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Abstract Automatic text summarization aims to produce summaries for one or more texts using

machine techniques. In this paper, we propose a novel statistical summarization system for Arabic

texts. Our system uses a clustering algorithm and an adapted discriminant analysis method: mRMR

(minimum redundancy and maximum relevance) to score terms. Through mRMR analysis, terms

are ranked according to their discriminant and coverage power. Second, we propose a novel sen-

tence extraction algorithm which selects sentences with top ranked terms and maximum diversity.

Our system uses minimal language-dependant processing: sentence splitting, tokenization and root

extraction. Experimental results on EASC and TAC 2011 MultiLingual datasets showed that our

proposed approach is competitive to the state of the art systems.
� 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Automatic summarization has received considerable attention
in the past several years. Because it is a relatively old field
(Luhn, 1958; Edmundson, 1969), the rapid growth of available

documents in digital format was like ‘‘a breath of fresh air” to
the field and has highlighted the importance of developing
specific tools to find relevant information. Arabic documents

are no exception. Indeed, Arabic content on the Internet has
undergone a constant expansion: Arabic websites were ranked
eighth at 3% 1 in April 2013, and there were more than 255

thousand Arabic Wikipedia articles in December 2013. More-
over, Arabic is the fifth most spoken language in the world,2

and Arabic Internet users were ranked seventh at 3% in

May 2011.
Recently, new tasks and challenges arose such as multi-

document, multilingual and guided and updated summaries
and gave a new boost to the automatic summarization field.

Cross-lingual and multilingual summarizations received
_used_
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considerable attention and made some interesting multilingual
datasets available.

The goal of text summarization is to produce a condensed

version of one or more texts using computer techniques. This
will help the reader to decide if a document contains needed
information with minimum effort and time loss. Thus, a good

summarizer should find key information and omit redundant
information. For example, if we perform a search on a partic-
ular subject, such as ‘‘Arabic text summarization”, we will find

a multitude of documents. Among them, some are very inter-
esting, and others are less relevant. Sorting these documents is
a tedious task, which will take significant time. Thus, tools
such as single- and multi-document summarization systems

are quite useful.
Early summarization systems used natural language pro-

cessing (NLP)-based techniques in a bid to understand the

source text and generate new sentences to form an abstract:
paraphrasing identification and information fusion, for exam-
ple Barzilay and McKeown (2005). In a few other cases, NLP

techniques were used to identify salient sentences, such as the
use of rhetorical analysis RST (Marcu, 1998). However, these
techniques are not yet mature; they still require heavy NLP

processing often based on limited and language-dependent
resources. Moreover, considerable work remains for Arabic
NLP to reach the actual level of English NLP tools, for
example: sentence splitting, tokenization, part-of-speech tag-

ging, named entity recognition, and anaphora resolution.
These basic NLP tasks have relatively acceptable perfor-
mance for English and were used in many state of the art

summarization systems. However, Arabic NLP systems are
still in an early stage. Thus, developing effective Arabic sum-
marization systems based on heavy NLP techniques is not yet

possible.
Recently, statistical techniques have proved their perfor-

mance and gained more ground. In this paper, we propose

an Arabic statistical summarization method, which uses
light language-dependent information. Our method extracts
relevant sentences from single and multiple Arabic docu-
ments by maintaining minimum redundancy and maximum

relevance. To achieve this, we first proceed to document
preprocessing: sentence splitting, tokenization, stop words
removal and root extraction. Second, we build a [Sen-

tences � Terms] matrix, where each entry corresponds to
the term’s weight in the sentence. Third, we build a sen-
tence-to-sentence similarity/distance matrix and perform

clustering to put similar sentences in the same cluster.
Fourth, we apply an adapted discriminant analysis method:
minimum redundancy maximum relevance (mRMR) (Peng
et al., 2005) to select most relevant terms from input

Arabic document/documents with minimum redundancy.
Then, a score is assigned to each sentence based on the
new mRMR weights of its terms. Finally, n sentences are

selected to construct the output summary, n depending on
the required summary size.

This paper is organized as follows: we first introduce a brief

review of related work in the field in Section 2. Second,
Section 3 describes the original mRMR method, and Sections
4 and 5 present our mRMR adaptation to the Arabic

summarization task. Section 6 details our experiments in both
single- and multi-document summarizations. Finally, we pres-
ent our paper’s conclusions and several interesting perspectives
in Section 7.
2. Previous work

Identifying relevant sentences is the key element for
extractive summarization systems. Statistical techniques assign

a score to each sentence. Computing this score varies from the
use of positional- and frequency-based information to the
use of topic signatures, abstractive terms and sentence

recommendation.
Compared to English document summarization, very few

works have been performed for Arabic document summariza-
tion. To the best of our knowledge, Douzidia and Lapalme

(2004) was the first work in the Arabic summarization field.
It uses classical sentence scoring features: sentence position,
terms frequency, title words (Luhn, 1958) and cue words

(Edmundson, 1969): for example, ‘‘ ىلإةراشلإاردجت ” or ‘‘we
underline” and ‘‘ قبسامىلعءانبو ” or ‘‘in conclusion” are used
to capture sentences in which the author has emphasized.

