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Abstract

Automatic continuous affect recognition from audiovisual cues is arguably one of the most active research areas in machine learn-
ing. In addressing this regression problem, the advantages of the models, such as the global-optimisation capability of Support
Vector Machine for Regression and the context-sensitive capability of memory-enhanced neural networks, have been frequently
explored, but in an isolated way. Motivated to leverage the individual advantages of these techniques, this paper proposes and
explores a novel framework, Strength Modelling, where two models are concatenated in a hierarchical framework. In doing this,
the strength information of the first model, as represented by its predictions, is joined with the original features, and this expanded
feature space is then utilised as the input by the successive model. A major advantage of Strength Modelling, besides its ability
to hierarchically explore the strength of different machine learning algorithms, is that it can work together with the conventional
feature- and decision-level fusion strategies for multimodal affect recognition. To highlight the effectiveness and robustness of the
proposed approach, extensive experiments have been carried out on two time- and value-continuous spontaneous emotion databases
(RECOLA and SEMAINE) using audio and video signals. The experimental results indicate that employing Strength Modelling
can deliver a significant performance improvement for both arousal and valence in the unimodal and bimodal settings. The results
further show that the proposed systems is competitive or outperform the other state-of-the-art approaches, but being with a simple
implementation.

1. Introduction

Automatic affect recognition plays an essential role in smart
conversational agent systems that aim to enable natural, intu-
itive, and friendly human–machine interaction. Early works
in this field have focused on the recognition of prototypic ex-
pressions in terms of basic emotional states, and on the data
collected in laboratory settings, where speakers either act or
are induced with predefined emotional categories and con-
tent [9, 29, 30, 47]. Recently, an increasing amount of re-
search efforts have converged into dimensional approaches for
rating naturalistic affective behaviours by continuous dimen-
sions (e. g., arousal and valence) along the time continuum from
audio, video, and music signals [8, 10, 24, 39, 46, 16, 32, 33].
This trend is partially due to the benefits of being able to en-
code small difference in affect over time and distinguish the
subtle and complex spontaneous affective states. Furthermore,
the affective computing community is moving toward combin-
ing multiple modalities (e. g., audio and video) for the analysis
and recognition of human emotion [19, 23, 34, 43, 49], owing
to (i) the easy access to various sensors like camera and mi-
crophone, and (ii) the complementary information that can be
given from different modalities.

∗corresponding author: zixing.zhang@uni-passau.de, Tel.: +49 851 509-
3359, Fax.: +49 851 509-3352

In this regard, this paper focuses on the realistic time- and
value-continuous affect (emotion) recognition from audiovisual
signals in the arousal and valence dimensional space. To handle
this regression task, a variety of models have been investigated.
For instance, Support Vector Machine for Regression (SVR)
is arguably the most frequently employed approach owing to
its mature theoretical foundation. Further, SVR is regarded as
a baseline regression approach for many continuous affective
computing tasks [27, 31, 36]. More recently, memory-enhanced
Recurrent Neural Networks (RNNs), namely Long Short-Term
Memory RNNs (LSTM-RNNs) [14], have started to receive
greater attention in the sequential pattern recognition commu-
nity [7, 26, 48, 50]. A particular advantage offered by LSTM-
RNNs is a powerful capability to learn longer-term contextual
information through the implementation of three memory gates
in the hidden neurons. Wöllmer et al. [41] was amongst the
first to apply LSTM-RNN on acoustic features for continuous
affect recognition. This technique has also been successfully
employed for other modalities (e. g., video, and physiological
signals) [2, 21, 26].

Numerous studies have been performed to compare the ad-
vantages offered by a wide range of modelling techniques,
including the aforementioned, for continuous affect recogni-
tion [21, 27, 35]. However, no clear observations can be
drawn as to the superiority of any of them. For instance, the
work in [21] compared the performance of SVR and Bidirec-
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tional LSTM-RNNs (BLSTM-RNNs) on the Sensitive Artifi-
cial Listener database [20], and the results indicate that the
latter performed better on a reduced set of 15 acoustic Low-
Level-Descriptors (LLD). However, the opposite conclusion
was drawn in [35], where SVR was shown to be superior to
LSTM-RNNs on the same database with functionals computed
over a large ensemble of LLDs. Other results in the litera-
ture confirm this inconsistent performance observation between
SVR and diverse neural networks like (B)LSTM-RNNs and
Feed-forward Neural Networks (FNNs) [27]. A possible ra-
tionale behind this is the fact that each prediction model has its
advantages and disadvantages. For example, SVRs cannot ex-
plicitly model contextual dependencies, whereas LSTM-RNNs
are highly sensitive to overfitting.

The majority of previous studies have tended to explore the
advantages (strength) of these models independently or in con-
ventional early or late fusion strategies. However, recent results
indicate that there may be significant benefits in fusing two, or
more, models in hierarchical or ordered manner [15, 18, 22].
Motivated by these initial promising results, we propose a
Strength Modelling approach, in which the strength of one
model, as represented by its predictions, is concatenated with
the original feature space which is then used as the basis for
regression analysis in a subsequent model.

The major contributions of this study include: (1) propos-
ing the novel machine learning framework of Strength Mod-
elling specifically designed to take advantage of the benefits
offered by various regression models namely SVR and LSTM-
RNNs; (2) investigating the effectiveness of Strength Mod-
elling for value- and time-continuous emotion regression on
two spontaneous multimodal affective databases (RECOLA and
SEMAINE); and (3) comprehensively analysing the robustness
of Strength Modelling by integrating the proposed framework
into frequently used multimodal fusion techniques namely early
and late fusion.

