealing with the Performance quality. Comparison against

ArrayList LinkedList

Database

HashMap HashSet

TreeSet50
1

100

85Increase Access
Performance

20200

Figure 6. Association Impact Model

Search Optimal
-9 510

Increase
Performance

Increase Access
Performance [Association]

Figure 7. Resource Management Impacts

other features is relative, e.g., the HashSet feature with con-
tribution 100 increases performance twice as much as the
HashMap feature with contribution 50.

Impact Model Composition Specification: The quality
properties of a concern depend on the design of the models
realizing its features, but also on the qualities of the realiza-
tion of reused concerns, if any. Therefore, the impact models
of the reusing concern need to be composed with those of the
reused concern. How much the qualities of the reused con-
cern affect those of the reusing concern, relatively speaking,
depends on the details of how the concern is reused. Each
quality is addressed individually.

When defining the impact model composition specifica-
tion, we took in addition to C1 and C2 mentioned in the pre-
vious subsection the following considerations into account:

C3 The qualities of the reusing concern are affected by the
qualities of the reused concerns.

C4 It must be possible to compare the results of impact
models (comparability). If the satisfaction results for a
quality in the impact models of two reused concerns are
the same value n, then the relative degree of satisfaction
for each of the two reused concerns must be the same.

C5 It must be possible to determine for a particular quality
of a reused concern whether a given set of selected fea-
tures results in the optimal or worst solution with respect
to this quality (determinability).

C4 and C5 are satisfied by following the relative comparison
scheme for contributions and by normalizing the satisfaction
results of each node of each impact model to the [0,100]
range [11]. In other words, the unifying feature across all
impact models is the fact that the best possible solution
results in a satisfaction value of 100 and the worst in 0. If this
is the case, then the designer again only needs to think about
the relative comparison of features of the reusing concern
and the respective quality goals of the reused concerns as
shown in Figure 7. In this figure, it is determined that the
realization of Search of RM contributes twice as much to
increase performance as increase access performance from
the reused Association (10 vs. 5)1. In other words, Search
contributes two thirds, and the reused concern potentially

1 Of course, when the impact model is evaluated during impact analysis,
a goal from a reused concern only contributes to the goals of the reusing
concern if the feature that reuses the concern is actually selected.

Algorithm 5 Composing Customizations
1: function COMPOSECUSTOMIZATIONS(C1,C2)
2: return C1 [C2

one third. If the reused concern contributes the best possible
performance result (i.e., its satisfaction value is 100 because
the best option is selected, i.e., ArrayList), it will contribute
the full third to the performance goal of the reusing concern
(i.e., 33 after normalization to the [0,100] range). If the
satisfaction value of the reused concern is less than 100 (e.g.,
because Database is selected instead), then the contribution
is proportionally less. Hence, continuity from the reused to
the reusing impact model is ensured.

The composition of a reused impact model with the im-
pact model of the reusing concern is hence the set of con-
tribution links including their weights that have to be added
from the reused impact model to the reusing one. In the ex-
ample in Figure 7, this set contains only one link for the
reuse of the Association concern (i.e., the link between In-
crease Access Performance [Association] and Increase Per-
formance).
Impact Model Composition: The composition algorithm
for impact models is quite straightforward. The contribution
links specified in the impact model composition specifica-
tion are created between the reused and the reusing impact
model. In turn, this causes the satisfaction results to be re-
calculated to ensure normalization [11].

3.5 Customization Interface Composition
When defining customization interface composition, the fol-
lowing consideration is important:

C6 In order to obtain an executable application, all cus-
tomization elements , i.e., any partially defined structural
and behavioural elements, must be finalized.

To satisfy C6, the customization interface of the reusing con-
cern is a union of the new customization elements introduced
by the reusing concern and the customization elements of
the reused concerns that have not been customized, i.e., that
were not mapped to specific elements in the reusing con-
cern. This makes it possible to grow or shrink the customiza-
tion interface within concern hierarchies, depending on the
intent of the developer. A “more specific” concern, for in-
stance, would abstain from introducing new customization
elements, and map some of the lower-level customization el-
ements to specific elements. The same rule also ensures that
customization elements that are part of reexposed features
of the reused concern are incorporated into the customiza-
tion interface of the reusing concern.