Douzidia and Lapalme (2004) used a weighted linear combina-
tion of these features (which is often the case) to score sen-
tences (1). The system uses character level normalization, a

light lemmatization (simple prefix and suffix removal) and a
rule-based sentence compression component to reduce several
indirect discourse parts, such as name substitution.

Sc ¼ a1Sclead þ a2Sctitle þ a3Sccue þ a4Sctf:idf ð1Þ
Sobh et al. (2006) used additional features: the sentence and

paragraph length, the sum of sentence cosine similarity values

with the rest of sentences and some POS-based features: num-
ber of infinitives, verbs, Marfo’at, and identified words and
whether the sentence includes a digit or not. Next, the authors

apply three classifiers: two basic classifiers (Bayesian, genetic
programing) and a combination of these two as a dual one.
Among this work’s interesting conclusions is the fact that on
the basis of an evaluation on 213 articles from ‘‘Al Ahram”

newspaper, features were classified into three categories:
strong, weak and intermediate. Strong features were: the sen-
tence’s term weight, length and similarity sum.

Schlesinger et al. (2008) used a rule-based sentence splitter
and six-gram tokenization to process Arabic texts. The authors
outlined the lack of resources to accomplish these two tasks.

Motivated by Douzidia and Lapalme’s (2004) good evaluation
results, authors use original Arabic texts rather than English
machine translated texts, a unigram language model and signa-
ture terms to score sentences. Once top ranked sentences are

extracted, the system replaced Arabic sentences with the
corresponding machine translated (MT) sentences.

El-Haj et al. (2011a) proposed two Arabic text summariza-

tion systems: AQBTSS, a query-based Arabic single-document
summarizer, and ACBTSS, a concept-based summarizer. The
first, AQBTSS, attempts to fit the generated summary to a spe-

cific Arabic user’s query while the second, ACBTSS, attempts
to fit it against a bag-of-words representation of a certain con-
cept. The two systems use a vector space model to score sen-

tences. Interestingly, for the concept-based summarizer, the
author dressed a list of 10 concepts with the corresponding
most frequent terms. This was defined on the basis of a
10,250 Arabic newspaper articles corpus with approximately

850 documents per concept. On the basis of this work, the
KALIMAT 1.03 corpus was recently released; it is a free and
publically available dataset of 20,291 newspaper articles which

http://sourceforge.net/projects/kalimat/
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fall into six categories: culture, economy, local news, interna-
tional news, religion, and sports. It contains the corresponding
single- and multi-document extractive summaries. A full NER,

POS and morphological analysis is also available for all of the
dataset articles.

Other works try to understand the source text and rely on a

deep analysis of the source text. Indeed, Mathkour et al. (2008)
built rhetorical structure trees (RS) (Mann and Thompson,
1988; Marcu, 2000) for Arabic texts. They used a list of 11

Arabic rhetorical discourse relations (Condition or ‘‘ طرشلا ”,
Justification or ‘‘ ليلعتلا ”, etc.) with their corresponding cue
phrases (‘‘ ببسب،نلأ‘‘,”ول،اذإ،نإ ”, etc.) to build a binary tree of
textual span pairs (nucleus, relation type, and satellite). The

nucleus span is therefore more important to the reader than
the satellite span, and the summary is generated using the first
levels of the RS tree. Obviously, there is more than one tree per

text because of the ambiguity of relations and text span
attachments. Consequently, various summaries could be
generated for the same text. In Al-Sanie et al. (2005), the

authors discussed determining more suitable options for
the summarization task among possible trees.

Similarly, Mâaloul et al. (2010) identified 19 possible rhe-

torical relations through a corpus-based analytical study, and
some of them have commonalities with Mathkour et al.
(2008). Second, they limited the initial relations to a list of
the nine most useful relations for the summarization task.

Azmi and Al-Thanyyan (2012) proposed a hybrid two-pass
summarization, where the first pass uses the RS tree’s first lev-
els (Mathkour et al., 2008) to generate a primary summary,

while the second pass uses the primary summary to produce
a shorter version. The second pass scores sentences within
the primary summary using a Douzidia and Lapalme (2004)-

like scoring formula (1). The authors affirm that the two-pass
summarizer improves the basic RST summarizer.

RST-based summarization techniques rely on a limited

number of human-made rhetorical relation patterns and their
corresponding cue phrase lexicons. Identifying these relations
with an acceptable accuracy is a hard task, even for a native
Arabic speaker because of the high semantic ambiguity of

the Arabic language. In addition, computational time is not
a negligible factor. Indeed, we hardly expect to automatically
construct accurately several possible RS trees for a 200-page

text in a reasonable time. In fact, computational time is not
specific to the Arabic language; it is a drawback that research-
ers want to overcome in every heavy NLP-based system. Fur-

thermore, it is well known that sentence informativeness and
centrality is not sufficient and that information novelty is also
an important feature. Indeed, considering information novelty
maximizes the summary’s coverage and avoids redundancy.