The remainder of the present article is organised as follows:
Section 2 first discusses related works; Section 3 then presents
Strength Modelling in details and briefly reviews both the SVR
and memory-enhanced RNNs; Section 4 describes the selected
spontaneous affective multimodal databases and corresponding
audio and video feature sets; Section 5 offers an extensive set
of experiments conducted to exemplify the effectiveness and
the robustness of our proposed approach; finally, Section 6
concludes this work and discusses potential avenues for future
work.

2. Related Work

In the literature for multimodal affect recognition, a number of
fusion approaches have been proposed and studied [45], with
the majority of them relevant to early (aka feature-level) or late
(aka decision-level) fusion. Early fusion is implemented by
concatenating all the features from multiple modalities into one
combined feature vector, which will then be used as the input
for a machine learning technique. The benefit of early fusion
is that, it allows a classifier to take advantage of the comple-
mentarity that exists between, for example, the audio and video

feature spaces. The empirical experiments offered in [2, 15, 26]
have shown that the early fusion strategy can deliver better re-
sults than the strategies without feature fusion.

Late fusion involves combining predictions obtained from
individual learners (models) to come up with a final predic-
tion. They normally consist of two steps: 1) generating dif-
ferent learners; and 2) combining the predictions of multiple
learners. To generate different learners, there are two primary
ways which are separately based on different modalities and
models. Modality-based ways combines the output from learn-
ers trained on different modalities. Examples of this learner
generation in the literature include [12, 15, 22, 37], where mul-
tiple SVRs or LSTM-RNNs are trained separately for different
modalities (e.g. audio, video, etc). Model-based ways, on the
other hand, aims to exploit information gained from multiple
learners trained on a single modality. For example in [25], pre-
dictions obtained by 20 different topology structures of Deep
Belief Networks (DBNs). However, due to the similarity of
characteristics of different DBNs, the predictions can not pro-
vide many variations that could be mutually complemented and
improve the system performance. To combine the predictions
of multiple learners, a straightforward way is to apply simple or
weighted averaging (or voting) approach, such as Simple Lin-
ear Regression (SLR) [36, 15]. Another common approach is
to perform stacking [44]. In doing this, all the predictions from
different learners are stacked and used as inputs of a subsequent
non-linear model (e.g., SVR, LSTM-RNN) trained to make a fi-
nal decision [25, 12, 37].

Different from these fusion strategies, our proposed Strength
Modelling paradigm operates on a single feature space. Us-
ing an initial model, it gains a set of predictions which are then
fused with the original feature set for use as a new feature space
in a subsequent model. This offers the framework a vital im-
portant advantage as the single modality setting is often faced
in affect recognition tasks, for example, if when either face or
voice samples are missing in a particular recording.

Indeed, Strength Modelling can be viewed as an interme-
diate fusion technology, which lies in the middle of the early
and late fusion stages. Strength Modelling can therefore not
only work independently of, but also be simply integrated into
early and late fusion approaches. To the best of our knowl-
edge, intermediate fusion techniques are not widely used in
the machine learning community. Hermansky et al. [13] in-
troduced a tandem structure that combines the output of a dis-
criminative trained neural nets with dynamic classifiers such as
Hidden Markov Models (HMMs), and applied it efficiently for
speech recognition. This structure was further extended into a
BLSTM-HMM [40, 42]. In this approach the BLSTM networks
provides a discrete phoneme prediction feature, together with
continuous Mel-Frequency Cepstral Coefficients (MFCCs), for
the HMMs that recognise speech.

For multimodal affect recognition, a relevant approach – Par-
allel Interacting Multiview Learning (PIML) – was proposed
in [17] for the prediction of protein sub-nuclear locations. The
approach exploits different modalities that are mutually learned
in a parallel and hierarchical way to make a final decision. Re-
ported results show that this approach is more suitable than the
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use of early fusion (merging all features). Compared to our ap-
proach, that aims at taking advantages of different models from
a same modality, the focus of PIML is rather on exploiting the
benefit from different modalities. Further, similar to early fu-
sion approaches, PIML operates under a concurrence assump-
tion of multiple modalities.

Strength Modelling is similar to the Output Associative Rel-
evance Vector Machine (OA-RVM) regression framework orig-
inally proposed in [22]. The OA-RVM framework attempts to
incorporate the contextual relationships that exist within and
between different affective dimensions and various multimodal
feature spaces, by training a secondary RVM with an initial set
of multi-dimensional output predictions (learnt using any pre-
diction scheme) concatenated with the original input features
spaces. Additionally, the OA-RVM framework also attempts to
capture the temporal dynamics by employing a sliding window
framework that incorporates both past and future initial outputs
into the new feature space. Results presented in [15] indicate
that the OA-RVM framework, is better suited to affect recog-
nition problems than both conventional early and late fusion.
Recently the OA-RVM model was extended in [18] to be mul-
tivariate, i. e., predicting multiple continuous output variables
simultaneously.

Similar to Strength Modelling, OA-RVM systems take in-
put features and output predictions into consideration to train a
subsequent regression model to perform the final affective pre-
dictions. However, the strength of the OA-RVM framework is
that it is underpinned by the RVM. Results in [15] indicate that,
the framework is not as successful when using either a SVR
or a SLR as the secondary model. Further, the OA-RVM is
non-casual and requires careful tuning to find suitable window
lengths in which to combine the initial outputs; this can take
considerable time and effort. The proposed Strength Modelling
framework, however, is designed to work with any combina-
tion of learning paradigms. Furthermore, Strength Modelling is
casual; it combines input features and predictions on a frame-
by-frame basis. This is a strong advantage over the OA-RVM in
terms of employment in real-time scenarios (beyond the scope
of this paper).