Therefore, the composition algorithm for composing cus-
tomizations, presented in Algorithm 5, simply creates a
union of the sets of mappings that are to be composed.

3.6 Usage Interface Composition
C7 In alignment with information hiding principles [21],

internal details of reused concerns that are irrelevant for

Algorithm 6 Updating the Usage Interface
1: procedure UPDATEUSAGEINTERFACE(rm, C)
2: for all e 2 rm.modelElements do
3: if (e.visibility = COREVisibilityType::public ^

@m | (m 2 C ^m.from = e)) then
4: e.visibility = COREVisibilityType::concern

the user should be encapsulated and hidden to reduce
complexity and minimize unnecessary dependencies.

In order to satisfy C7, information hiding principles are ap-
plied by default when composing a concern hierarchy. In
other words, the accessible structure and behaviour of the
reused concern is not automatically included in the usage in-
terface of the reusing concern, unless explicitly requested
by the developer. To do so only makes sense when the
reused concern provides functionality that the reusing con-
cern wants to offer, potentially under a different (more spe-
cific) name. For example, the getValues functionality of
the Association concern can be used as is to implement the
functionality getAssignedResources of the class Task.
Such a reexposition and renaming can be specified by the
developer using a COREMapping that maps the model el-
ement from the reused concern to a model element in the
reusing concern of the same type with a different name.

The UPDATEUSAGEINTERFACE algorithm shown in Al-
gorithm 6 implements this idea: to apply information hiding
principles, it finds all model elements in the usage interface
of a realization model (i.e., the model elements that have
a public visibility), and switches their visibility to concern,
unless the developer has provided a mapping for it.

4. bCMS Validation
To validate the proposed approach, we implemented the al-
gorithms for delaying decisions in our TouchCORE tool [24]
and applied them to the design of the bCMS case study [7],
a product line of crisis management systems. In the models
realizing the features required in [7] we made use of Aspect-
Oriented Use Case Maps (AoUCM) [20] to describe the in-
teractions of the system with its environment, and we used
Reusable Aspect Models (RAM) [16] – class diagrams and
sequence diagrams – to describe the internal design of the
bCMS backend. Within the realization, we reused a substan-
tial number of pre-existing concerns that had been defined in
previous CORE projects. Some of these concerns themselves
reuse other concerns, which creates a variable concern hier-
archy with complex concern dependencies2.

Table 1 shows reuse metrics collected during the case
study. The case study involves 102 reuses of 12 existing
concerns. The reused concerns contain a total number of 61
features that are realized by 59 workflow and design models.
The maximum depth of the concern hierarchy was 4.

Reuse of previously developed concerns suggests the ef-
fectiveness of the CORE paradigm and the proposed com-

2 The resulting bCMS models including models of all reused concerns can
be downloaded from http://www.ece.mcgill.ca/~gmussb1/bCMS/.

Concern Fe
at

ur
es

R
ea

liz
at

io
ns

(A
oU

C
M

|R
A

M
)

Po
ss

ib
le

C
on

fs
w

ith
ou

tR
ee

xp
os

in
g

Po
ss

ib
le

C
on

fs
w

ith
R

ee
xp

os
in

g

R
eu

se
s

U
ni

qu
e

C
on

fig
ur

at
io

ns

R
eu

se
d

Fe
at

ur
es

(U
ni

qu
e)

R
ee

xp
os

ed
Fe

at
ur

es
(U

ni
qu

e)

Association 12 0 | 23 224 – 38 8 76 (4) 125 (11)
Named 2 0 | 2 2 – 32 1 32 (1) 32 (1)
Singleton 2 0 | 2 2 – 11 1 9 (1) –
Copyable 3 0 | 2 2 – 3 2 6 (3) –
Networking 5 0 | 1* 4 – 7 1 7 (1) 28 (4)
Encryption 5 0 | 0* 5 – 1 1 1 (1) 4 (4)
KeyCounter 1 0 | 1 1 – 2 1 2 (1) –
Command 2 0 | 2 2 5 3 2 4 (2) –
Authentication 10 8 | 6* 20 80 1 1 2 (2) 8 (8)
RM 4 5 | 4 3 232 1 1 3 (3) 1 (1)
Authorization 3 3 | 2* 2 160 1 2 1(1) 1 (1)
Workflow 12 0 | 11 64 1040 2 2 15 (12) –
Total 60 16 | 43 – – 102 23 158 (32) 199 (27)
bCMS 19 8 | 15 384 57,016,320 – – – –