Recently, a new task has been introduced to the summari-
zation field: multilingual summarization. Here, the goal is to
design systems applicable to various languages. Therefore,

the system should use very little language-dependent knowl-
edge. This system is different from the early summarization
systems Barzilay and McKeown (2005), Marcu, 2000; Radev

and McKeown (1998) and was motivated by better results
and robustness of statistical techniques. The TAC MultiLing
2011 workshop (Giannakopoulos et al., 2011) strengthened

this new trend and made a multilingual dataset of seven lan-
guages available, including Arabic. The workshop allowed sys-
tems (which were not originally developed for Arabic except
for El-Haj et al. (2011b)) to produce multi-document news
summaries for seven different languages, including Arabic. A
hierarchical latent Dirichlet allocation-based system (Liu
et al., 2011) ranked first and the El-Haj et al. (2011b) system

ranked third. These efforts continued during the ACL multilin-
gual 2013 workshop (Giannakopoulos, 2013). Alguliev et al.
(2011) modeled the sentence relevance and redundancy

dilemma as an optimization problem. The maximum coverage
and minimum redundant (MCMR) text summarization system
computes sentence relevance as its similarity to the document

set vector. Sentence redundancy is its similarity to the remain-
ing sentences. MCMR uses two integer linear programing
(ILP) algorithms: branch-and-bound and binary particle
swarm to select the most relevant and dissimilar sentences with

respect to the summaries’ size. Later, they use a genetic algo-
rithm and differential evolution (DE) algorithm to solve the
optimization problem (Alguliev et al., 2013).

The success of these foreign systems on the Arabic language
and the lack of robust Arabic NLP tools encouraged us to
develop a statistical summarization system for Arabic texts.

It uses basic Arabic NLP resources (sentence segmentation,
tokenization and root extraction) and attempts to address
information diversity without omitting sentence relevance

along the sentence scoring and extraction process. In fact, it
first uses a discriminant analysis method, mRMR (Peng
et al., 2005), to score terms. Second, it uses the
resulting mRMR scores to rank sentences according to the

discriminant power of their terms. We experiment with our
method on single- and multi-document Arabic datasets: EASC
and TAC 2011 multilingual datasets under different

configurations.
3. Minimum redundancy maximum relevance (mRMR)

Minimum redundancy maximum relevance (mRMR) (Peng
et al., 2005) is a discriminant analysis method whose goal is
to select a subset of features which best represents the whole

space of features. It is based on mutual information (2)
between pairs of features, which reflects the level of similarity
between them.

IðX;YÞ ¼
X
y2Y

X
x2X

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ ð2Þ

In fact, mutual information aims to measure the informa-
tion quantity that two features share. Therefore, if two features

have a high mutual information quantity, we say that they are
highly correlated, and consequently, one can replace the other
with minimum information loss.

Peng et al. (2005) used mutual information to measure
redundancy and relevance at the same time. Indeed, to mini-
mize redundancy, we are interested in finding dissimilar fea-

tures (with minimum mutual information score), which
represent the whole features (with maximum relevance).

Maximizing relevance requires selecting features, which

represent at best the entire dataset. The authors accomplished
this in two steps:

1. Applying a classification method to find different classes of

observations.
2. Then, they opted, again, for a mutual information score

between each feature and the classification variable resulted

from one.



Figure 1 System architecture.
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To use mRMR, we need as an input, a matrix, where each
column represents a feature and each row represents the corre-
sponding observations. Every observation belongs to a specific

class; thus, each row of the input matrix is attached to a class
number c (the value of the classification variable).

c f1 f2 fn

1 1 �1 �1

1 �1 �1 � � � � � � � � � 1

2 �1 1 �1

2 1 1 1

..

. . .
. ..

.

� � � � � � � � �

2
666666666664

3
777777777775

In this approach, we try to select the top m and m< n fea-
tures with a maximum relevance (mutual information {feature
fi, classification variable c}, and at the same time, with a
minimum redundancy (mutual information between two

features fi, fj).
Example:
If we have two classes, two features and five observations:

c f1 f2

1 �1 �1

2 þ1 þ1

1 �1 þ1

2 þ1 �1

1 �1 �1

��������������

��������������
At first, f1 appears to be more relevant than f2. It is absent

(value = �1) in the first class 1 and present (value = 1) in the
second class 2 for all five observations, unlike f2. In fact,

mRMR scores confirm this observation: 0.971, 0.00 for f1, f2,
respectively.

To combine these two values, the authors proposed two

methods: maximizing the difference between relevance and
redundancy or maximizing the quotient between them.
mRMR was applied in the field of bioinformatics (Ding and

Peng, 2003), where the idea was to select the genes responsible
for a cancer type among others. Classes represented cancer
types, and features represented examined genes within a class.

According to the authors, the results were very satisfying,
sometimes reaching a 97% accuracy threshold.

In the context of text summarization, this method will be
especially useful. mRMR is a pure statistical and robust

method and will help us to assess diversity contribution com-
pared to redundancy in various contexts: short and long doc-
uments, same or different domains, single- or multi-

document summaries, and summaries’ length. The following
section describes our adaptation of the mRMR method to
the task of Arabic text summarization.