3. Strength Modelling

3.1. Strength Modelling

The proposed Strength Modelling framework for affect predic-
tion is depicted in Fig. 1. As can be seen, the first regression
model (Model1) generates the original estimate ŷt based on the
feature vector xt. Then, ŷt is concatenated with xt pair-wise as
the input of the second model (Model2) to learn the expected
prediction yt.

xt Model1 ∪ Model2 yt
ŷt [xt, ŷt]

Figure 1: Overview of the Strength Modelling framework.

To implement the Strength Modelling for these suitable com-
bination of individual models, Model1 and Model2 are trained
subsequently, in other words, Model2 takes the predictive abil-
ity of Model1 into account for training. The procedure is given
as follows:

- First, Model1 is trained with xt to obtain the prediction ŷt.
- Then, Model2 is trained with [xt, ŷt] to learn the expected

prediction yt.

Whilst the framework should work with any arbitrary mod-
elling technique we have selected two commonly used, in
the context of affect recognition, for our initial investigations,
namely the SVR and BLSTM-RNNs which are briefly reviewed
in the subsequent subsection.

3.2. Regression Models

SVR is extended from Support Vector Machine (SVM) to solve
regression problems. It was first introduced in [4] and is one of
the most dominant methods in the context of machine learning,
particularly in emotion recognition [1, 27]. Applying the SVR
for a regression task, the target is to optimise the generalisation
bounds for regression in the high-dimension feature space by
using a ε-insensitive loss function which is used to measure the
cost of the errors of the prediction. At the same time, a prede-
fined hyperparameter C is set accordingly for different cases to
balance the emphasis on the errors and the generalisation per-
formance.

Normally, the high-dimension feature space is mapped from
the initial feature space with a non-linear kernel function. How-
ever, in our study, we use a linear kernel function, as the fea-
tures in our cases (cf. Section 4.2) perform quite well for affect
prediction in the original feature space, similar to [36].

One of the most important advantages of SVR is the con-
vex optimisation function, the characteristics of which gives
the benefit that the global optimal solution can be obtained.
Moreover, SVR is learned by minimising an upper bound on
the expected risk, as opposed to the neural networks trained by
minimising the errors on all training data, which equips SVR a
superior ability to generalise [11]. For a more in-depth expla-
nation of the SVR paradigm the reader is referred to [4].

The other model utilised in our study is BLSTM-RNN which
has been successfully applied to continuous emotion predic-
tion [26] as well as for other regression tasks, such as speech
dereverberation [48] and non-linguistic vocalisations classifica-
tion [24]. In general, it is composed of one input layer, one or
multiple hidden layers, and one output layer [14]. The bidirec-
tional hidden layers separately process the input sequences in a
forward and a backward order and connect to the same output
layer which fuses them.

Compared with traditional RNNs, it introduces recurrently
connected memory blocks to replace the network neurons in the
hidden layers. Each block consists of a self-connected mem-
ory cell and three gate units, namely input, output, and for-
get gate. These three gates allow the network to learn when
to write, read, or reset the value in the memory cell. Such a
structure grants BLSTM-RNN to learn past and future context
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in both short and long range. For a more in-depth explanation
of BLSTM-RNNs the reader is referred to [14].

It is worth noting that these paradigms bring distinct sets of
advantages and disadvantages to the framework:

• The SVR model is more likely to achieve the global opti-
mal solution, but it is not context-sensitive [21];

• The BLSTM-RNN model is easily trapped in a local min-
imum which can be hardly avoided and has a risk of over-
fitting [7], while it is good at capturing the correlation be-
tween the past and the future information [21].

In this paper, Model1 and Model2 in Fig. 1 could be either
an SVR model or a BLSTM-RNN model, resulting in four pos-
sible permutations, i. e., SVR-SVR (S-S), SVR-BLSTM (S-B),
BLSTM-SVR (B-S), BLSTM-BLSTM (B-B). It is worth noting
that the B-B structure can be regarded as a variation of the neu-
ral networks in a deep structure. Note, the S-S structure is not
considered, because SVR training is achieved by solving a large
margin separator. Therefore, it is unlikely to get any advantage
in concatenating a set of SVR predictions with its feature space
for subsequent SVR based regression analysis.

3.3. Strength Modelling with Early and Late Fusion Strategies

As previously discussed (Sec. 2), the Strength Modelling
framework can be applied in both early and late fusion strate-
gies. Traditional early fusion combines multiple feature spaces
into one single set. When integrating Strength Modelling with
early fusion, the initial predictions gained from models trained
on the different feature sets are also concatenated to form a new
feature vector. The new feature vector is then used as the basis
for the final regression analysis via a subsequent model (Fig. 2).

Model1a

Model1v

Model2 ye

audio
features xa

video
features xv

Figure 2: Strength Modelling with early fusion strategy.

Strength Modelling can also be integrated with late fusion
using three different approaches, i. e., (i) modality-based, (ii)
model-based, and (iii) modality- and model-based (Fig. 3).
Modality-based fusion combines the decisions from multiple
independent modalities (i. e., audio and video in our case) with
the same regression model; whilst model-based approach fuses
the decisions from multiple different models (i. e., SVR and
BLSTM-RNN in our case) within the same modality; and
modality- and model-based approach is the combination of the
above two approaches, regardless of which modality or model
is employed. For all three techniques the fusion weights are

S M1a

S M2a

S M3a

S M1v

S M2v

S M3v

fusion yl

audio
features xa

video
features xv

Figure 3: Strength Modelling (SM) with late fusion strategy. Fused predictions
are from multiple independent modalities with the same model (denoted by
the red, green, or blue lines), multiple independent models within the same
modality (denoted by the solid or dotted lines), or the combination.

learnt using a linear regression model:

yl = ε +

N∑
i=1

γi · yi, (1)

where yi denotes the original prediction of the model i from N
available ones; ε and γi are the bias and weights estimated on
the development partition; and yl is the final prediction.