Table 1. bCMS Reuse Metrics (* , under construction)

position algorithms. All reusable concerns apart from RM
had been developed when building other applications. Some
concerns were reused multiple times, possibly with multiple
configurations resulting in a total of 158 feature reuses. The
158 feature reuses involve 32 unique reused features (i.e.,
features that are reused at least once). The most reused con-
cern is the Association concern with 38 reuses. The Named
concern allows to set and modify names and is reused 32
times. The largest concern in terms of features and realiza-
tion models is Workflow (12 features and 11 realization mod-
els), which provides an implementation of a workflow en-
gine for reactive systems.

Support for delayed decision making was very helpful
for the bCMS development. First, the concerns that reused
other concerns did not have to prematurely commit on a
specific provided solution, and we able to reexpose alter-
native solutions in their variation interface. This was the
case for Command, Authentication, RM, Authorization, and
Workflow, which as a result increased their variability signif-
icantly (see the two columns “Possible Confs without / with
Reexposing” in Table 1).

Second, it was possible to make correct/optimal realiza-
tion choices even across several levels of reuse dependen-
cies. For example, the bCMS was able to ensure correct con-
current behaviour for RM by selecting ThreadSafe as shown
in Figure 4. Similarly, it was possible to choose optimal
configurations for Networking, Association, Copyable, and
Named, that are reused in the Workflow concern, when Work-
flow in turn was reused in the context of the bCMS. The Re-
exposed Features column in Table 1 provides further quan-
titative evidence for this fact. For example, it shows that in
the 38 reuses of the Association concern a total of 125 fea-
tures were reexposed (and all of the 11 features that Associ-
ation offers were reexposed at least once), allowing for de-
layed/optimized configuration at a later point.

Third, it was possible to realize the features that sup-
port different communication protocols as requested in the

bCMS requirements document simply by reusing the Net-
working concern and reexposing the provided protocols at
the bCMS level. Finally, although not explicitly requested in
the bCMS requirements document, reexposing some features
of reused concerns at the bCMS level automatically created
further features for the bCMS product line. For example, it
made sense to delay the decisions about which authentica-
tion means to reuse (Authentication concern), and which en-
cryption technology to reuse (Encryption concern). As a re-
sult, when configuring a specific bCMS, the developer can
now choose, e.g., which authentication methods / encryp-
tion scheme to use by selecting any of the reexposed fea-
tures from Authentication / Encryption. By delaying all un-
necessary decisions, the resulting bCMS can in the end be
configured in 57,016,320 ways instead of 384.

While the TouchCORE implementation validates our al-
gorithms and the bCMS models provide evidence that delay-
ing of decisions can be useful and facilitate reuse, we have
not yet performed usability studies to evaluate whether or
not delaying of decisions is practical in real-world software
development.

5. Related Work
Variability and Modularity. Our approach is combin-
ing variability management techniques [8] and hierarchi-
cal modularity [5]. Contrary to classic SPL engineering
principles where variability and composability have to be
managed as a whole in the architecture of the SPL [6], our
concerns – which are forms of variable components – han-
dles variability in predefined domains like in product pop-
ulations with software components [28]. Similar but less
expressive approaches have been used when seeking more
flexibility in a classic SPL setting [22], or when handling
reuse in open-source communities [13]. Our contribution
differs from these propositions by being dedicated to con-
cerns and by handling definition and composition of open
variable parts in the reusable units. Our work can also been
seed as an extension of van der Storm’s proposal for variable
components [27] as his component dependencies need to be
fully configured to be reused, thus not supporting delayed
decision making as we do.

In [15], Kästner et al. propose a core calculus and C-based
implementation for variability-aware modules with variabil-
ity handling capabilities inside modules and on module inter-
faces. Our approach differs as it supports hierarchical modu-
larity [5] with concern hierarchies and as it considers the im-
pact of expressed variability on system qualities while guid-
ing configurations.

Variability Composition. Composition algorithms for
feature models have already been proposed. Acher et al. in-
troduce FAMILIAR [1], a domain-specific language that al-
lows the developer to manage several feature models, com-
pose them with different operators, and reason about their
validity. Our approach is different because the composition
of feature models of different concerns is driven by concern
reuse. Depending on the specific reuse, some features are

kept, some reexposed, and some removed. In addition, our
composition of feature models may take into account trade-
off analysis of stakeholders of the concerns when applying
more advanced goal modelling concepts to impact models.