4. mRMR for Arabic single-document summarization

Terms’ frequency is a relevance indicator in the source text

and, at the same time, a drawback that every summarization
system wants to avoid in the result summaries. To investigate
this issue, we propose to use the minimum redundancy and

maximum relevance method described above. Here, our goal
is to perform extractive summarization of Arabic texts, i.e.,
sort sentences within a document and keep those that
maximize relevance and, at the same time, cover up, at best,
information contained in the source document.

Measuring the relevance of a specific sentence is the main

novelty in our proposition. Indeed, it depends on the relevance
of terms within this sentence. To achieve this, we first use a
clustering algorithm to group similar sentences into clusters.

The choice of a good clustering method is decisive for the suc-
cess or failure of mRMR. Accurate clusters will, obviously,
lead to a better estimation of term relevance within the source

document.
To score terms using mRMR, we first perform a pretreat-

ment on the source text and apply a clustering method to
group similar sentences into clusters. Fig. 1 shows different

steps that our system performs.

4.1. Text preprocessing

In our system, the sentence is the extraction unit and the term
is the scoring unit, and it becomes necessary to perform pre-
processing of the source document. Here, we need to run the

following classic steps:

A. Sentence splitting;

B. Tokenization;
C. Stop words removal; and
D. Root extraction.

For Arabic texts, these basic NLP tasks are problematic.
Indeed, sentence segmentation is a difficult task because of
non-capitalization and minimal punctuation (Farghaly and

Shaalan, 2009).
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Indeed, it is common to find an entire paragraph without
punctuation in Arabic texts. We usually use Arabic coordina-
tors such as ”و‘‘ wa and ”ف‘‘ fa instead of the ‘‘.”.

Unfortunately, as far as we know, there is no Arabic sentence
splitter that considers all of these particularities. We rely on a
naive ‘‘.” -based splitter. This choice was forced but appropri-

ate because in the two datasets we used, sentences were
separated by ‘‘.”. We look forward to use a real Arabic
sentence splitter once it is available.

Farghaly and Shaalan (2009) defined an Arabic word as a
string of characters delimited by spaces. With the agglutinative
propriety of the Arabic language, it is possible to formulate a
complete sentence with as many as four different parts of

speech with one Arabic word, ‘‘ هتبتكف ” or ‘‘So I wrote it” is an
example. This makes tokenization and root extraction tasks
especially challenging. For tokenization, we use a Stanford

Arabic word segmenter (Monroe et al., 2014), which achieves
very good precision scores and is particularly fast compared
to the well-known MADA system (Habash and Rambow,

2005). Then, we use a list of 168 words defined by Khoja
(1999) to remove stop words. For root extraction, we use an
updated version of the root-based approach developed by

Khoja (1999)4.
Finally, we project the sentence vector (resulting from the

first step: sentence splitting) onto the term vector (resulting
from the last step: root extraction) to obtain, at last, the [Sen-

tences � Terms] matrix in which each entry [i, j] corresponds to
Termj frequency in the sentence i.

Sentence Term1 Term2

S1 0 0

S2 1 1

S3 0 2

S4 1 0

S5 0 0

��������������

��������������
4.2. Sentence clustering

Once the ½Sentences � Terms�matrix is computed and before
applying mRMR, we need to perform sentence clustering.

Given the ½Sentences � Terms� matrix, we compute the sim-
ilarity matrix ½Sentences � Terms� where each value [i, j] cor-
responds, for example, to the widely used method: cosine

similarity between couples of sentences X and Y (3):

cosðX;YÞ ¼
P

ixiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxiÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðyiÞ2

q ð3Þ

The similarity or the distance matrix (Distance [i, j] = 1 –
Similarity [i, j], i > j) is the input to the clustering algorithm.

Here, we use the hierarchical clustering HCLUST. Of course,
any good clustering algorithm could be used instead. We will
discuss, further, the clustering algorithm and the number clus-

ter impact on the resulting summaries (§ Section 6).
Once clustering is performed, the ½Sentences � Terms�

matrix will be augmented by a new column: the class number
of each sentence. The mRMR scoring algorithm uses this final

matrix as an input.
4 http://sourceforge.net/projects/arabicstemmer/.
Sentence Class Term1 Term2

S1 1 0 0

S2 2 1 1

S3 2 0 2

S4 1 1 0

S5 1 0 0

��������������

��������������
4.3. Scoring terms using mRMR

mRMR scores feature on the basis of how much discriminant
information they hold. In summarization, we are interested in
highly discriminant terms, which allow us to select a specific

sentence and not the other sentences. Finding this set of terms
is what our adaptation of mRMR accomplishes.

In Peng et al. (2005), the authors proposed to compute the

relevance as how much the feature’s variation follows the clas-
ses’ variation. For a term’s relevance, it is the discriminating
power of a specific term within classes, i.e., the more a
term’s frequency varies significantly through classes, the more

it is discriminant. It is actually better to think about the
opposite case; if a term has the same frequency mean (or is
close to the term’s frequency mean in all classes), it is not quite

as interesting, and consequently, will receive a low relevance
score.