4. Selected Databases and Features

For the transparency of experiments, we utilised the widely
used multimodal continuously labelled affective databases –
RECOLA [28] and SEMAINE [20], which have been adopted
as standard databases for the AudioVisual Emotion Challenges
(AVEC) in 2015/2016 [27, 36] and in 2012 [31], respec-
tively. Both databases were designed to study socio-affective
behaviours from multimodal data.

4.1. Databases
4.1.1. RECOLA
The RECOLA database was recorded in the context of remote
collaborative work. Spontaneous interactions were collected
during resolving of a collaborative task that was performed
in dyads and remotely through video conference. The cor-
pus consists of multimodal signals, i. e., audio, video, Electro-
CardioGram (ECG), and Electro-Dermal Activity (EDA),
which were recorded continuously and synchronously from 27
French-speaking participants. It is worth to mention that, these
subjects have different mother tongues (French, Italian, and
German), which provides further diversity in the encoding of
affect. In order to ensure speaker-independence, the corpus
was equally divided into three partitions (training, development
/validation, and test), with each partition containing nine unique
recording approximately balanced for gender, age, and mother
tongue of the participants.

To annotate the corpus, value- and time-continuous dimen-
sional affect ratings in terms of arousal and valence were per-
formed by six French-speaking raters (three males and three
females) for the first five minutes of all recording sequences.
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The obtained labels were then resampled at a constant frame
rate of 40 ms, and averaged over all raters by considering inter-
evaluator agreement, to provide a ‘gold standard’ [28].

4.1.2. SEMAINE
The SEMAINE database was recorded in conversations be-
tween humans and artificially intelligent agents. In the record-
ing scenario, a user was asked to talk with four emotionally
stereotyped characters, which are even-tempered and sensible,
happy and out-going, angry and confrontational, and sad and
depressive, respectively.

For our experiments, the 24 recordings of the Solid-Sensitive
Artificial Listener (Solid-SAL) part of the database were used,
in which the characters were role-played. Each recording con-
tains approximately four character conversation sessions. This
Solid-SAL part was then equally split into three partitions: a
training, development, and test partition, resulting in 8 record-
ings and 32 sessions per partition except for the training par-
tition that contains 31 sessions. For more information on this
database, the readers are referred to [31].

All sessions were annotated in continuous time and contin-
uous value in terms of arousal and valence by two to eight
raters, with the majority annotated by six raters. Different from
RECOLA, the simple mean over the obtained labels was then
taken to provide a single label as ‘gold standard’ for each di-
mension.

4.2. Audiovisual Feature Sets

For the acoustic features, we used the openSMILE toolkit [5]
to generate 13 LLDs, i. e., 1 log energy and 12 MFCCs, with a
frame window size of 25 ms at a step size of 10 ms. Rather than
the official acoustic features, MFCCs were chosen as the LLDs
since preliminary testing (results not given) indicated that they
were more effective in association with both RECOLA [27, 36]
and SEMAINE [31]. The arithmetic mean and the coefficient
of variance were then computed over the sequential LLDs with
a window size of 8 s at a step size of 40 ms, resulting in 26 raw
features for each functional window. Note that, for SEMAINE
the window step size was set to 400 ms in order to reduce the
computational workload in the machine learning process. Thus,
the total numbers of the extracted segments of the training, de-
velopment, and test partitions were 67.5 k, 67.5 k, 67.5 k for
RECOLA, and were, respectively, 24.4 k, 21.8 k, and 19.4 k for
SEMAINE.

For the visual features, we retained the official features for
both RECOLA and SEMAINE. As to RECOLA, 49 facial land-
marks were tracked firstly, as illustrated in Fig. 4. The detected
face regions included left and right eyebrows (five points re-
spectively), the nose (nine points), the left and right eyes (six
points respectively), the outer mouth (12 points), and the inner
mouth (six points). Then, the landmarks were aligned with a
mean shape from stable points (located on the eye corners and
on the nose region).

As features for each frame, 316 features were extracted, con-
sisting of 196 features by computing the difference between the
coordinates of the aligned landmarks and those from the mean

shape and between the aligned landmark locations in the previ-
ous and the current frame, 71 ones by calculating the Euclidean
distances (L2-norm) and the angles (in radians) between the
points in three different groups, and another 49 ones by com-
puting the Euclidean distance between the median of the stable
landmarks and each aligned landmark in a video frame. For
more details on the feature extraction process the reader is re-
ferred to [27].

Again, the functionals (arithmetic mean and coefficient of
variance) were computed over the sequential 316 features
within a fixed length window (8 s) that shifted forward at a rate
of 40 ms. As a result, 632 raw features for each functional win-
dow were included in the geometric set. Feature reduction was
also conducted by applying a Principal Component Analysis
(PCA) to reduce the dimensionality of the geometric features,
retaining 95% of the variance in the original data. The final di-
mensionality of the reduced video feature set is 49. It should
be noted that a facial activity detector was used in conjunction
with the video feature extraction; video features were not ex-
tracted for the frames where no face was detected, resulting in
the number of video segments somewhat less than that of audio
segments.

As to SEMAINE, 5 908 frame-level features were provided
as the video baseline features. In this feature set, eight features
describes the position and pose of the face and eyes, and the
rest are dense local appearance descriptors. For appearance de-
scriptors, the uniform Local Binary Patterns (LBP) were used.
Specifically, the registered face region was divided into 10× 10
blocks, and the LBP operator was then applied to each block
(59 features per block) followed by concatenating features of
all blocks, resulting to another 5 900 features.