Software Product Lines. There has been work to use
aspect-orientation in the context of SPLs [12; 29]. Voelter et
al [29], e.g., use aspect-oriented (AO) modelling techniques
to compose realizations of optional features with the realiza-
tion of the root feature using AO programming techniques.
While this approach resembles the way we compose a con-
cern’s realization models, it applies AO techniques within
a product line, and is therefore not applicable to develop-
ing partial products with open variability, and allowing re-
exposing of features. Furthermore, none of the AO/SPL ap-
proaches consider the specification of feature impacts.

Within concern hierarchies, the process of delaying deci-
sions on configurations can be seen as similar to the notion
of staged configuration in SPL [9], which breaks a global
and closed variability model into multilevel or specialized
configurable models. Our approach spreads variability in the
concern hierarchy but it remains open as it is attached to a
concern or a composition of concern. We focus on variable
reusable units while staged configuration aims more at orga-
nizing configuration times, roles, and contexts. We see the
two approaches as being complementary.

Research in Multi Product Lines (MPL) use composition
models and model interfaces to compose different interde-
pendent SPLs together. Schröter et. al. [25] provide inter-
faces for variability, modelling the syntactic, behavioural,
and non-functional levels of the development process. How-
ever, they do not provide means to develop artifacts that are
partially defined, which is supported by our approach and
identified by our customization interface.

From a different perspective, Bak et al. [3] propose
Clafer, a metamodeling language that supports expressing
feature models and metamodels, but does not explore de-
pendencies between feature models, which is important to
express concern dependencies in our approach.

Goal Modelling and SPL. Our approach uses goal mod-
els to analyze the impact of selecting features. Research in
goal-oriented SPL investigates the mapping between fea-
tures and goals in different ways. Benavides et al. [4], e.g.,
extend feature models to include non-functional qualities by
expressing relations among feature attributes. They then map
the extended feature models onto a Constraint Satisfaction
Problem (CSP) that allows some automated reasoning. How-
ever, their approach does not allow for stakeholder analysis,
expressing dependencies between non-functional features of
different feature models, or expressing relative satisfaction
values, which are possible in our impact models.

Siegmund et al. [26] present SPL Conqueror, another
approach with support for reasoning about non-functional
properties in SPLs. Their variant-wise properties require
generating variants, which is costly. SPL Conqueror is useful
to present the variability of fully developed products. A con-
cern modeller can reason about variability while developing

partially-developed products. In addition, concern depen-
dencies are not possible in the SPL Conqueror approach.

Finally, the MPL approaches described earlier [25] pro-
vide textual descriptions of non-functional impacts. Our im-
pacts are described using goal-models, which are more for-
mal and provide a concise way to express dependencies
among non-functional properties which makes tool-based
evaluation possible.

6. Conclusion and Future Work
This paper discusses how variable concern hierarchies
support delaying of decisions in the context of Concern-
Oriented Reuse (CORE). When reusing a concern, a devel-
oper decides on the reusable functionality that is minimally
needed to continue development, and reexposes relevant al-
ternatives of the reused concern in the reusing concern’s
interface, hence delaying decision making to when more
detailed requirements are known and further decisions can
be made. Variable concern hierarchies require sophisticated
software composition to incrementally generate more spe-
cific versions of the reusable concern whenever additional
decisions are made. The variation interface of a concern
needs to be composed in the concern hierarchy, along with
the models describing a concern and their customization and
usage interfaces. The algorithms required for these com-
positions are detailed in this paper, and evaluated with the
help of a crisis management case study, which shows the
occurrence of delayed decision making across concern hier-
archies and the feasibility of the proposed composition algo-
rithms in support of delayed decision making. In contrast to
other approaches, CORE advocates the use of concerns that
are reuse-centric, variable, open for adaptation, and qual-
ity impact-aware, while employing advanced separation of
concern techniques for model composition.

In future work, we will address the coordinated evalua-
tion of combinations of default configurations for improved
trade-off analysis, as well as the addition of quantitative, ab-
solute real-world measurements in impact models. We also
plan to evaluate further the practicality of composition op-
erators and decision delaying together with CORE with the
aim of defining a rigorous software development approach.
As a complementary research line, we will explore how our
form of variable component can be used in combination with
the definition of the architecture of software product lines,
mixing global closed variability elements with open variable
concerns.