Formally, we use the F-test to compute the relevance score:

Fðt; hÞ ¼
P

knkð�tk � �tÞ=ðK� 1Þ� �
r2

ð4Þ

where nk is the number of sentences in class k, �tk is the mean
value of t within class k, �t is the mean within all of the K classes

and r is the pooled variance.
If we take, as an example, a matrix of two terms with the

following mean frequencies:

Example:

Class Term1 Term2

1 2 2

2 0 2

3 5 0

���������

���������
First, Term1 seems to be more discriminant among different

classes than Term2. We believe that highly discriminant terms
will highlight discriminant sentences, which mark idea

changes.
The question that arises here is: Is relevance as the discrim-

inating power of terms sufficient for the summarization task?

In fact, if two terms share very close relevance scores, we
should be able to sort them on the basis of their redundancy
scores.

Term’s ti redundancy is the mean of its mutual information

with all other terms; if a term has a high redundancy score, i.e.,
shares an important amount of information with the rest of the
terms.

Thus, we compute a term’s mutual information as follows:

RedundancyðTiÞ ¼ 1

jSj
X
j2S

IðTi;TjÞ ð5Þ

Let us take a closer look on the meaning of low/high
mutual information between couples of terms; if two terms
share high mutual information, this shows how much one term

http://sourceforge.net/projects/arabicstemmer/
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attracts the other, i.e., they tend to appear at the same time
within sentences. We use the Pearson correlation (6) to com-
pute this value.

CðTi;TjÞ ¼
P

kðTi;k � �TiÞ:ðTj;k � �TJÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kðTi;k � �TiÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kðTj;k � �TJÞ2

q ð6Þ

Therefore, if a term has a high redundancy score, which
means that it attracts many terms, this will reduce its discrim-
inating power. In the original mRMR method, the others pro-
posed to combine these two values in two ways and perform an

incremental search for top n features:

FCD for F-test Correlation Differencemax
i2Xs

� Fði; hÞ � 1

jSj
X

j2Sjcði; jÞj
� �

ð7Þ

FCQ for F-test Correlation Quotient maxi2Xs

� Fði; hÞ= 1

jSj
X

j2Sjcði; jÞj
� �

ð8Þ

Finally, we succeed in finding a set of terms, which describe
the best sentences’ clusters and, at the same time, does not
attract many terms. This set of terms will guide us to find

the most relevant sentences.
The main contribution of our new term scoring method is

that the term is the central element of our summarization

method instead of the sentence. Once we have the set of terms,
we can use them to score sentences. The result of this step is a
documents’ term vector with the corresponding adapted
mRMR scores:

VmRMR ¼ ðwt1;wt2; . . . . . . . . . . . . ;wtnÞ ð9Þ
The next paragraph details our sentence scoring method

and extraction algorithm based on the new mRMR weights.

4.4. Scoring sentences using adapted mRMR scores

Based on the new mRMR scores, we can use several sentence

scoring strategies:

(a) The mRMR weights sum

ScoreðSÞ ¼
X

i¼1;ns
wti ; tiS ð10Þ
(b) The Sentence/VmRMR Cosine similarity

ScoreðSÞ ¼ jCosine SimilarityðVs;VmRMRÞj

(c) Select m mRMR terms, m < n and score S using one of

the two strategies above.

The first strategy tends to favor longer sentences; the sec-
ond strategy includes a normalization factor so that longer

sentences do not obtain more weight. The third strategy would
be interesting if we want to focus on a specific term subset or
the 10 most discriminant terms, for example.
4.5. Sentence extraction algorithm

The last step that our summarization system performs is to
extract the top n sentences depending on the required
summary size (compression ratio, number of sentences, and
number of characters). This extraction could be a simple
reverse sorting or a recursive process.

We propose a novel extraction algorithm. It takes into
account terms within already selected sentences to compute
the score of the next sentence to be included in the summary.

Let VmRMR be the mRMR term vector resulting from step 3
and Vs = {(si, wi), i e S} be the vector of all sentences associ-
ated with their initial scores resulting from step 4. The main

idea is to decrease the discriminant term weight along selecting
sentences in which they appear. We propose two decreasing
speeds: rapid and slow. For the first speed, rapid decrease,
the already included term weights are set to zero. This appears

to be suitable for very short summaries and allows us to select
the maximum information quickly. The second speed, slow
decrease, decreases the already included mRMR terms weights

progressively, depending on the just selected sentence similar-
ity sj to VmRMR: simj.