Further, to generate features on window-level, in this paper
we used the method based on max-pooling. Specifically, the
maximum of features were calculated with a window size of
8 s at a step size of 400 ms, to keep consistent with the au-
dio features. We applied PCA for feature reduction on these
window-level representations and generated 112 features, re-
taining 95% of the variance in the original data. To keep in line
with RECOLA, we selected the first 49 principal components
as the final video features.

5. Experiments and Results

This section empirically evaluates the proposed Strength Mod-
elling by large-scale experiments. We first perform Strength
Modelling for the continuous affect recognition in the unimodal
settings (cf. Sec. 5.2), i. e., audio or video. We then incorporate
it with the early (cf. Sec. 5.3) and late (cf. Sec. 5.4) fusion strate-
gies so as to investigate its robustness in the bimodal settings.

5.1. Experimental Set-ups and Evaluation Metrics

Before the learning process, mean and variance standardisa-
tion was applied to features of all partitions. Specifically, the
global means and variances were calculated from the training
set, which were then applied over the development and test sets
for online standardisation.
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Figure 4: Illustration of the facial landmark features extraction from RECOLA
database

To demonstrate the effectiveness of the strength learning, we
first carried out the baseline experiments, where the SVR or
BLSTM-RNNs models were individually trained on the modal-
ities of audio, video, or the combination, respectively. Specifi-
cally, the SVR was implemented in the LIBLINEAR toolkit [6]
with linear kernel, and trained with L2-regularised L2-loss dual
solver. The tolerance value of ε was set to be 0.1, and com-
plexity (C) of the SVR was optimised by the best performance
of the development set among [.00001, .00002, .00005, .0001,
. . . , .2, .5, 1] for each modality and task.

For the BLSTM-RNNs, two bidirectional LSTM hidden lay-
ers were chosen, with each layer consisting of the same number
of memory blocks (nodes). The number was optimised as well
by the development set for each modality and task among [20,
40, 60, 80, 100, 120]. During network training, gradient descent
was implemented with a learning rate of 10−5 and a momentum
of 0.9. Zero mean Gaussian noise with standard deviation 0.2
was added to the input activations in the training phase so as to
improve generalisation. All weights were randomly initialised
in the range from -0.1 to 0.1. Finally, the early stopping strategy
was used as no improvement of the mean square error on the
validation set has been observed during 20 epochs or the pre-
defined maximum number of training epochs (150 in our case)
has been executed. Furthermore, to accelerate the training pro-
cess, we updated the network weights after running every mini
batch of 8 sequences for computation in parallel. The training
procedure was performed with our CURRENNT toolkit [38].

Herein we adapted the following naming conventions, the
models trained with baseline approaches are referred to as indi-
vidual models, whereas the ones associated with the proposed
approaches are denoted as strength models. For the sake of a
more even performance comparison the optimised parameters
of individual models (i. e., SVR or BLSTM-RNN) were used
in the corresponding strength models (i. e., S-B, B-S, or B-B
models).

Annotation delay compensation was also performed to com-
pensate for the temporal delay between the observable cues, as
shown by the participants, and the corresponding emotion re-
ported by the annotators [19]. Similar to [15, 36], this delay

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 50  100  150  200  250  300  350  400

CCC=0.467

PCC=1.000

Figure 5: Comparison of PCC and CCC between two series. The black line
is gold standard from RECOLA database test partition, and the blue line is
generated by shifting and scaling the gold standard.

was estimated in the preliminary experiments using SVR and
by maximising the performance on the development partition,
while shifting the gold standard annotations back in time. As in
[15, 36] we identified this delay to be four seconds which was
duly compensated, by shifting the gold standard back in time
with respect to the features, in all experiments presented.

Note that all fusion experiments require concurrent initial
predictions from audio and visual modalities. However, as dis-
cussed in (Sec. 4.2), visual prediction cannot occur where a face
has not been detected. For all fusion experiments where this oc-
curred we replicated the initial corresponding audio prediction
to fill the missing video slot.

Unless otherwise stated we report the accuracy of our sys-
tems in terms of the Concordance Correlation Coefficient
(CCC) [27] metric:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2 , (2)

where ρ is the Pearson’s Correlation Coefficient (PCC) between
two time series (e. g., prediction and gold-standard); µx and µy

are the means of each time series; and σ2
x and σ2

y are the cor-
responding variances. In contrast to the PCC, CCC takes not
only the linear correlation, but also the bias and variance be-
tween the two compared series into account. As a consequence,
whereas PCC is insensitive to bias and scaling issues, CCC re-
flects those two variations. The value of CCC is in the range of
[-1, 1], where +1 represents total concordance, −1 total discor-
dance, and 0 no concordance at all. One may further note that,
it has also been successfully used as objective function to train
discriminative neural networks [39], and has been used as the
official scoring metric in the last two editions of the AVEC. We
further intuitively compared the difference between PCC and
CCC by Fig. 5. From the figure, the obtained PCC of the two
series (black and blue) is 1.000, while the obtained CCC is only
0.467 as it takes the bias of the mean and variance of the two
series into account. For continuous emotion recognition, ones
are often interested in not only the variation trend but also the
absolute value/degree of personal emotional state. Therefore,
the metric of CCC fits better for continuous emotion recogni-
tion than PCC.