References
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A

domain-specific language for large scale management of fea-
ture models. Science of Computer Programming, 78(6):657–
681, 2013.

[2] O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented
software design. In MODELS 2013, pages 604–621. Springer,
2013.

[3] K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-
models in clafer: Mixed, specialized, and coupled. In SLE’10,
pages 102–122. Springer, 2011.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
reasoning on feature models. In CAiSE’05, pages 491–503.
Springer, 2005.

[5] M. Blume and A. W. Appel. Hierarchical modularity. ACM
TOPLAS, 21(4):813–847, July 1999.

[6] J. Bosch. Design and use of software architectures: adopting
and evolving a product-line approach. Pearson Education,
2000.

[7] A. Capozucca, B. H. Cheng, G. Georg, N. Guelfi, P. Istoan,
and G. Mussbacher. Requirements Definition Document for
a Software Product Line of Car Crash Management Systems,
2011.

[8] L. Chen and M. Ali Babar. A systematic review of evaluation
of variability management approaches in software product
lines. Information and Software Technology, 53(4):344–362,
Apr. 2011.

[9] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged config-
uration through specialization and multilevel configuration of
feature models. Software Process: Improvement and Practice,
10(2):143–169, 2005.

[10] E. W. Dijkstra. A discipline of programming, volume 1.
Prentice-Hall Englewood Cliffs, 1976.

[11] M. B. Duran, G. Mussbacher, N. Thimmegowda, and J. Kien-
zle. On the reuse of goal models. In SDL 2015, volume 9369
of LNCS, pages 141–158. Springer, 2015.

[12] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Cas-
tor Filho, and F. Dantas. Evolving software product lines with
aspects: An empirical study on design stability. In ICSE’08,
pages 261–270. ACM, 2008.

[13] J. V. Gurp and C. Prehofer. From SPLs to open, compositional
platforms. In Combining the Advantages of Product Lines and
Open Source. Dagstuhl, 2008.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21, CMU, 1990.

[15] C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware
module system. In OOPSLA ’12, pages 773–792. ACM, 2012.

[16] J. Kienzle, W. Al Abed, and J. Klein. Aspect-Oriented Multi-
View Modeling. In AOSD’09, pages 87 – 98. ACM Press,
2009.

[17] J. Kienzle, N. Guelfi, and S. Mustafiz. Crisis Management
Systems: A Case Study for Aspect-Oriented Modeling. Trans-
actions on AOSD, 7:1 – 22, 2010.

[18] C. W. Krueger. Software reuse. ACM Comput. Surv., 24:131–
183, June 1992.

[19] M. D. McIlroy. Mass-produced software components. Proc.
NATO Conf. on Software Engineering, Garmisch, Germany,
1968.

[20] G. Mussbacher, D. Amyot, and J. Whittle. Composing goal
and scenario models with the aspect-oriented user require-
ments notation based on syntax and semantics. In Aspect-
Oriented Requirements Engineering, pages 77–99. Springer,
2013.

[21] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[22] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jezequel. Rec-
onciling automation and flexibility in product derivation. In
SPLC’08, pages 339–348, 2008.

[23] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.

[24] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and
G. Mussbacher. Feature modelling and traceability for
concern-driven software development with TouchCORE. In
MODULARITY Companion, pages 11–14. ACM, 2015.

[25] R. Schröter, N. Siegmund, and T. Thüm. Towards modular
analysis of multi product lines. In SPLC’13 Workshops, pages
96–99. ACM, 2013.

[26] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner,
S. Apel, and G. Saake. Spl conqueror: Toward optimization of
non-functional properties in software product lines. Software
Quality Control, 20(3-4):487–517, Sept. 2012.

[27] T. van der Storm. Variability and component composition. In
Software Reuse: Methods, Techniques and Tools, pages 157–
166. Springer, 2004.

[28] R. van Ommering. Building product populations with soft-
ware components. In ICSE’02, pages 255–265. ACM, 2002.

[29] M. Voelter and I. Groher. Product line implementation using
aspect-oriented and model-driven software development. In
SPLC’07, pages 233–242, 2007.