Input: VmRMR = (wt1,wt2, . . .. . .. . .. . ., wtn)

S= {(si, simi), i e S}

SizeR

1. R= U
2. Select sj, simj = Max(simi, i e S)

a. R= R
S

{sj}

3. Update VAmRMR

a. T= VmRMR \ Tsj

b. For each tk e T, update VmRMR weights

– If selection method is slow decrease

w0
k ¼ wk � simj

�wk

If selection method is rapid decrease

w0
k ¼ 0

4. Update S

a. S= S � sj
b. For each sk e S, update sentences scores

Score ðskÞ0 ¼ jSimðVsk ;NewVmRMRÞj
5. Go to 2 while (Size(R) < SizeR and $ wt > 0)

Output: Summary R
5. mRMR for multi-document summarization

In the multi-document summarization task, sentence scoring is
even more difficult because of the high probability of the cross-
sentence informational subsumption CIDR, if the documents
discuss the same topic. CIDR reflects the fact that certain sen-

tences repeat some of the information present in other sen-
tences. Radev et al. (2004) proposed to compute the CIDR
as the number of terms two sentences have in common, nor-

malized by the length of each one.
Because we use terms as the central scoring elements, our

adapted mRMR could be easily used to produce multi-

document summaries. Sentence position is not incorporated
in the scoring formula, and we can thus use one of the cluster-
ing methods:

(a) Each document corresponds to a cluster;
(b) Consider the bag-of-sentences model and apply a clus-

tering algorithm (Naive Bayes, SVM, and HCLUST)

to produce clusters and define the classification variable.
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The following steps, terms and sentences scoring, remain
unchanged and could be performed similar to the single-docu-
ment summarization task.

6. Experiments

6.1. Datasets

Because we evaluate our system for both Arabic single- and

multi-document summarizations, we used two datasets: Essex
Arabic summaries corpus (EASC) and MultiLing Pilot 2011
dataset.

Ø Essex Arabic Summaries Corpus (EASC)

For single-document summarization, we use the Essex

Arabic summaries corpus (El-Haj et al., 2010). The dataset
contains 153 documents from Wikipedia, AlRai and AlWatan
newspapers5. The dataset contains 10 main topics: art and

music, education, environment, finance, health, politics,
religion, science and technology, sports and tourism.

For each document, five model extractive summaries are

available. These model summaries were generated by native
Arabic speakers using Mechanical Turk6. Users were asked
to select sentences focusing on the main idea of the source
document. The model summaries size does not exceed 50%

of the source document’s size. The dataset is available in two
encodings: UTF-8 and ISO-Arabic.

Ø MultiLing Pilot 2011 Dataset

For the multi-document summarization task, we used the

Text Analysis Conference (TAC) 2011 MultiLing Pilot dataset
(Giannakopoulos et al., 2011). It is a parallel multilingual cor-
pus of seven languages: Arabic, Czech, English, French,

Greek, Hebrew and Hindi. The creation of the corpus started
by gathering an English corpus, and it contains 10 document
sets with 10 documents for each set. The original news articles
were extracted from the WikiNews7 website. Each document

set describes one event sequence: the 2005 London bombing
or the Indian Ocean Tsunami. Texts in other languages,
including Arabic, have been translated by native speakers of

each language.
For each document set, three model summaries are

provided by fluent speakers of each language (native speakers

in most cases). Each model summary size is between 240 and
250 words. The dataset is available in UTF-8 encoding.

6.2. Evaluation metrics

To evaluate our system’s performance, we use a well-known
automatic evaluation method: recall-oriented understudy for
gisting evaluation (ROUGE), which we adapted to the Arabic

texts.

Ø ROUGE
5 http://www.wikipedia.org/, http://www.alrai.com/, http://www.

alwatan.com.sa.
6 http://www.mturk.com/.
7 http://www.wikinews.org/.
The ROUGE method (Lin, 2004) has been used in DUC
conferences. ROUGE allows us to make an intrinsic evalua-
tion of text summaries against human-made abstracts. It

includes five measures: ROUGE-N, ROUGE-L, ROUGE-W,
ROUGE-S and ROUGE-SU.

ROUGE-N compares the N-grams of two summaries and

counts the number of matches between these two summaries.
It can be computed using the following formula:

ROUGE� ðNÞ ¼
P

S2Summref

P
N�gram2S CountmatchðN� gramÞP

S2Summref

P
N�gram2S CountðN� gramÞ

ð11Þ
where N is the length of the N � gram and Countmatch

(N � gram) is the maximum number of N-grams co-occurring

in a candidate summary and a set of reference summaries
(Summref). Count(N � gram) is the count of N � grams in the
reference summary.

ROUGE-S (skip-bigram co-occurrence) is only an extension
of ROUGE-N. It is calculated the same as ROUGE-2 but uses
skip-bigrams instead of adjacent bigrams. A skip-bigram, as

defined in Lin (2004), is any pair of words in their sentence
order, allowing for arbitrary gaps. ROUGE-SU is an extension
of ROUGE-S, adding unigram as the counting unit, which is a
weighted average between ROUGE-S and ROUGE-1.

In our evaluation, we used two metrics of ROUGE, which
were used in DUC 2007: ROUGE-1 and ROUGE-2. Because
we compare Arabic texts, we deliberately disable the use of

porter stemmer; this will lead to a word-by-word comparison
and not a stem-by-stem comparison. Thus, recall will
obviously decrease. We also modified the original Perl script

at the tokenization level to support Arabic script characters
instead of Latin script characters.