In addition to CCC, results are also given in all tables in terms
of Root Mean Square Error (RMSE), a poplar metric for re-
gression tasks. To further access the significance level of per-
formance improvement, a statistical evaluation was carried out
over the whole predictions between the proposed and the base-
line approaches by means of Fisher’s r-to-z transformation [3].
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Table 1: Results based on audio features only: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual
models of SVR (S) and BLSTM-RNN (B) on the development and test partitions of RECOLA and SEMAINE databases from the audio signals. The best achieved
CCC is highlighted. The symbol of ∗ indicates the significance of the performance improvement over the related individual systems.

RECOLA SEMAINE
Audio based AROUSAL VALENCE AROUSAL VALENCE
method RMSE CCC RMSE CCC RMSE CCC RMSE CCC
a. on the development set
S .126 .714 .149 .331 .218 .399 .262 .172
B .142 .692 .117 .286 .209 .387 .261 .117
B-S .127 .713 .144 .348∗ .206 .417∗ .255 .179
S-B .122 .753∗ .113 .413∗ .210 .434∗ .262 .172
B-B .122 .755∗ .112 .476∗ .206 .417∗ .255 .178∗

b. on the test set
S .133 .605 .165 .248 .216 .397 .263 .017
B .155 .625 .119 .282 .202 .317 .256 .008
B-S .133 .606 .160 .264 .205 .332 .258 .006
S-B .133 .665∗ .117 .319∗ .203 .423∗ .262 .017
B-B .133 .666∗ .123 .364∗ .205 .332∗ .258 .006

Table 2: Results based on visual features only: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual
models of SVR (S) and BLSTM-RNN (B) on the development and test partitions of RECOLA and SEMAINE databases from the video signals. The best achieved
CCC is highlighted. The symbol of ∗ indicates the significance of the performance improvement over the related individual systems.

RECOLA SEMAINE
Video based AROUSAL VALENCE AROUSAL VALENCE
method RMSE CCC RMSE CCC RMSE CCC RMSE CCC
a. on the development set
S .197 .120 .139 .456 .249 .241 .253 .393
B .184 .287 .110 .478 .224 .232 .247 .332
B-S .183 .292 .110 .592∗ .222 .250 .252 .354
S-B .186 .350∗ .118 .510∗ .231 .291∗ .242 .405
B-B .185 .344∗ .113 .501∗ .222 .249∗ .256 .301
b. on the test set
S .186 .193 .156 .381 .279 .112 .278 .115
B .183 .193 .122 .394 .240 .112 .275 .063
B-S .176 .265∗ .130 .464∗ .235 .072 .285 .043
S-B .186 .196 .121 .477∗ .249 .125 .284 .068
B-B .197 .184 .120 .459∗ .235 .072 .255 .158∗

Unless stated otherwise, a p value less than .05 indicates signif-
icance.

5.2. Affect Recognition with Strength Modelling
Table 1 displays the results (RMSE and CCC) obtained
from the strength models and the individual models of SVR
and BLSTM-RNN on the development and test partitions of
RECOLA and SEMAINE databases from the audio. As can
be seen, the three Strength Modelling set-ups either matched
or outperformed their corresponding individual models in most
cases. This observation implies that the advantages of each
model (i. e., SVR and BLSTM-RNN) are enhanced via Strength
Modelling. In particular the performance of the BLSTM model,
for both arousal and valence, was significantly boosted by the

inclusion of SVR predictions (S-B) on the development and test
sets. We speculate this improvement could be due to the initial
SVR predictions helping the subsequent RNN avoid local min-
ima.

Similarly, the B-S combination brought additional perfor-
mance improvement for the SVR model (except the valence
case of SEMAINE), although not as obvious as for the S-
B model. Again, we speculate that the temporal information
leveraged by the BLSTM-RNN is being exploited by the suc-
cessive SVR model. The best results for both arousal and va-
lence dimensions were achieved with the framework of B-B for
RECOLA, which achieved relative gains of 6.5 % and 29.1 %
for arousal and valence respectively on the test set when com-
pared to the single BLSTM-RNN model (B). This indicates
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Figure 6: Automatic prediction of arousal via audio signals (a) and valence via video signals (b) obtained with the best settings of the strength-involved models and
individual models for a subject from the test partition on RECOLA database.

there are potential benefits for audio based affect recognition
by the deep structure formed by combining two BLSTM-RNNs
using the Strength Modelling framework. Additionally, one can
observe that there is no much performance improvement by ap-
plying Strength Modelling in the case of the valence recognition
of SEMAINE. This might be attribute to the poor performance
of the baseline systems, which can be regarded as noise and
possibly not able to provide useful information for the other
models.

The same set of experiments were also conducted on the
video feature set (Table 2). As for valence, the highest CCC
obtained on test set achieves at .477 using the S-B model for
RECOLA and at .158 using the B-B model for SEMAINE. As
expected, we observe that the models (individual or strength)
trained using only acoustic features is more efficient for inter-
preting the dimension of arousal rather than valence. Whereas,
the opposite observation is seen for models trained only on the
visual features. This finding is in agreement with similar results
in the literature [8, 10, 26].

Additionally, Strength Modelling achieved comparable or su-
perior performance to other state-of-the-art methods applied
on the RECOLA database. The OA-RVM model was used
in [15, 18], and the reported performance in terms of CCC,
with audio features on the development set, was .689 for
arousal [15], and .510 for valence using video features [18]. We
achieved .755 with audio features for arousal, and .592 with
video features for valence with the proposed Strength Mod-
elling framework, showing the interest of our method.

To further highlight advantages of Strength Modelling, Fig. 6
illustrates the automatic predictions of arousal via audio signals
(a) and valence via video signals (b) obtained with the best set-
tings of the strength models and the individual models frame by

frame for a single test subject from RECOLA. Note that, sim-
ilar plots were observed for the other subjects in the test set.
In general, the predictions generated by the proposed Strength
Modelling approach are closer to the gold standard, which con-
sequently contributes to better results in terms of CCC.

5.3. Strength Modelling Integrated with Early Fusion

Table 3 shows the performance of both the individual and
strength models integrated with the early fusion strategy. In
most cases, the performance of the individual models of ei-
ther SVR or BLSTM-RNN was significantly improved with the
fused feature vector for both arousal and valence dimensions in
comparison to the performance with the corresponding individ-
ual models trained only on the unimodal feature sets (Sec. 5.2)
in most cases for both RECOLA and SEMAINE datasets.

For the strength model systems, the early fusion B-S model
generally outperformed the equivalent SVR model, and the
structure of S-B outperformed the equivalent BLSTM model.
However, the gain obtained by Strength Modelling with the
early fused features is not as obvious as that with individual
models. This might be due to the higher dimensions of the fused
feature sets which possibly reduce the weight of the predicted
features.

5.4. Strength Modelling Integrated with Late Fusion

This section aims to explore the feasibility of integrating
Strength Modelling into three different late fusion strate-
gies: modality-based, model-based, and the combination (see
Sec. 3.3). A comparison of the performance of different fu-
sion approaches, with or without Strength Modelling, is pre-
sented in Table 4. For the systems without Strength Modelling
for RECOLA, one can observe that best individual model test
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Table 3: Early fusion results on RECOLA and SEMAINE databases: performance comparison in terms of RMSE and CCC between the strength-involved models
and the individual models of SVR (S) and BLSTM-RNN (B) with early fusion strategy on the development and test partitions of RECOLA and SEMAINE databases.
The best achieved CCC is highlighted. The symbol of ∗ indicates the significance of the performance improvement over the related individual systems.

RECOLA SEMAINE
Early Fusion AROUSAL VALENCE AROUSAL VALENCE
method RMSE CCC RMSE CCC RMSE CCC RMSE CCC
a. on the development set
S .121 .728 .113 .544 .213 .392 .252 .436
B .132 .700 .109 .513 .217 .354 .257 .205
B-S .122 .727 .118 .549 .210 .374 .239 .363
S-B .127 .712 .096 .526 .208 .423∗ .253 .397
B-B .126 .718∗ .095 .542∗ .210 .421∗ .241 .361∗

b. on the test set
S .132 .610 .139 .463 .224 .304 .292 .057
B .148 .562 .114 .476 .204 .288 .244 .127
B-S .132 .610 .121 .520∗ .204 .328∗ .264 .063
S-B .144 .616∗ .112 .473 .198 .408∗ .275 .144∗
B-B .143 .618∗ .114 .499∗ .220 .307∗ .265 .060

set performances, .625 and .394, for arousal and valence re-
spectively (Sec. 5.2) were boosted to .671 and .405 with the
modality-based late fusion approach, and to .651 and .497 with
the model-based late fusion approach. These results were fur-
ther promoted to .664 and .549 when combining the modality-
and model-based late fusion approaches. This result is in line
with other results in the literature [27, 15], and again con-
firms the importance of multimodal fusion for affect recogni-
tion. However, similar observation can only been seen on the
validation set for SEMAINE, which might be due to the huge
mismatch between the validation and test partitions.

Interestingly when incorporating Strength Modelling into
late fusion we can observe significant improvements over the
corresponding non-strength set-ups. This finding confirms the
effectiveness and the robustness of the proposed method for
multimodal continuous affect recognition. In particular, the
best test results of RECOLA, .685 and .554, were obtained by
the strength models integrated with the modality- and model-
based late fusion approach. This arousal result matches the per-
formance with the AVEC 2016 affect recognition subchallenge
baseline system, .682, which was obtained using a late fusion
strategy involving eight feature sets [36].

As for SEMAINE, although obvious performance improve-
ment can be seen on the development set, a similar observation
can not be observed on the test set. This finding is possibly at-
tributed to the mismatch between the development set and the
test set, since all parameters of the training models were opti-
mised on the development set. However, these parameters are
not fit for the test set anymore.

Further, for a comparison with the OA-RVM system, we ap-
plied the same fusion system as used in [15], with only audio
and video features. The results are shown in Table 4 and 5 for
the RECOLA and SEMAINE database, respectively. It can be
seen that, for both databases, the proposed methods outperform
the OA-RVM technique, which further confirms the efficiency

of the proposed Strength Modelling method.
In general, to provide an overview of the contributions of

Strength Modelling to the continuous emotion recognition, we
averaged the relative performance improvement of Strength
Modelling over RECOLA and SEMAINE for arousal and va-
lence recognition. The corresponding results from four cases
(i. e., audio only, video only, early fusion, and late fusion) are
displayed in Fig. 7. From the figure, one can observe an obvious
performance improvement gained by Strength Modelling, ex-
cept for the late fusion framework. This particular case is highly
attributed to the mismatch between validation and test sets of
SEMAINE as aforementioned, as all parameters of the train-
ing models were optimised on the development set. Employ-
ing some state-of-the-art generation techniques like dropout for
training neural networks might help to tackle this problem in
the future.

6. Conclusion and Future Work

This paper proposed and investigated a novel framework,
Strength Modelling, for continuous audiovisual affect recogni-
tion. Strength Modelling concatenates the strength of an initial
model, as represented by its predictions, with the original fea-
tures to form a new feature set which is then used as the basis
for regression analysis in a subsequent model.