ROUGE-1 (ROUGE-2) compares the unigram (bigram)

overlap between the system summary and the human
abstracts. For each of these metrics, we used the recall (R),
precision (P), and F1-score (F1), given in the following
formula:

R ¼ jGref \ Gcanj
jGrefj ;P ¼ jGref \ Gcanj

jGcanj ;F1 ¼ 2PR

Pþ R
ð12Þ

where Gref includes the grams of reference summary and
Gcan includes the grams of candidate summary.

6.3. Experiment setup

Our experiments tend to achieve the following purposes:

� Evaluate the use of a statistical method on the Arabic texts

summarization;
� Evaluate the discriminant analysis contribution to the sum-

marization task;

� Evaluate the impact of the clustering’s precision level on the
produced summaries quality;

� Comparing our system’s single- and multi-document sum-
maries to baselines and reference summaries;

� Comparing our system to the TAC 2011 MultiLing work-
shop participating systems.

Note that we used the well-known cosine measure to
compute sentence similarity and the hierarchical clustering

http://www.wikipedia.org/
http://www.alrai.com/
http://www.alwatan.com.sa
http://www.alwatan.com.sa
http://www.mturk.com/
http://www.wikinews.org/
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Figure 3 Arabic single-document ROUGE-2 results.

8 http://en.wikipedia.org/wiki/Inverted_pyramid.
9 http://en.wikipedia.org/wiki/Wikipedia:Lead_section.
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(HCLUST) to perform sentence clustering. Of course, any

other similarity/clustering method could be used.
To achieve these purposes, the experiment steps we pursued

are as follows:

� Merge texts and produce one text per document set for the
multi-document summarization task;

� Splitting text into sentences;

� Generating the [Sentences � Terms] Matrix;
� Computing the similarity/distance matrix

[Sentences � Sentences];

� Perform sentence hierarchical clustering by varying the
number of classes: C= 2, 4, 6, 8, and 10.

� Application of the mRMR method on different

configurations;
� Selection of top n sentences and adjusting the size of the

summary;

� Computing ROUGE-1 and ROUGE-2 scores of our
mRMR summaries and comparing them against reference
summaries;

� Comparing ROUGE-1 and ROUGE-2 scores of our

mRMR summaries to the baselines and available peer sys-
tems’ results.

6.4. Results and discussion

We ran our system under three different configurations: RD

for rapid decrease, SD for slow decrease and Seq for sequen-
tial, i.e., simple top n sentences. For each configuration, we
used two sentence scoring methods: Simple Sum -SS- of terms’
mRMR scores and Cosine Similarity -CS- between the sen-

tence vector and the mRMR vector. This made a total of six
runs. For each run, we took best ROUGE scores correspond-
ing to a certain number of clusters. For example, the SS-SD

run for the best rouge score was recorded for 10 clusters. Best
scores were generally obtained for 8 to 10 clusters. Note that
the -MID- refers to the use of the mutual information differ-
ence for mRMR scoring.

Ø Arabic single-document summaries

Figs. 2 and 3 show ROUGE-1 and ROUGE-2 scores for
our system against model summaries. Unfortunately, we did
not find any peer summary results. Thus, we compare our sum-

maries to the baseline lead sentences.
The baseline lead sentences extract the first n sentences of

each document; n is equal to the model summary’s size. For

the EASC dataset, we have five model summaries per docu-
ment. Consequently, for each document, we produce five base-
line summaries; then, we compute the average of their
ROUGE-1 and ROUGE-2 scores. Because of the nature of

dataset documents (news and Wikipedia articles), it turns out
to be a strong baseline to beat. Indeed, news articles follow
the inverted pyramid style 8and address the most important

information first. Wikipedia articles usually begin with a lead
section9, which serves as an introduction to the article and a
summary of its most important aspects.

http://en.wikipedia.org/wiki/Inverted_pyramid
http://en.wikipedia.org/wiki/Wikipedia:Lead_section
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The results show that compared to the baseline, the MID-
SS-Seq configuration (mutual information difference, simple
sum and top n sentences) outperforms the baseline in terms

of recall. Precision scores are lower but are still comparable
the baseline scores. Note that our system does not use any
positional feature, which is the case for the baseline.

The following sample displays our system summaries
(peers) compared to the model and baseline summaries. We
can fairly observe that the baseline and peer summaries are

more relevant than the model summaries.
10 https://translate.google.com/.
From these observations, multiple questions arise: are model
summaries ‘‘ideal” enough to be considered as reference sum-

maries? Does automatic evaluation reflect the real quality of
peer summaries? We believe that a combined manual/auto-
matic evaluation will lead to better evaluation.

Ø Arabic multi-document summaries

The following figures present the ROUGE scores obtained

by our system against the baseline, topline and other TAC
2011 multilingual workshop participating systems scores. The
BaseLine system -ID9- uses as a summary the text most similar

to the documents’ set centroid (Radev et al., 2004). Topline -
ID10- uses the first model summaries as a given to generate a
graph-based representation of the best possible summary.

Next, it uses a genetic algorithm to select from random sum-
maries of the documents’ set, the one that mostly matches
the model summaries graph using the MeMoG score
(Giannakopoulos and Karkaletsis, 2010).