To demonstrate the suitability of the framework, we jointly
explored the benefits from two state-of-the-art regression
models, i. e., Support Vector Regression (SVR) and Bidirec-
tional Long Short-Term Memory Recurrent Neural Network
(BLSTM-RNN), in three different Strength Modelling struc-
tures (SVR-BLSTM, BLSTM-SVR, BLSTM-BLSTM). Fur-
ther, these three structures were evaluated in both unimodal
settings, using either audio or video signals, and the bimodal
settings where early fusion and late fusion strategies were inte-
grated.
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Table 4: Late fusion results on the RECOLA database: performance comparison in terms of RMSE and CCC between the strength-involved models and the
individual models of SVR (S) and BLSTM-RNN (B) with late fusion strategies (i. e., modality-based, model-based, or the combination) on the development and
test partitions of RECOLA database. The best achieved CCC is highlighted. The symbol of ∗ indicates the significance of the performance improvement over the
related individual systems.

RECOLA
Late Fusion AROUSAL VALENCE

Dev. Test Dev. Test
fusion type RMSE CCC RMSE CCC RMSE CCC RMSE CCC
a. modality-based
A+V; S .117 .777 .134 .654 .128 .493 .149 .386
A+V; B .126 .736 .134 .671 .104 .475 .113 .405
A+V; B-S .114 .791∗ .130 .668 .090 .664∗ .105 .542∗
A+V; S-B .117 .778 .128 .681∗ .096 .586∗ .105 .495∗

A+V; B-B .117 .779∗ .130 .680∗ .095 .601∗ .106 .506∗

b. model-based
A; S+B .119 .771 .132 .651 .112 .335 .117 .284
V; S+B .179 .230 .172 .184 .096 .588 .110 .497
A; (B-S)+(S-B)+(B-B) .117 .778∗ .132 .664∗ .108 .409∗ .120 .303∗
V; (B-S)+(S-B)+(B-B) .171 .344∗ .171 .222∗ .095 .599∗ .111 .477
c. modality- and model-based
A+V; S+B .113 .795 .130 .664 .089 .670 .107 .549
A+V; (B-S)+(S-B)+(B-B) .110 .808∗ .127 .685∗ .088 .671 .103 .554
state-of-the-art method
OA-RVM .135 .725 .150 .612 .171 .384 .169 .392

Table 5: Late fusion results on the SEMAINE database: performance comparison in terms of RMSE and CCC between the strength-involved models and the
individual models of SVR (S) and BLSTM-RNN (B) with late fusion strategies (i. e., modality-based, model-based, or the combination) on the development and
test partitions of SEMAINE database. The best achieved CCC is highlighted. The symbol of ∗ indicates the significance of the performance improvement over the
related individual systems.

SEMAINE
Late Fusion AROUSAL VALENCE

Dev. Test Dev. Test
fusion type RMSE CCC RMSE CCC RMSE CCC RMSE CCC
a. modality-based
A+V; S .205 .416 .205 .370 .231 .422 .271 .097
A+V; B .202 .439 .210 .313 .240 .351 .276 .055
A+V; B-S .200 .460∗ .211 .305 .238 .369 .271 .033
A+V; S-B .201 .445 .207 .368 .231 .424 .278 .062
A+V; B-B .200 .460∗ .211 .304 .242 .336 .257 .099∗
b. model-based
A; S+B .207 .394 .201 .348 .254 .212 .261 .021
V; S+B .222 .238 .229 .125 .237 .376 .273 .096
A; (B-S)+(S-B)+(B-B) .204 .420∗ .202 .364∗ .253 .226 .262 .014
V; (B-S)+(S-B)+(B-B) .221 .246 .231 .084 .235 .390∗ .300 .036
c. modality- and model-based
A+V; S+B .201 .447 .206 .353 .235 .395 .277 .054
A+V; (B-S)+(S-B)+(B-B) .198 .470∗ .207 .346 .224 .477∗ .301 .026
state-of-the-art method
OA-RVM .253 .433 .247 .346 .312 .315 .351 .021

Results gained on the widely used RECOLA and SEMAINE
databases indicate that Strength Modelling can match or outper-
form the corresponding conventional individual models when
performing affect recognition. An interesting observation was

that, among our three different Strength Modelling set-ups no
one case significantly outperformed the others. This demon-
strates the flexibility of the proposed framework, in terms of
being able to work in conjunction with different combination of
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Figure 7: Averaged relative performance improvement (in terms of CCC) cross
RECOLA and SEMAINE for arousal and valence recognition. The perfor-
mance of the Strength Modelling was compared with the best individual sys-
tems in the case of audio only, video only, early fusion, and late fusion frame-
works.

regression strategies.
A further advantage of Strength Modelling is that, it can be

implemented as a plug-in for use in both early and late fu-
sion stages. Results gained from an exhaustive set of fusion
experiments confirmed this advantage. The best Strength Mod-
elling test set results on the RECOLA dataset, .685 and .554, for
arousal and valence respectively were obtained using Strength
Modelling integrated into a modality- and model-based late fu-
sion approach. These results are much higher than the ones
obtained from other state-of-the-art systems. Moreover, on the
SEMAINE dataset, competitive results can also be obtained.

There is a wide range of possible future research direction
associated with Strength Modelling to build on this initial set of
promising results. First, only two widely used regression model
were investigated in the present article for affect recognition.
Much of our future efforts will concentrate around assessing
the suitability of more other regression approaches (e. g., Par-
tial Least Squares Regression) for use in the framework. In-
vestigating a more general rule of what kind of models can be
implemented together in the framework help to expand its ap-
plication. In addition, it is interesting to extend the framework
widely and deeply. Second, motivated by the work in [17],
we will also combine the original features with the predictions
from different modalities (integrating the predictions based on
audio features with the original video features for a final arousal
or valence prediction), rather than from different models only.
Furthermore, we also plan to generalise the promising advan-
tages offered by Strength Modelling, by evaluating its perfor-
mance on other behavioural regression tasks.
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