For ROUGE-1 recall scores (number of words the candi-
date and model summaries have in common), our system
RD, SD and Seq configurations have average scores compared

to the Baseline, Topline and seven other participating systems.
Our system’s F-scores are among the best peer systems’ (ID3,
ID4 and ID8) scores. Note that our system’s recall scores need
improvement (See Fig. 4).

Figs. 5 displays the ROUGE-2 results; the best results were

reported by the Topline system. Our system’s recall is lower
than the peer systems’ recall. Precision scores were better
graded and led to better F-scores.

Ø Experimenting with Arabic-English cross-lingual
summarization
Cross-lingual summarization is the task of producing sum-
maries in different languages from the source document sum-
maries: producing English summaries for Arabic documents
and vice versa is an example. This transition from one lan-

guage to another needs, obviously, the use of machine transla-
tion (MT).

MT can be incorporated into a summarization system in

different ways: Translate source documents then summarize
(Evans et al., 2005) or predict the translation quality of each
sentence instead of translating it and then select sentences

according to their informativeness and translation quality pre-
diction (Boudin et al., 2011; Wan et al., 2010). Consequently, a
highly informative but difficult-to-translate sentence may not
appear in the summary and vice versa. MT quality prediction

aims to reduce the negative impact of MT on the produced
summary coherence and reading fluency.

Here, we take advantage of the TAC 2011 multilingual par-

allel corpora to assess the impact of translation to the English-
Arabic cross-lingual summarization. Indeed, we first translate
our system’s Arabic summaries to English using the Google

Translation service10. Second, we compare translated summa-
ries against model English summaries using the ROUGE

https://translate.google.com/
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Figure 4 Arabic multi-document summarization ROUGE-1 results.
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metric. We have also performed the opposite: summarizing
English documents using our system then translating them to

Arabic and comparing them against Arabic model summaries.
Fig. 6 shows the ROUGE-1 results.

We observe that when Arabic is the target language,

ROUGE-1 scores decrease considerably (by more than one-
half), which is not the case when English is the target language.
In Fig. 7, the ROUGE-2 results confirm this observation.

Hence, for the same translator (Google Translate, which is
among the best translators in the market), translating from
Arabic to English is considerably better than the opposite. In
fact, this observation emphasizes how much the MT quality

could affect the summary quality, at least in term of
informativeness. In terms of reading fluency and coherence,
we believe that they are even more affected. Improvements

are needed for the to-Arabic translation field.

7. Conclusions and future work

In this paper, we introduced a novel Arabic single- and multi-
document summarization method based on automatic sen-
tence clustering and an adapted discriminant analysis method:

mRMR. Our adapted version takes advantage of terms’ dis-
criminant power to score sentences and put forward the most
salient sentences. We have proposed different configurations

on how to use our scoring method, depending on the requested
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summary size (Very Short: speed decrease, Short: slow
decrease). We have also noted the sentence clustering benefit
with our adapted mRMR method. Our method uses minimum

language-dependent processing: Only at the root extraction
level and does not use any structural or domain-dependent
features and was, therefore, successfully used to summarize
Arabic texts.

The evaluation results were promising in terms of overall
score. We have evaluated our system’s performance in both
single- and multi-document summarization tasks. For single-

document summarization tasks, our method outperforms the
strong baseline: lead sentences in terms of recall. For multi-
document summarization tasks, we compared our system to

other systems: the TAC 2011 multilingual workshop partici-
pating systems, and the results were acceptable. Note that we
followed an automatic evaluation procedure and compared

our summaries with human-made summaries using the
ROUGE method.

However, serious questions arose and outlined some of the
automatic evaluation’s shortcomings. In fact, we believe that

some model summaries were not sufficiently ‘‘ideal” to be con-
sidered as reference summaries and even if it was the case, the
ROUGE method is not sufficient and should be balanced with

a manual evaluation. We look forward to performing a man-
ual evaluation to assess the significance differences between
systems and come closer to a fair enough evaluation.

The lack of basic Arabic NLP tools was also problematic.
We used naı̈ve solutions for sentence splitting and tokenization
tasks. The root extraction algorithm generated an important
silence and biased, in some cases, the sentence similarity mea-

sure. Next, we wanted to investigate the integration of some
interesting state of the art tokenization tools, such as Attia
(2007) and Habash and Rambow (2005). We also wanted to

investigate the use of a light stemmer instead of a root-based
stemmer to address the sentence similarity computation.

At this stage, the main goal of our summarization method

is the identification and extraction of relevant sentences from a
set of Arabic documents. This type of summarization has the
advantage of extracting complete grammatically correct sen-

tences. However, this automatically leads to a coherence prob-
lem in the produced summaries. Improvements should be
performed, and user studies could be performed to evaluate
coherence and reading fluency.

For multi-document summarization tasks, sentence reor-
dering is also an open problem and was not considered in
the present paper. In the future, we intend to conduct experi-

ments on other domains (literature, etc.) and investigate the
cross-lingual task: summarizing Arabic documents in other
languages: English and French and vice versa.
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